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Abstract: The theory of exact resonances (kinematics and dynamics) is well developed while
even the very concept of detuned resonance is ambiguous and only studies of their kinematic
characteristics (that is, those not depending on time) are available in the literature. In this paper,
we report novel effects enforced by the resonance detuning on solutions of the dynamical system
describing interactions of three spherical planetary waves. We establish that the energy variation
range can significantly exceed the range of the exact resonance for suitably chosen values of the
detuning. The asymmetry of system’s solutions with respect to the sign of the detuning parameter
is demonstrated. Finally, a non-monotonic dependence of the energy oscillation period with
respect to detuning magnitude is discovered. These results have direct implications in physics
of atmosphere, e.g., for prediction of weather extremes in the Northern Hemisphere midlatitudes
(Proc. Nat. Acad. Sci. USA 2016, 133(25), 6862–6867). Moreover, similar study can be conducted
for a generic three-wave system taken in the Hamiltonian form which makes our results applicable
for an arbitrary Hamiltonian three-wave system met in climate prediction theory, geophysical fluid
dynamics, plasma physics, etc.

Keywords: nonlinear resonance; frequency detuning; three-wave system; resonance enhancement
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1. Introduction

Numerous natural phenomena exhibit linear and nonlinear resonances. In many technical cases
occurrence of resonance must to be avoided, the widely known Tacoma Bridge dramatic collapse being
an example for this. In other cases, the goal is to approach the state of exact resonance, by reducing
resonance detuning, in order to increase the efficiency of a process or device. To give a notion of linear
resonance in physics, we consider a linear oscillator (a pendulum in mechanical problems or a wave
in the form of the Fourier harmonics in fluid dynamics problems), driven by a small force. We say,
that the resonance occurs, if the eigenfrequency ω of a system coincides with the frequency of the
driving force Ω . In this case, for small enough resonance detuning, |Ω − ω| > 0 , the amplitude of
the linear oscillator becomes smaller with increasing detuning.
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The simplest case of nonlinear resonance is a set of three waves Aj ei(kj xj − ωj t) fulfilling exact
resonance conditions of the following form

ω1 ± ω2 ± ω3 = 0 , (1)

k1 ± k2 ± k3 = 0 , (2)

where kj ∈ Z2 , ωj = ω(kj) are the wave vectors and frequencies respectively. Notice that this
definition differs substantially from the mathematical notion of resonance which makes use only of
the first Equation (1), see e.g., [1]. Moreover, in mathematical definition frequencies ωj are variables,
not functions, and the properties of corresponding dynamical systems are characterized by the ratios
of frequencies. This difference is very important and, in particular, shows that exact mathematical
results available in this area cannot be directly used in solving a physical problem. The fact is that
in the HAMILTONIAN system Equations (1) and (2) do present the laws of energy and momentum
conservation respectively, and must both be satisfied.

We do not aim to describe all the possible manifestations of the resonance phenomenon in various
natural systems, and confine ourselves to a brief introduction to the classical Wave Turbulence Theory
(WTT), which assumes resonance as the main acting mechanism in a weakly nonlinear wave system.
In the frame of the WTT, a wave system is governed by a weakly nonlinear dispersive partial differential
equation (PDE) whose linear part has solutions in the form of Fourier modes A exp (k x − ω t) where
x and t are space and time variables consequently, k is wave vector, and wave frequency ω is a function
of the wave vector, ω = ω(k) , it is also called dispersion function. The nonlinear part of the PDE
should be small, which is achieved by introducing a small parameter ε , 0 < ε � 1 , the physical
meaning of which changes from one wave system to another. For instance, in the case of surface water
waves, the wave steepness is usually regarded as a suitable small parameter while for the atmospheric
planetary waves ε can be taken as the ratio of phase and group velocities. The waves are said to interact
resonantly (that is, to form an exact resonance) if resonant conditions given in Equations (1) and (2)
are satisfied.

Under a set of assumptions, time evolution of weakly nonlinear systems is described by the waves
taking part in exact resonant interactions, while non-resonant waves are neglected in a sense that
their energies can be regarded as constant (of course, only at some specific time scale depending on ε).
Depending on whether the system is considered in a bounded area (the so-called resonators) or in an
infinite domain, the theory gives two types of predictions. In the first case, small clusters of resonantly
interacting waves are formed; the waves exchange the energy within a cluster, and there is no energy
flow among the clusters. Accordingly, the original PDE can be reduced to a few finite systems of
ordinary differential equations (ODE) which can be solved independently (discrete WTT [2,3]). On the
other hand, under a set of statistical assumptions, the original PDE can be reduced (at some longer
time scale) to a wave kinetic equation whose stationary solution gives a stationary distribution of
energy over scales in the Fourier space (kinetic WTT [4,5]). The WTT is widely used for explaining the
various effects that arise in real physical, technical, biological, economic, medical and other problems,
numerous examples of applications can be found in [6].

The notion of resonance enhancement via frequency detuning, as the title of this manuscript
says, contradicts what we would expect from our physical intuition. However, there exists a simple
qualitative explanation for that. Indeed, our intuition comes from a linear pendulum

ẍ + ω2 x = 0 , (3)

taken usually as a model for a linear wave, and a resonance is regarded due to an action of an external
force. On the other hand, the dynamical system for three-wave resonance can be transformed into the
Mathieu equation which describes a particular case of the motion of an elastic pendulum

ẍ + [ω2
pen − λ cos(ωspr)]x = 0 , (4)
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where ωpen and ωstr are frequencies of pendulum- and spring-like motions ([3], Chapter 5). Regarding
resonance detuning ∆̃ω as a frequency of an external force for Equation (4), our findings can be
understood in the following way. The detuned three-wave system has the maximal range of the
energy amplitudes variation when the elastic pendulum interacts resonantly with the external forcing.
Detailed study of this effect can be performed, using the approach developed in [7] for an elastic
pendulum subject to the external force.

Drawn from the resonance conditions provided in Equations (1) and (2), resonance detuning in
the nonlinear case can be defined in a number of ways, e.g., as a phase detuning [8], or frequency
detuning [9–11]. The frequency detuning, used in the present paper, is defined as

ω1 + ω2 − ω3 = ∆̃ω, |∆̃ω| � min
j=1,2,3

{ωj} , (5)

and detuned resonances have to satisfy conditions given in Equations (5) and (2). Exact and detuned
resonances may appear in the same wave system, at different time scales or under slightly different
conditions. For instance, ZAKHAROV’s kinetic equation describes time evolution of surface water waves
and takes into account only exact resonances [5], while various generalized wave kinetic equations
include detuned resonances for describing additional effects, e.g., wave field evolution under the action
of wind blasts [12]. Another example is given by exact resonances of the atmospheric planetary waves
which are governed by the Barotropic Vorticity Equation (BVE) and describe intra-seasonal oscillations
in the Earth’s atmosphere [13], with periods 30 to 60 days. On the other hand, detuned resonances of
the same type of waves are used to characterize regional summer weather extremes in the Northern
Hemisphere [14,15].

From mathematical point of view, the study of exact resonances in the frame of WTT is conducted
along the following lines. (I) Original nonlinear PDE taken with suitable boundary conditions yields
the form of dispersion function ω = ω (k) . (II) Exact solutions of Equations (1) and (2) can be found
(for big classes of physically relevant dispersion functions) by specially developed methods [16–18],
and corresponding resonance clusters can be constructed. (III) For each cluster a unique dynamical
system of nonlinear ODEs can be deduced and solved analytically or numerically. (IV) Alternatively
to (III), an averaging statistical procedure is used over the entire set of dynamical systems yielding
kinetic (meaning stationary) regime.

Unlike exact resonances, the theory of detuned resonances does not yet exist and their
properties common to various nonlinear systems are not known. Existing studies are limited to
kinematics, i.e., a study of the structure of many quasi-resonances depending on the magnitude of the
detuning. Moreover, the structure under consideration is presented in a form that allows neither to
restore corresponding dynamical system, nor to deduce any dynamical characteristics of a detuned
resonance [10]:

In order to better understand these issues, we believe that it is important to move beyond the kinematic
picture of resonance broadening and attempt to devise methods of studying these effects dynamically.

Generally, in the physical literature, the prevailing opinion is that bigger detuning results
in smaller variation of amplitudes and that dynamics of a detuned triad is similar to a resonant
one, e.g., [19]. To study detuned resonances in a specific wave system, the amplitudes are used,
calculated not from dynamic equations, but from specially processed measurement’s data [15].

In this paper we study for the first time the effects of frequency detuning in Equation (1) by means
of the numerical simulation with corresponding dynamical system. As an example we take a resonant
triad of atmospheric planetary waves from [13]. For the readers convenience we begin in the Section 2
with barotropic vorticity equation and deduce from it corresponding dynamical system. The system of
model equations is discribed in Section 3. Numerical results for the amplitudes and the phase space are
presented and analyzed in the Section 4 and the Section 5 correspondingly. Brief discussion concludes
the paper.
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2. Barotropic Vorticity Equation

We have chosen the Barotropic Vorticity Equation (BVE) on a sphere for demonstrating the very
procedure of deducing dynamical equations for resonantly interacting waves from the initial evolution
equation in partial derivatives. It is also known under the names CHARNEY, OBUKHOV–BLINOVA,
HASEGAWA–MIMA equation and describes large motion of ROSSBY (also called planetary or drift)
waves in the planets atmospheres, oceans, laboratory and cosmic plasmas, etc. The BVE in its simplest
form reads

∂O2ζ

∂t
+ 2

∂ζ

∂λ
+ ε J(ζ,O2ζ) = 0 (6)

with small parameter ε , 0 < ε � 1 . Here the LAPLACIAN and JACOBIAN are given as

O2ψ =
∂2ζ

∂ϕ2 +
1

cos2 ϕ

∂2ζ

∂λ2 − tan ϕ
∂ζ

∂ϕ
, (7)

J(a, b) =
1

cos ϕ

( ∂a
∂λ

∂b
∂ϕ
− ∂a

∂ϕ

∂b
∂λ

)
(8)

and the linear part of spherical BVE has wave solutions in the form

APm
n (sin ϕ) exp

(
i
[
mλ +

2 m β

n(n + 1)
t
])

(9)

with latitude ϕ , −π/2 ≤ ϕ ≤ π/2 , and the longitude λ , 0 ≤ λ ≤ 2π . Here A is constant
wave amplitude, ω = −2 β m/[n(n + 1)] , Pm

n (sin ϕ) is the associated LEGENDRE function of degree
n and order m , and β is dimensional derivative of the CORIOLIS parameter with respect to the latitude.
We use physical notation for the LAPLACIAN, O2 , instead of mathematical 4 in order to avoid a
possible confusion with the detuning ∆ .

For studying resonant interactions of spherical planetary waves, we (a) assume that amplitudes
Ak = Ak (T) are slowly changing functions on T = ε t , and (b) search for a solution as a series on
the powers of the small parameter ε :

ζ = ζ 0 (λ, ϕ, t, T) + ε ζ1 (λ, ϕ, t, T) + ε2 ζ2 (λ, ϕ, t, T) + . . . (10)

in the form of a sum of three linear waves:

ζ0 (λ, ϕ, t, T) =
3

∑
k = 1

Ak (T) P(k) cos θk , (11)

where notations P(k) = P mk
nk (sin ϕ) and θk = [mk λ − ω (k) t] are used.

Substituting the ansatz (10) in Equation (6) and combining the terms with the same power of
small parameter ε , we get the coefficient in front of the term with ε 0 of the form

∂

∂t
O2ζ0 + 2

∂

∂x
ζ 0 = 0 ; (12)

the coefficient in front of the term with ε 1 of the form

∂

∂t
O2ζ1 + 2

∂

∂λ
ζ 1 = − J (ζ0, O2ζ0) −

∂

∂T
O2ζ0 , (13)

and so on. We fix resonance condition in the form θk1 + θk2 = θk3 , use the orthogonality of
the functions ψ1 and ψ0 in order to avoid an unbounded growth of left-hand side in Equation (13),
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and integrate all over the sphere (λ, ϕ) with t → ∞. In this way we remove all variables but slow
time T and deduce two dynamical equations

N3 Ȧ3 = 2iZ(N2 − N1)A1 A2 , (14)

N3 Ȧ∗3 = −2iZ(N2 − N1)A∗1 A∗2 , (15)

where Nj = nj (nj + 1) , j = 1, 2, 3 and interaction coefficient Z is a number computed as

Z =
∫ π/2

−π/2

[
m2 P(2) d

dϕ
P(1) − m1 P(1) d

dϕ
P(2)

] d
dϕ

P(3)dϕ . (16)

Change of signs in Equations (1) and (2) yields another form of resonance conditions and the use
of same procedure gives dynamical equations for Ȧ1 and Ȧ2 . The final dynamical system for exact
three wave resonance reads

N1 Ȧ1 = −2iZ(N2 − N3)A3 A∗2 , (17)

N2 Ȧ2 = −2iZ(N3 − N1)A∗1 A3 , (18)

N3 Ȧ3 = 2iZ(N1 − N2)A1 A2 (19)

(and their complex conjugate equations) where the dot denotes differentiation with respect to the
slow time T = εt . We omit here details of this tedious but straightforward calculations, details of
the implementation of this procedure in Mathematica can be found in [20]. This system is has three
integrals of motion is explicitly integrable in JACOBIAN elliptic functions.

At the end of this Section, we would like to make a remark. The dynamical system for three
resonantly interacting waves is HAMILTONIAN system. It has canonical form

Ḃ1 = V1,2
3 B∗2 B3 , Ḃ2 = V1,2

3 B∗1 B3 , Ḃ3 = −V1,2
3 B1 B2 , (20)

which looks more simple than Equations (17)–(19) and is valid for arbitrary three-wave HAMILTONIAN

system. However, the canonical variables Bj are not physical entities and interpretation of any
theoretical results obtained for Equations (20) should include a nontrivial task of coming back
to physical variables. That is the reason why our numerical simulations presented below were
conducted for the equations written in terms of amplitudes and phases, thus allowing direct
physical interpretation.

3. Model Equations

The dynamical system for detuned resonance of three complex-valued amplitudes Ai, i =

1, 2, 3 reads

N1 Ȧ1 = −2iZ(N2 − N3)A∗2 A3e−i∆ωT , (21)

N2 Ȧ2 = −2iZ(N3 − N1)A∗1 A3e−i∆ωT , (22)

N3 Ȧ3 = 2iZ(N1 − N2)A1 A2ei∆ωT , (23)

(and their complex conjugate equations) where the dot denotes differentiation with respect to the slow
time T = t/ε, ∆ω := ∆̃ω/ε, ε being a small parameter. The dynamical system for exact resonance is
obtained by setting ∆ω ≡ 0. It can be rewritten in amplitude/phase variables as
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N1Ċ1 = −2Z(N2 − N3)C2C3 sin ψ, (24)

N2Ċ2 = −2Z(N3 − N1)C1C3 sin ψ, (25)

N3Ċ3 = −2Z(N1 − N2)C1C2 sin ψ, (26)

ψ̇ = ∆ω− 2ZC1C2C3

(N2 − N3

N1
C−2

1 + (27)

N3 − N1

N2
C−2

2 +
N1 − N2

N3
C−2

3

)
cos ψ, (28)

where Ci(T) = |Ai(T)| is the real amplitude, ψ := θ1 + θ2 − θ3 is the dynamical phase and θi(T) =
arg Ai(T). In what follows, we will focus on the evolution of the energy of the high-frequency
mode E3(T) .

4. Amplitudes

For all numerical simulations we used the MatlabTM software along with its standard ODE
Suite [21]. In particular, the standard ode45 solver was employed with stringent error tolerance
settings. In Figure 1 we show the energy evolution in the resonant triad given in Table 1 for several
values of the frequency detuning ∆ω = ∆̃ω/ε ∈ [− 1

2 , 1
2 ]; e.g., in geophysical applications ε ∼ O(10−2).

From these graphs it can be seen that the period τ and the range of the energy variation, defined as

∆E (∆ω) :=
1
2
(
max

t
E − min

t
E
)
, (29)

are non-monotonic functions of the detuning ∆ω.

Table 1. Physical parameters used in numerical simulations.

Parameter Value

Resonant wave vectors, [mj, nj] [4, 12], [5, 14], [9, 13]
Resonant frequencies, 2mj/nj(nj + 1) 0.0513, 0.0476, 0.0989

Resonant triad parameters, Nj 156, 210, 182
Interaction coefficient, Z 7.82

Initial energy distribution (a), % 20%, 30%, 50%
Initial energy distribution (b), % 40%, 40%, 20%

Initial dynamical phase, ψ 0.0

A graph showing the characteristics of the dependency of the energy variation range ∆E (∆ω) on
the frequency detuning ∆ω is shown in Figure 2. This particular curve was computed for parameters
given in Table 1. The graph can conveniently be divided into the five regions which are separated
by particular values of the frequency detuning ∆ω: ∆ω

(1,2)
max correspond to local maxima, ∆ωst is the

position of the local minimum, and ∆ω = 0 corresponds to exact resonance. So, the regions are:

(I) ∆ω ∈
(
−∞, ∆ω

(1)
max
]
;

(II) ∆ω ∈
(
∆ω

(1)
max, min{0, ∆ωst}

]
;

(III) ∆ω ∈
(
min{0, ∆ωst}, max{0, ∆ωst}

]
;

(IV) ∆ω ∈
(
∆ωst, ∆ω

(2)
max
]
;

(V) ∆ω ∈
(
∆ω

(2)
max,+∞

)
.
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Figure 1. Energy evolution in the triad given in Table 1, for different values of the detuning ∆ω.

The reason to regard these regions separately is that the main characteristics (i.e., energy variation
∆E , energy oscillation period τ and the phase variation ∆ψ) behave differently in each region.
Our findings are summarized in Table 2, where all the quantities E , τ and ψ are followed by ±
sign denoting the their variation in the region (+: increase, −: decrease). The first column corresponds
to the direction of increasing values of ∆ω ∈ (−∞→ +∞), while the second column corresponds to
the opposite direction ∆ω ∈ (−∞← +∞).
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Table 2. Behaviour of physical parameters ∆E , τ and ψ in different regions.

Region/Range −→ ←−
(I) ∆E+, τ+, ∆ψ− ∆E−, τ−, ∆ψ+
(II) ∆E−, τ+, ∆ψ− ∆E+, τ−, ∆ψ+
(III) ∆E−, τ+, ∆ψ− ∆E+, τ−, ∆ψ+
(IV) ∆E+, τ−, ∆ψ+ ∆E−, τ+, ∆ψ−
(V) ∆E−, τ−, ∆ψ+ ∆E+, τ+, ∆ψ−

−0.5 0 0.5 1
0

0.05

0.1

0.15

0.2

0.25

∆ω

1 2
(m

ax
{E

}
−
m
in
{E

})

Energy variation range

III IV VIII

Figure 2. Typical dependency of the energy variation range ∆E on the frequency detuning ∆ω for
the case when the high frequency mode ω3 has the maximal energy (initial condition from Table 1).

The vertical red dashed line shows the location of ∆ω
(1)
max, while the vertical black solid line shows the

location of ∆ω
(2)
max. Finally, the blue dash-dotted line shows the amplitude obtained the exact resonance.

The most interesting observation is, that the energy variation range during the system evolution
can be significantly larger for a suitable choice of the detuning ∆ω 6= 0 compared to the exact resonance
case ∆ω = 0. There are two values of which provide significant amplifications to ∆E . On Figure 2 the
global maximum is located on the left of ∆ωst, while on Figure 3 it is on the right of ∆ωst. These two
cases differ only by the initial energy distribution among the triad modes (see Table 1, initial conditions
(a) & (b)).

Similar computations have been performed for other resonant triads and the qualitative behavior
of the energy variation has always been similar to Figures 2 and 3. Namely, the global maximum is
located on the left of ∆ωst when the high frequency mode ω3 contains initially most of the energy,
and to the right of ∆ωst in the opposite case.

It is important to stress that the energy variation ∆E (∆ω) at the global maximum ∆ω
(g)
max is always

significantly higher than at the point of exact resonance, i.e., ∆E (∆ω
(g)
max) > ∆E (0). The highest

ratio ∆E (∆ω)/∆E (0) is attained when the local minimum ∆ωst coincides with the point of exact
resonance. In this case we can find a ∆ω that the amplification ∆E (∆ω)/∆E (0) is of at least one order
of magnitude. A simple phase space analysis allows to locate the local minimum.
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Figure 3. Typical dependence of the energy variation range ∆E on the frequency detuning ∆ω for the
case when the high frequency mode ω3 has the lowest energy (initial condition from Table 1).

5. Phase Space Analysis

The phase space analysis was performed with MapleTM software. On Figures 4–6 we depict the
typical phase portraits of the dynamical system of Equations (24)–(28) in phase-amplitude variables.
For illustration we choose the triad given in Table 1 with the initial energy distribution (a). In these
pictures we represent the high-frequency mode C3 on the horizontal axis, while the dynamical phase ψ

is on the vertical.
The main finding is a pronounced asymmetry between the phase portraits for positive and

negative values of the detuning ∆ω: the position of the stationary point right on the horizontal axis C3

(there are other stationary points for ψ 6= 0) is very different; the shape of the periodic orbit differs
(see Figures 4b and 5b); the transition from closed to snake-like integral curves takes place for different
values of |∆ω|, e.g., ≈ 0.31 on Figure 4c and ≈ − 0.24 on Figure 5c; the shape of the integral curves
is different; the phase portraits look alike, but differ in size by one order of magnitude. In order to
demonstrate how big this difference is for opposite values of ∆ω we depicted on the same Figure 6 the
periodic cycles from Figures 4a and 5a.

(a) ∆ω = 0.1 (b) ∆ω = 0.31 (c) ∆ω = 0.315

Figure 4. Phase portraits of the dynamical system of Equations (24)–(28) in (C3, ψ) variables for the
triad from Table 1 (case (a)). Positive increasing detuning.
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(a) ∆ω = −0.1 (b) ∆ω = −0.235 (c) ∆ω = −0.25

Figure 5. Phase portraits of the dynamical system of Equations (24)–(28) in (C3, ψ) variables for the
triad from Table 1. Negative decreasing detuning.

A simple phase space analysis reveals the reason for the presence of a local minimum of ∆E in
Figures 2 and 3. Indeed, it can happen that the initial conditions coincide with the system equilibrium
point, which depends on ∆ωst.

Figure 6. Simultaneous plot of two phase portraits and integral curves for the detunings ∆ω = ±0.1
shown at Figures 4a and 5a correspondingly.
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6. Conclusions

In this paper we studied dynamics of three spherical planetary waves under the action of
a small frequency detuning. For our numerical computations we used two different forms of
corresponding dynamical system—(a) one with complex amplitudes being variables (suitable for
immediate interpretation of the results in terms of energies), and (b) another—in the amplitude-phase
presentation (more suitable for studying the phase space).

It was demonstrated that the introduction of frequency detuning significantly enriches the
dynamics of a three-wave resonance system. Moreover, the effects of detuning are highly nonlinear
and highly non-monotonic with respect to the detuning parameter. The main findings of this study are
outlined hereinbelow:

• The range of values of frequency detuning ∆ω can most conveniently be divided into five regions
of different behaviour, not all of them present in any case. The behavior of the main parameters of
System of Equations (24)–(28) over those five regions is summarized in Table 2.

• The amplitude of energy variation Equation (29) in a triad with suitably chosen detuning
(∆ω 6= 0) can be significantly higher than in the case of exact resonance, i.e., ∆ω ≡ 0 .
The maximal amplification as compared to exact resonance is attained when ∆ωst coincides
with the point of exact resonance. In this case one of the zones (III) or (IV) disappears.

• The phase portraits (see Figures 4–6) along with the shape and size of the periodic cycles are
substantially different for ∆ω > 0 and ∆ω < 0 (c.f. Figure 6). This means that any complete
analysis of detuned resonance must include both positive and negative values of the detuning
parameter ∆ω .

Our results can be very helpful for dynamical prediction of weather extremes in the Earth’s
atmosphere. The weather extremes are getting more and more heavy all over the world, and though the
physical mechanisms are not yet completely singled out, a majority of such events in the midlatitudes
of the Northern Hemisphere correlates with the appearance of planetary waves with huge amplitudes
and zonal wave numbers m = 6, 7 and 8 . It is supposed that the acting mechanism bringing energy into
these waves is quasi-resonant interaction. This hypothesis was supported by studies of available data
sets for boreal spring-to-autumn 2012 and 2013 in [15], without modeling of dynamics, thus having
only descriptive value. On the other hand, our approach allows also predicting the magnitudes of
waves magnitudes. Moreover, similar study can be conducted for a generic three-wave system taken
in the Hamiltonian form which makes our results applicable for an arbitrary Hamiltonian three-wave
system met in climate prediction theory, geophysical fluid dynamics, plasma physics, etc.
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