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Abstract: The main concern of this study is an extension of some results, proposed by Green and
Lindsay in the classical theory of elasticity, in order to cover the theory of thermoelasticity for dipolar
bodies. For dynamical mixed problem we prove a reciprocal theorem, in the general case of an anisotropic
thermoelastic body. Furthermore, in this general context we have proven a result regarding the uniqueness
of the solution of the mixed problem in the dynamical case. We must emphasize that these fundamental
results are obtained under conditions that are not very restrictive.
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1. Introduction

As it is known, some generalized thermoelastic models have been proposed for transient responses in
many applications, like ultra-fast lasers heating, or low temperatures; that is, in situations where classical
thermoelasticity fails. Some representative theories in this regard can be found in [1–7]. Furthermore, in
books [8,9] we find some models for generalized thermoelastic media. The thermoelastic model proposed
by Green and Lindsay in [1] is one of such theory, and it takes the second sound effect of heat conduction
into account.

We want to say that we dedicated our study to this theory because it has aroused much interest in
recent years. Unlike the classical thermoelasticity theories, in the Green and Lindsay thermoelasticity
theory, among the constitutive variables, it is included the temperature rate. As a consequence, in this
theory it is anticipated that the heat waves propagate at finite speed.

Since waves propagating at concrete finite speed were observed in the case of all solids, it is natural
to consider that this theory is physically more realistic and more general than the classical theory. That is
why we can observe a rapidly increasing interest of many works for this theory, and in which we can find
several problems revealing interesting phenomena which characterize it. Another generalization of our
study concerns the intimate structure of the body. We approach a thermoelastic dipolar body, knowing
that the dipolar structure appears as a result of the inclusion, in the theory, of the idea of the unit cell. A
solid with dipolar structure can model a grain of a granular material, a crystallite of a polycrystalline,
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a molecule of a polymer, etc. We can emphasize the importance of the dipolar materials, if we analyze
the importance given to this structure by some of the known researchers. Among the works elaborated
for this purpose, it is considered that the papers of Mindlin [10], of Green and Rivlin [11], and the book
Gurtin et al. [12] are very relevant from this regards. Other aspects of the bodies with dipolar structure are
addressed in the studies [13–28]. In [14], the authors introduced the coupled theory, the Lord–Schulman
theory with one relaxation time and the Green–Lindsay theory with two relaxation times to study the
influence of the magnetic field and rotation on the 2-D problem of a fiber-reinforced thermoelastic body
and the interaction with each other under the influence of gravity. Furthermore, in [15] the authors have
shown that the double porosity structure of the body is influenced by the displacement field, which is
consistent with real models. The main result of the paper [17] describes a class of semi-inverse solutions
to the Saint-Venant’s problem in terms of some generalized plane strain problems. In [18] it can be
found a result regarding the temporal behavior of our thermoelastic body with a dipolar structure, which
is studied by means of some relations on a partition of various parts of the energy associated to the
solution of the problem. The system of differential equations considered in [22] is solved numerically and
some plots for displacement, radial and electromagnetic stresses, and temperature are presented. In [27]
the authors study qualitative properties of the solutions of the system of partial differential equations
modeling thermomechanical deformations for mixtures of thermoelastic solids when the theory of Green
and Lindsay for the heat conduction is considered.

It should be emphasized that Green and Lindsay’s theory has been addressed for many types of
media: classical thermoelastic environments [1], dynamic thermoelasticity [29], mixture of Green–Lindsay
thermoelastic solids [30], thermoviscoelastic environments [31] and so on. In our work we use this theory
in the context of the dipolar thermoelastic bodies.

The structure of our work is as follows. The mixed problem for Green–Lindsay thermoelasticity of
bodies with dipolar structure is defined in Section 2. Then, we introduce the basic notations, the motion
equations and the energy equation, the initial data and the boundary conditions. In the last section
we present the main results. First, we establish a reciprocity relation which involves thermoelastic
processes at different instants. Then we show that this relation can be used to obtain uniqueness theorems.
Both reciprocity theorem and also the uniqueness theorems are derived avoiding the use of the definiteness
assumption on the elasticity tensors. Furthermore, we avoided to impose the hypothesis that the tensor of
conductivity kij is a positive definite one.

2. Notations and Basic Equations

Consider that our thermoelastic dipolar solid occupies at the initial time t = 0 a region B of the space
R3 which is assumed to be properly regular.

We denote by ∂B the border of the region B and suppose that the surface ∂B has the regularity
necessary to be able to apply the divergence theorem. Furthermore, we will use the notation B̄ = B ∪ ∂B,
where B̄ is called the closure of the domain B. The unit normal of the boundary ∂B has the components ni
and is oriented towards the outside of the surface.

The evolution of our medium is reported to a system of Cartesian axes Oxi (i = 1, 2, 3). The Cartesian
vector and tensor notation is adopted. The temporal variable is t, t ∈ [0, ∞), and the notation x = (xi) is
used for any point in B.

The Greek indices take only the values 1, 2, whereas for the Italic indices we always assume the values
1, 2, 3. A superposed dot stands for the material derivative with respect to time variable. A subscript
after a comma, j, denotes the partial derivative with respect to coordinate xj. We will use the Einstein
summation convention with respect to the summation over indices that repeat. When there is no risk of
confusion, we will refrain from specifying the temporal or spatial argument of a function.
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The independent variables which describe the evolution of a dipolar body in the context of the
Green–Lindsay thermoelasticity will be described with the help of the following variables:

- ui = ui(x, t) the components of displacement;
- φjk = φjk(x, t) the components of dipolar displacement;
- θ = θ(x, t) the temperature.
As measures of the deformation, we will use the strain tensors eij, νij and χijk which are introduced

by using the following geometric equations:

eij =
1
2
(
uj,i + ui,j

)
, νij = uj,i − φij, χijk = φij,k. (1)

Our next analyzes are made within a linear theory. As a consequence, we will expand the free energy
function W in MacLaurin series and retain only the linear and quadratic terms. If we take into account
that the initial state (the reference state) is supposed free of charges, we are led to the conclusion that the
energy function has the following expression:

W =
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr +

+
1
2

Bijmnνijνmn + Gijmnrνijχmnr+
1
2

Cijkmnrχijkχmnr+ (2)

+
(

aijeij+bijνij+cijkχijk

) (
θ + αθ̇

)
− 1

2
d
(
θ + αθ̇

)2
+

1
2

kijθ,iθ,j.

In what follows we will use the notations tij, σij and ηijk for the tensors of stress.
By using a similar procedure to the one that was handled by Coleman and Noll (see [32]) so that if

we substitute the free energy in the entropy production inequality, we are led to a relation from where
we obtain:

- the motion equations: (
tij + σij

)
,j + $ fi = $üi,

ηijk,i + σjk + $gjk = Ijrφ̈kr; (3)

- the equation of energy:

ρT0Ṡ = qi,i + r. (4)

Furthermore, by using the procedure of Green and Rivlin from [11], we obtain thermodynamics
restrictions on constitutive functions. As it is known the constitutive equations give the expression of
stress tensors as functions of the strain tensors and some constants of the material:

tij =
∂W
∂eij

= Aijmnemn + Dmnijνmn + Fmnrijχmnr + aij
(
θ + αθ̇

)
,

σij =
∂W
∂νij

= Dijmnemn + Bijmnνmn + Gijmnrχmnr + bij
(
θ + αθ̇

)
,

ηijk =
∂W

∂χijk
=Fijkmnemn+Gmnijkνmn+Cijkmnrχmnr+cijk

(
θ + αθ̇

)
, (5)

S = − ∂W
∂
(
θ + αθ̇

) = −aijeij − bijνij − cijkχijk + d
(
θ + αθ̇

)
.
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It is known that the internal energy of the elastic media (let us denote it by e) depends on the
deformation tensors. In the case of a thermoelastic media it is added the temperature as an independent
variable and its derivative, as such it is introduced the free energy, which is called Helmholtz, denoted
by W, which takes into account the temperature θ and the entropy S, namely W = e− θS. According to
Green–Lindsay theory, θ and θ̇ are coupled as in Formula (2). In the inequality of entropy appear terms in
the following form (tij − ∂W/∂eij), ..., (S− ∂W/∂(θ + αθ̇)), and the parentheses must be null and then we
obtain the formulas in (5).

According to [1], the heat flux vector has the components expressed with the help of temperature θ

through the equation:

qi = −
(
bi θ̇ + kijθ,j

)
. (6)

In view of (5)4 and (6), the energy Equation (4) receives the following form

$

T0
r + kijθ,ij − dθ̇ − hθ̈ + aij ėij + bijν̇ij + cijkχ̇ijk + 2bi θ̇,i = 0. (7)

The above equations are considered on the domain B and we have used the following notations:
- $—the mass density in the initial state;
- Ijk—the tensor of inertia;
- tij, σij, ηij—the components of the stress tensors;
- fi—the components of body force per unit mass;
- gjk—the components of dipolar body force per unit mass;
- r—the heat supply per unit mass;
- S—the entropy per unit mass;
- d—the thermal capacity;
- qi—the components of the heat flux vector;
- kij—the thermal conductivity tensor.
Lastly, the tensors Aijmn, ...Dijm, ..., aij, ... and the scalar coefficient m represent the characteristic

functions of the material (the constitutive coefficients) and they obey to the following symmetry relations

Aijmn = Amnij = Aijnm, Bijmn = Bmnij, Dijmn = Djimn,

Fijkmn = Fjikmn, Cijkmnr = Cmnrijk, aij = aji, kij = k ji. (8)

Now we define the surface force tractions ti and ηjk, corresponding to ui and φjk, and, also, the heat
flux q, which corresponds to qi:

ti ≡
(
tij + σij

)
nj, ηjk ≡ ηijkni, q ≡ qini, (9)

The mixed problem in our context will be complete, if we will accompany the system of
Equations (1)–(5) by the boundary conditions that follow:

ui = u0i on S1, φjk = φ0jk on S2, θ = θ0 on S3,

ti = t0i on Sc
1, ηjk = η0jk on Sc

2, q = q0 on Sc
3, (10)

where the functions u0i, φ0jk, θ0, t0i, η0jk and q0 are prescribed.
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Furthermore, in (10) the surfaces S1, S2 and S3, with their respective complements Sc
1, Sc

2 and Sc
3, are

subsurfaces of the border ∂B and have the following properties:

S1 ∪ Sc
1 = S2 ∪ Sc

2 = S3 ∪ Sc
3 = ∂B,

S1 ∩ Sc
1 = S2 ∩ Sc

2 = S3 ∩ Sc
3 = ∅.

Regarding the initial conditions, we suppose that at initial time (t = 0), the medium is at rest.
Furthermore, for t = 0 the body has a null initial temperature and the temperature rate is also null. As
such, we assume the following homogeneous initial conditions:

ui(x, 0) = u̇i(x, 0) = 0, φjk(x, 0) = φ̇jk(x, 0) = 0, θ(x, 0) = θ̇(x, 0) = 0. (11)

Let us denote by P the mixed initial-boundary value problem in the context of thermoelasticity of
dipolar bodies. It consists of the system of field Equations (1), (3)–(5), the boundary conditions (10) and
the initial conditions (11) .

Now we systematize the restrictions that we have to impose on the functions we work with in order
to be able to obtain the results we have proposed. In the following considerations, we will assume the
following hypotheses of regularity:

- ui, φjk, θ ∈ C1(B̄) ∩ C2(B);
- the constitutive coefficients are functions of class C1(B);
- the supply loads fi, gjk, r are continuous functions, i.e., of class C0(B);
- eij, νij, χijk ∈ C1(B) ∩ C0(B̄);
- tij, σij, ηijk, qi ∈ C1(B) ∩ C0(B̄).

A solution
(

ui, φjk, θ
)

of the problem P is the effect of a system of external actions defined by:

E =
(

fi, gjk, r, u0i, φ0jk, θ0, t0i, η0jk, q0

)
.

On the other hand, this system of external actions provokes a thermoelastic state of the body, defined
by: S =

(
ui, φjk, θ, eij, νij, χijk, tij, σij, ηijk, qi, S

)
.

3. Main Results

As it is known, a Betti result establishes a reciprocity relation between two external action systems
and the two corresponding thermoelastic states, which they cause.

Our first theorem refers to a result of this nature.
As such, we shall consider two systems of external loads which act on the thermoelastic dipolar body:

E (ν) =
(

f (ν)i , g(ν)jk , r(ν), u(ν)
0i , φ

(ν)
0jk , θ

(ν)
0 , t(ν)0i , η

(ν)
0jk , q(ν)0

)
, ν = 1, 2.

Let us denote by S (ν) the two corresponding thermoelastic states, that is: S (ν) =(
u(ν)

i , φ
(ν)
jk , θ(ν), e(ν)ij , ν

(ν)
ij , χ

(ν)
ijk , t(ν)ij , σ

(ν)
ij , η

(ν)
jk , q(ν)i , S(ν)

)
, ν = 1, 2.

The product of convolution for the functions u and v, which is denoted by u ∗ v, is defined by:

(u ∗ v)(x, t) =
∫ t

0
u(x, t− τ)v(x, τ)dτ,

(u ∗ v̂)(x, t) =
∫ t

0
u(x, t− τ)

∂v
∂τ

(x, s)dτ.
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Theorem 1. Between two external data systems E (ν), (ν = 1, 2) and the two corresponding thermoelastic states
S (ν), (ν = 1, 2) there is the following reciprocity relation:∫

B

[(
f (1)i ∗ û(2)

i − f (2)i ∗ û(1)
i

)
+
(

g(1)jk ∗ φ̂
(2)
jk − g(2)jk ∗ φ̂

(1)
jk

)]
dV +

+
∫

S1

[(
t̂(1)ij +σ̂

(1)
ij

)
∗u(2)

0i −
(

t̂(2)ij +σ̂
(2)
ij

)
∗u(1)

0i

]
njdA+

∫
Sc

1

[
t(1)0i ∗û(2)

i −t(2)0i ∗û(1)
i

]
dA+

+
∫

S2

[
η̂
(1)
ijk ∗ φ

(2)
0jk − η̂

(2)
ijk ∗ φ

(1)
0jk

]
ni dA +

∫
Sc

2

[
η
(1)
0jk ∗ φ̂

(2)
jk − η

(2)
0jk ∗ φ̂

(1)
jk

]
dA =

=
∫

B

1
T0

[(
θ(2) ∗ r(1) − ∗θ(1) ∗ r(2)

)
+ α

(
θ̂(2) ∗ r(1) − θ̂(1) ∗ r(2)

)]
dV + (12)

+
∫

S3

kij

[(
θ
(2)
0 ∗ θ

(1)
,j − θ

(1)
0 ∗ θ

(2)
,j

)
+ α

(
θ
(2)
0 ∗ θ̂

(1)
,j − θ

(1)
0 ∗ θ̂

(2)
,j

)]
ni dA +

+
∫

Sc
3

1
T0

[(
q(2)0 ∗ θ(1) − q(1)0 ∗ θ(2)

)
+ α

(
q(2)0 ∗ θ̂(1) − q(1)0 ∗ θ̂(2)

)]
dA,

where

t(ν)i =
(

t(ν)ji + σ
(ν)
ji

)
nj, η

(ν)
jk = η

(ν)
ijk ni, q(ν) = q(ν)i ni, ν = 1, 2. (13)

Proof. For an original function f , we will use the Laplace transform, denoted by f̄ , which as it is known,
is defined through the formula:

f̄ (x, s) =
∫ ∞

0
f (x, t)e−stdt.

We will apply the Laplace transform in relation to the variable t to the Equations (3), (5)–(7) and
the boundary conditions (10). Thus, if we take into account the initial homogeneous conditions (11),
we deduce some equations corresponding to the functions that were transformed. So, we have

- the motion equations: (
t̄(ν)ij + σ̄

(ν)
ij

)
,j
+ $ f̄ (ν)i = $s2ū(ν)

i ,

η̄
(ν)
ijk,i + σ̄

(ν)
jk + $ḡ(ν)jk = Ijrs2φ̄

(ν)
kr . (14)

- the energy equation:

$

T0
r(ν)+kijθ

(ν)
,ij −d s θ−h s2 θ(ν)+aij s e(ν)ij +bij s ν

(ν)
ij +cijk s χ

(ν)
ijk +2bi s θ,i =0. (15)

- the constitutive equations:

t̄(ν)ij = Aijmn ē(ν)mn + Dmnijν̄
(ν)
mn + Fmnrijχ̄

(ν)
mnr + aij (1 + αs) θ̄(ν),

σ̄
(ν)
ij = Dijmn ē(ν)mn + Bijmnν̄

(ν)
mn + Gijmnrχ̄

(ν)
mnr + bij (1 + αs) θ̄(ν),

η̄
(ν)
ijk =Fijkmn ē(ν)mn+Gmnijk ν̄

(ν)
mn+Cijkmnrχ̄

(ν)
mnr+cijk (1 + αs) θ̄(ν), (16)

S̄(ν) = −aij ē
(ν)
ij − bijν̄

(ν)
ij − cijkχ̄

(ν)
ijk + d (1 + αs) θ̄(ν),

q̄(ν)i = −T0

(
bi s θ̄(ν) + kij θ̄

(ν)
,j

)
.
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After we apply the Laplace transform, the boundary conditions (10) become:

ū(ν)
i = ū(ν)

0i on S1, φ̄
(ν)
jk = φ̄

(ν)
0jk on S2, θ̄(ν) = θ̄

(ν)
0 on S3,

t̄(ν)i = t̄(ν)0i on Sc
1, η̄

(ν)
jk = η̄

(ν)
0jk on Sc

2, q̄(ν) = q̄(ν)0 on Sc
3. (17)

In the relations (14)–(17) the superscript ν takes the values 1 and 2.
Based on equations (14)1 we can write:∫

B
$
(

f (1)i ū(2)
i − f (2)i ū(1)

i

)
dV =

∫
B

[(
t̄(2)ij + σ̄

(2)
ij

)
ū(1)

i −
(

t̄(1)ij + σ̄
(1)
ij

)
ū(2)

i

]
,j

dV +

+
∫

B

[(
t̄(1)ij + σ̄

(1)
ij

)
ū(2)

i,j −
(

t̄(2)ij + σ̄
(2)
ij

)
ū(1)

i,j

]
dV. (18)

In the first integral from right-hand side of (18) we apply the divergence theorem by taking into
account the boundary conditions (17). Furthermore, in the second integral from right-hand side of (18) we
introduce the constitutive equations (16).

After these transformations, Equation (18) receives the following form:∫
B

$
(

f̄ (1)i ū(2)
i − f̄ (2)i ū(1)

i

)
dV +

∫
S1

[(
t̄(1)ij + σ̄

(1)
ij

)
ū(2)

0i −
(

t̄(2)ij + σ̄
(2)
ij

)
ū(1)

0i

]
njdA +

+
∫

Sc
1

[
t̄(1)0i ū(2)

i − t̄(2)0i ū(1)
i

]
dA =

∫
B

(
aij + bij

)
(1 + sα)

(
θ̄(1)ū(2)

i,j − θ̄(2)ū(1)
i,j

)
dV. (19)

Based on similar considerations, starting from equation (14)2, we obtain the following estimate:∫
B

$
(

ḡ(1)jk φ̄
(2)
jk − ḡ(2)jk φ̄

(1)
jk

)
dV +

∫
S2

(
η̄
(1)
ijk φ̄

(2)
0jk − η̄

(1)
ijk φ̄

(2)
0jk

)
nidA +

+
∫

Sc
2

(
η̄
(1)
0jk φ̄

(2)
jk − η̄

(2)
0jk φ̄

(1)
jk

)
dA =

∫
B

cijk(1 + sα)
(

θ̄(1)φ̄
(2)
jk,i − θ̄(2)φ̄

(1)
jk,i

)
dV. (20)

The calculations will be simplified if we will assume that our thermoelastic dipolar body has a center
of symmetry at each point, but is otherwise anisotropic. According to [7], this means that bi = 0, which
means a simplification of the energy Equation (15).

So, by using the simplified form (15) of the energy balance, the divergence theorem, the constitutive
Equation (6) for qi and the boundary conditions (10), we are led to the following relation:∫

B

[
aijs

(
ē(1)ij θ̄(2)−ē(2)ij θ̄(1)

)
+bijs

(
ν̄
(1)
ij θ̄(2)−ν̄

(2)
ij θ̄(1)

)
+cijks

(
χ̄
(1)
ijk θ̄(2)−χ̄

(2)
ijk θ̄(1)

)]
dV+

+
∫

B

$

T0

(
θ̄(2) r̄(1) − θ̄(1) r̄(2)

)
dV =

∫
B

kij

(
θ̄(1) θ̄

(2)
,ij − θ̄(2) θ̄

(1)
,ij

)
dV = (21)

=
∫

B
kij

(
θ̄(1) θ̄

(2)
,j − θ̄(2) θ̄

(1)
,j

)
,i

dV =
∫

S3

kij

(
θ̄
(1)
0 θ̄

(2)
,j − θ̄

(2)
0 θ̄

(1)
,j

)
nidA +

+
∫

Sc
3

1
T0

(
θ̄(2) q̄(1)0 − θ̄(1) q̄(2)0

)
dA.
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By combining Equations (19)-(21) we obtain

s
[∫

B
$
(

f̄ (1)i ū(2)
i − f̄ (2)i ū(1)

i

)
dV+

∫
S1

[(
t̄(1)ij +σ̄

(1)
ij

)
ū(2)

0i −
(

t̄(2)ij +σ̄
(2)
ij

)
ū(1)

0i

]
njdA+

+
∫

Sc
1

[
t̄(1)0i ū(2)

i − t̄(2)0i ū(1)
i

]
dA +

∫
B

$
(

ḡ(1)jk φ̄
(2)
jk − ḡ(2)jk φ̄

(1)
jk

)
dV +

+
∫

S2

(
η̄
(1)
ijk φ̄

(2)
0jk−η̄

(1)
ijk φ̄

(2)
0jk

)
nidA+

∫
Sc

2

(
η̄
(1)
0jk φ̄

(2)
jk −η̄

(2)
0jk φ̄

(1)
jk

)
dA
]
= (22)

=(1 + sα)

[∫
B

$

T0

(
θ̄(2) r̄(1)−θ̄(1) r̄(2)

)
dV+

∫
S3

kij

(
θ̄
(1)
0 θ̄

(2)
,j −θ̄

(2)
0 θ̄

(1)
,j

)
nidA+

+
∫

Sc
3

1
T0

(
θ̄(2) q̄(1)0 − θ̄(1) q̄(2)0

)
dA
]

. (23)

We now apply in both members of the equality (22) the inverse Laplace transform so that, considering
the convolution product, we are led to the reciprocal equality (12). In this way, we have completed the
proof of the Theorem 1.

Our second main result is a result of uniqueness with respect to the solution of our mixed
initial-boundary value problem P , above defined. For this we need some additional considerations.

For the internal energy Ψ we will consider the following expression:

Ψ =
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr +

+
1
2

Bijmnνijνmn + Gijmnrνijχmnr +
1
2

Cijkmnrχijkχmnr. (24)

As it is known, the generalized free energy function W, proposed by Biot, has the expression

W = Ψ− ST0, (25)

where Ψ is from (23) and S is the entropy. According to Green and Lindsay [1], the energy function E is
given by

E = Ψ− SΦ, (26)

where the scalar function Φ is also introduced in [1] and is defined by

Φ = T0 + θ + αθ̇ + βθθ̇ +
1
2

γθ̇2. (27)

As such, the energy function of Green and Lindsay has the following explicit form:

E =
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr +

+
1
2

Bijmnνijνmn + Gijmnrνijχmnr +
1
2

Cijkmnrχijkχmnr + (28)

+
(

aijeij+bijνij+cijkχijk

) (
θ + αθ̇

)
+

1
2

αkijθ,iθ,j −

−a
(
θ + αθ̇

)
− 1

2
dθ2 − eθθ̇ − 1

2
f θ̇2 + αbi θ̇θ,i.
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By using the expression of the entropy from (5)4, from (24)–(27) we obtain the quadratic form of energy
function of Biot, after we consider the initial conditions (11) and we have only retained the quadratic terms:

W =
1
2

Aijmneijemn + Dijmneijνmn + Fijmnreijχmnr +

+
1
2

Bijmnνijνmn + Gijmnrνijχmnr +
1
2

Cijkmnrχijkχmnr + (29)

+
1
2

αkijθ,iθ,j +
1
2

dθ2 + hθθ̇ +
1
2

αhθ̇2 − biθθ,i.

Let us denote by K the kinetic energy per unit mass, that is

K(t) = 1
2

(
$u̇i(t)u̇i(t) + Ijkφ̇jr(t)φ̇kr(t)

)
. (30)

If we use the constitutive equations (4), the motion equations (3), the divergence theorem and denoting
by m the mass included in the domain B, we obtain

d
dt

∫
m
K(t)dm =

∫
m

{
fiu̇i + gjkφ̇jk −

1
T0

[
Aijmneijemn + Dijmneijνmn+

+Fijmnreijχmnr +
1
2

Bijmnνijνmn + Gijmnrνijχmnr + (31)

+
1
2

Cijkmnrχijkχmnr +
(

aijeij+bijνij+cijkχijk

) (
θ + αθ̇

)]}
dm +

+
∫

∂B

[(
tij + σij

)
u̇j + ηijkφ̇jk

]
nidA.

Using Equations (6) and (7) and combining Equations (28) and (30), we come to the following equation:

d
dt

∫
m
(K(t) + W(t))dm =

∫
m

[
fiu̇i + gjkφ̇jk +

r
T0

(
θ + αθ̇

)]
dm +

+
∫

∂B

[(
tij + σij

)
u̇j + ηijkφ̇jk −

qi
T0

(
θ + αθ̇

)]
nidA− (32)

−
∫

∂B

[
kijθ,iθ,j + (dα− h)θ2 + biθθ,i

]
dA.

The Equation (31) is the energy equation in the context of Green-Linsday thermoelasticity of bodies
with dipolar structure.

As such, by the above estimates, we have actually proved the following theorem.

Theorem 2. In Green-Linsday thermoelasticity of dipolar bodies the energy equation has the form (31).

Remark 1. It is easy to see that the equation of energy balance from Green-Linsday thermoelasticity [1] is a
particular case of the Equation (31).

Based on the equality (31) we can prove the uniqueness of solution of the mixed problem P .

Theorem 3.. Assume that the Biot’s energy function W is positive definite. Then the mixed problem P admits at
most one solution.
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Proof. Due to the linearity of problem P , the difference of the two supposed solutions is also a solution of
problem P , but this difference corresponds to zero loads, that is

fi = gjk = r = 0, u0i = φ0jk = t0i = η0jk = θ0 = q0i = 0.

For these zero loads and null boundary conditions, it is easy to see that the energy Equation (31)
arrives at the following simplified form:

d
dt

∫
m
(K(t) + W(t))dm = −

∫
∂B

[
kijθ,iθ,j + (dα− h)θ2 + biθθ,i

]
dA. (33)

If we consider the initial conditions (11), at t = 0 we have K = W = 0, so that from (32) we deduce∫
m
(K+ W)dm ≤ 0, ∀t ≥ 0.

Because we supposed that the function K is positive definite, it follows that

K+ W = 0⇒ K = W = 0, (34)

for any t ≥ 0, in which we took into account that W is positive definite.
Clearly, from (33) we can observe that,

ui(t, x) = 0, φjk(t, x) = 0, θ(t, x) = 0, ∀t ≥ 0, ∀x ∈ B,

and this is for the difference of the two solutions.
As such, the proof of the Theorem 3 is completed.

4. Concluding Remarks

We established a reciprocal relation which involves thermoelastic processes at different instants. Then
we show that this relation can be used to obtain some uniqueness theorems. The reciprocity theorem
and also the uniqueness theorems are both derived avoiding the use of the definiteness assumption on
the elasticity tensors. Furthermore, we avoided imposing the restriction that the conductivity tensor is
positive definite. The new form of energy equation can be considered as an element of novelty of our
paper. It is a generalization of the energy equation established in [1]. It can be considered as novelty of
our study, as a natural generalization of the previous studies, the transition from bodies with a dipolar
structure to the dipolar solids in the context of Green–Lindsay thermoelasticity. Another originality was
our tentative to contribute in solving the paradox of the conduction of the heat. Reciprocity relations have
both theoretical and practical importance. Theoretically, for instance, these relations can be the basis of
some variational principles. So, the solution can be determined as the minimum of the energetic functional.
In our future studies we will try to extend such kind of principle to cover the bodies with dipolar structure.
The practical importance of reciprocity relations can be explained simply by the fact that a future state of a
solid environment can be anticipated, knowing a current state.
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