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Abstract: The maximum k-coverage problem (MKCP) is a generalized covering problem which can
be solved by genetic algorithms, but their operation is impeded by redundancy in the representation
of solutions to MKCP. We introduce a normalization step for candidate solutions based on distance
between genes which ensures that a standard crossover such as uniform and n-point crossovers
produces a feasible solution and improves the solution quality. We present results from experiments
in which this normalization was applied to a single crossover operation, and also results for
example MKCPs.
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1. Introduction

The maximum k-coverage problem (MKCP) is regarded as a generalization of several covering
problems. The problem has a range of applications in combinatorial optimization such as scheduling,
circuit layout design, packing, facility location, and covering graphs by subgraphs [1,2]. Recently,
besides some theoretical approaches [3,4], it has been extended to many real-world applications such
as blog-watch [5], seed selection in a Web crawler [6], map-reduce [7], influence maximization in social
networks [8], recommendation in e-commerce [9], sensor deployment in wireless sensor networks [10],
multi-depot train driver scheduling [11], cloud computing [12], and location problem [13].

Let A = (aij) be an m× n 0-1 matrix, and let wi be a weight applied to each row of A. The objective
of MKCP is to choose k columns so as to maximize the sum of the weights of the rows that contain ‘1’
and are also located in one of these k columns.

This problem can be represented formally as follows:

maximize
m

∑
i=1

wi · I
(

n

∑
j=1

aijxj ≥ 1

)

subject to
n

∑
j=1

xj = k

xj ∈ {0, 1}, j = 1, 2, . . . , n,

where I(·) is an indicator function (I( f alse) = 0 and I(true) = 1).
We are concerned with the case that wi = 1 for all i, when we say that a row is covered by the

selected k columns if it contains ‘1’ which is also located in one of these columns. In this case, MKCP is
to find k columns that cover as many rows as possible.

MKCP has many real-world applications. For example, MKCP can be applied to the following
practical applications about museum touring [14]: Suppose that a museum can operate only k guided
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tour programs of visiting a set of exhibits among n possible programs due to some constraints such
as operating costs. If there are m visitors and it is possible to predict whether or not each visitor i
is satisfied with the experience of each program j (meaning aij), the problem of choosing exactly k
programs to satisfy as many visitors as possible is exactly formulated as MKCP. Among the visitors,
if it is preferred to satisfy specific visitors who have more importance such as VIPs, the problem can be
modeled more elaborately by giving different weight (wi) to each visitor i. Similarly, MKCP can be
applied to other practical applications such as public safety networks and systems [15,16]. For example,
we can consider a disaster management system in which n agencies are involved and m positions for
Unmanned Aerial Vehicles (UAVs) are available to enable the communication between the agencies.
In this situation, it can be easily investigated whether or not each agency i is covered when a UAV is
placed in each position j (meaning aij). If only k UAVs are available for resource management, the
problem of choosing exactly k positions of UAVs to cover as many agencies in the disaster area as
possible can also be formulated as MKCP.

The NP-hardness of MKCP can easily be deduced from the NP-hardness of the minimum set
covering problem (MSCP) [17]. Many meta-heuristics have been applied to the MSCP such as tabu
search [18], genetic algorithms [19,20], particle swarm optimization [21], ant colony optimization [22],
etc., but MKCP has been scarcely addressed. Some naïve greedy heuristics [1,7,23–25] and an improved
local search [26], which do not scale well to large datasets, have been studied. To the best of our
knowledge, there is only one meta-heuristic [27] that uses particle swarm optimization, applied to
MKCP, and genetic algorithms have not been applied. The present authors previously conducted an
initial investigation of MKCP [28], which we now extend. Because MKCP selects a fixed number of
columns, the representation of solutions is simpler than it is in other covering problems, and this favors
the adoption of a genetic algorithm (GA). When we apply a GA to the MKCP, it also has an interesting
inherent property that each gene of a chromosome is not just a number but actually a column of a
matrix, which we analyze and relate to the characteristic of its solution space. We go on to present a
problem-specific normalization for use in a GA which takes account of the feasibility of solutions and
improves the solution quality.

The remaining parts are organized as follows. We analyze the solution space of MKCP, and the
representation of solutions in Section 2. Based on this analysis, in Section 3, we propose a normalization
method for producing feasible and improved solutions. In Section 4, we present experimental results
to assess the effectiveness of our method. Finally, we draw conclusions in Section 5.

2. Representation and Space of Solution to MKCP

When we solve a problem with GAs, the representation of chromosomes is an important issue.
Representation depends on the problem and reflects the properties of the problem. One representation
of a solution to MKCP is a vector of k integers representing column indices; another is a binary vector of
length n, in which each element indicates whether or not the corresponding column is selected. Thus,
when k = 2 and n = 4, the integer representation (1, 4) is equivalent to the binary vector representation
(1, 0, 0, 1). We focus on the integer vector representation.

Using the integer vector representation, the encodings (1, 4) and (4, 1) both represent the same
solution. The coverage, which is the value of the objective function, is also independent of this ordering.
Since for the same solution there may be more than one different encoding, encoding space (genotypes)
is different from solution space (phenotypes). We can consider permutations and combinations as
genotypes and phenotypes, respectively. In the integer vector representation, it is natural to encode
combinations using permutation encoding. However, in this case, many encodings correspond to the
same combination. That is, this representation is redundant. Let G be the space of encodings in the
integer vector representation, and let two encodings x and y in G be (x1, x2, . . . , xn) and (y1, y2, . . . , yn),
respectively. Now, the relation ∼ is defined on G:

Definition 1. x ∼ y if and only if we have a permutation σ ∈ Σk such that σ(x1, x2, . . . , xk) =

(y1, y2, . . . , yk), where Σk is the set of permutations of size k, and σ(x) represents x permuted by σ.
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Proposition 1. The relation ∼ becomes an equivalence relation.

Proof. For each i ≤ k, 〈Σi, ◦〉 forms a symmetric group Si, where ◦ is the function composition
operator [29]. Then, the direct product P := Πk

i=1Sk is also a group [29], and therefore has an identity
meaning that the relation ∼ is reflexive. When σ ∈ P, its inverse σ−1 ∈ P exists, i.e., the relation ∼ is
symmetric. The group P is closed under the operator ◦: It means if σ1, σ2 ∈ P, then σ1 ◦ σ2 ∈ P. That is,
the relation ∼ is also transitive. Taken together, the relation ∼ becomes an equivalence relation.

For example, the solutions (1, 3, 5, 7) and (3, 7, 5, 1) are equivalent. The number of vectors
equivalent to a vector g ∈ G is k!.

The equivalence relation of Definition 1 allows us to consider the real solution space (phenotype
space) as the set of equivalence classes of elements in G, i.e., the quotient space G/∼.

We can measure the similarity of two vectors x and y in G, the space of MKCP solution encodings,
using a distance metric D, which we obtain by summing values of a subsidiary metric d which
measures the difference between two columns of the matrix A which expresses the MKCP, as follows:

D(x, y) :=
n

∑
i=1

d(xi, yi). (1)

Here, the genes of two chromosomes, xi and yi, represent chosen column indices. If we regard the
indices as just labels, not column vectors, the discrete metric, which becomes one if the two indices are
the same, and zero otherwise, can be used as a metric d. This satisfies all the conditions for a distance
metric including the triangular inequality.

An alternative metric is Hamming distance, which is a measure of the dissimilarity of two binary
vectors. If we consider each column of the matrix A as a binary vector (the column vector), not just an
integer, we can find the Hamming distance between any two column vectors, and hence between the
corresponding genes xi and yi in two chromosomes from G. These distances can then be summed as
shown in Equation (1).

Figure 1 shows two distances in G calculated using discrete metric and Hamming distance.
As shown in Figure 1c, the discrete metric simply compares the column indices of xi and yi, and
ignores the contents of the corresponding columns of A. In Figure 1d, we see that the distance between
x1 and y1 is the Hamming distance between the first and the second column vectors of A.

0   1   0   1

0   0   1   0

1   0   0   1

0   1   1   0

1   0   0   0

(a) The 5× 4 matrix A

Gene 1 = (1, 1, 0, 0, 0)

Gene 2 = (0, 0, 1, 0, 1)

Gene 3 = (0, 0, 0, 1, 1)

Gene 4 = (0, 1, 1, 0, 0)T

T

T

T

(b) Four column vectors (genes)

0+ = 11

x x

y

1 2

2y1

2 3
(0  0  1  0  1)

1 3
(1  1  0  0  0) (0  0  0  1  1)

(0  0  0  1  1)T

T T

T

(c) Discrete metrics
0+ = 44

x x

y

1 2

2y1

2 3
(0  0  1  0  1)

1 3
(1  1  0  0  0) (0  0  0  1  1)

(0  0  0  1  1)

T

T T

T

(d) Hamming distances

Figure 1. Discrete metric vs. Hamming distance, for the chromosomes (1,3) and (2,3).
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Now, we establish a metric in the quotient space G/∼ by the following proposition:

Proposition 2. Let x = (x1, x2, . . . , xn) and y = (y1, y2, . . . , yn) be in G, and let a metric D on G be defined
by Equation (1). Then,

D̄(x̄, ȳ) := min
σ∈Σk

k

∑
i=1

d(xi, σi(y)) (2)

becomes a metric on G/∼, where σi(y) represents the ith element of permuted y by σ.

Proof. Let σ be in the group Πk
i=1Sk. The computation D(x, y) := ∑n

i=1 d(xi, yi), is unaffected by
summation order, and thus D(x, y) = D(σ(x), σ(y)). Hence, σ is an isometry on G, and thus Πk

i=1Sk
is an isometry subgroup. The relation ∼ is an equivalent relation obtained from Πk

i=1Sk. Hence
from [30,31] D̄(x̄, ȳ) is a metric on G/∼.

3. Normalization in MKCP

As shown above, redundancy in the integer representation of solutions to MKCP means that the
encoding (genotype) space G is unnecessarily larger than the true solution (phenotype) space, which
is the quotient space G/∼. Redundant representations can be expected to reduce the performance
of genetic algorithms significantly, which, in particular, undermines the effectiveness of standard
crossovers defined using masks [32]. The problem of redundant representations have been addressed
by a number of methods such as adaptive crossover [33–36], and among which the normalization
technique [37] is representative. Normalization changes a parent genotype into a different genotype
with the same phenotype which is similar to the genotype of the other parent before a standard crossover
is performed. It is based on adaptive crossovers [34,35] and many variants have appeared [31,38,39].

3.1. Preserving Feasibility

A representation is infeasible if it does not meet the requirements of a solution. Figure 2a shows an
integer representation which is infeasible because it contains duplicate column indices, and Figure 2b
shows a binary representation which is infeasible because it contains the wrong number of ‘1’s. Figure 2
also shows how these infeasible solutions are likely to be created by standard crossover operators such
as uniform and n-point crossovers.

3 95 6Parent 1

Parent 2

Offspring

= {3, 5, 6, 9}

= {1, 3, 5, 7}

= {3, 5, 7}

3 5 71

3 3 5 7

(a) Integer encoding
(n = 10 and k = 4)

0 0 1 0 1 1 0 00 0

0 1 1 101 0 0 0 0

0 0 1 0 1 1 0 0 1 0

1 2 3 4 5 6 7 8 9 10

Offspring

Parent 2

Parent 1

= {1, 3, 5, 7}

= {3, 5, 6}

= {3, 5, 6, 9}

(b) Binary encoding
(n = 10 and k = 4)

Figure 2. How infeasible solutions can be created by crossover operations.
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A repairing step can be performed to restore feasibility, but this has the effect of a mutation,
and may garble gene sequences inherited from parents. Using integer encoding, the problem can
be avoided by rearranging the parents so that any shared column indices are in the same position.
Such rearrangement naturally makes offspring preserve feasibility and no special repairing step is
required. This form of normalization is easily implemented, as shown in the pseudocode in Figure 3,
and takes O(k2) time.

FP_normalization(x, y)
{

for i← 0 to k
for j← 0 to k

if xi = yj, then
Swap values of yi and yj;

}

Figure 3. Pseudocode of normalization to preserve feasibility.

In Figure 4, this normalization to preserve feasibility for the example in Figure 2a is shown.

3 95 6

3 5 1 7

5 1 73

3 95 6Parent 1

Parent 2

Offspring

3 5 71

Figure 4. Normalization to preserve feasibility in the example from Figure 2a.

3.2. Normalization for Improving Solution Quality

A good solution to MKCP will consist of dissimilar columns. For example, in Figure 1, (1, 3)
is a better solution than (1, 4) because the ‘1’s in Columns 1 and 3 all occur in different rows, while
Columns 1 and 4 share a ‘1’ in Row 2.

In the context of a genetic algorithm, we would expect chromosomes with genes corresponding to
dissimilar columns to be most effective. Looking again at Figure 1, suppose that we apply a standard
one-point crossover to the parents (1, 2) and (3, 4). If the cutting line lies between the first gene and the
second one, then the offspring will be (1, 4), and this offspring covers the rows {1, 2, 3} of A. However,
if the second parent is rearranged to (4, 3), the offspring becomes (1, 3), which covers {1, 2, 4, 5}.
This example is illustrated in Figure 5. In general, we want the offspring to have genes that correspond
to columns that are as dissimilar as possible. Thus, it is helpful to rearrange chromosomes so that
genes corresponding to similar columns are in the same positions. The goal of this rearrangement can
be formulated in terms of distance in the phenotype space G/∼. Consider two parents x and y in the
genotype space G. Rearranging genes so that those corresponding to the most similar columns are
located in the same positions is equivalent to the search for a permutation σ∗ such that the distance
between the equivalence class of x and that of y is equal to the distance between x and σ∗(y). This is
also equivalent to finding the σ which minimizes the distance between x and the permuted y in
Equation (2).
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(1  1  0  0  0)T (0  0  1  0  1)T

(0  0  0  1  1)T (0  1  1  0  0)T

(0  0  1  0  1)T

(0  0  0  1  1)T

(1  1  0  0  0)T (0  1  1  0  0)T

(1  1  0  0  0)T (0  0  0  1  1)T

(1  1  0  0  0)T

(0  1  1  0  0)T

1

1

3 4

4

3

Union

Union

Crossover

Crossover

1 2

1 2

4 3

(1  1  1  0  0)

(1  1  0  1  1)

T

T

Figure 5. Effect of rearranging genes to match similar columns in the example from Figure 1.

The optimal rearrangement is achieved by considering all of the permutations of genes in the
second parent, and choosing the permutation that minimizes the distance sum between the column
vectors corresponding to gene pairs in the same locations. If Hamming distance H is used to get the
dissimilarity between the column vectors corresponding to two genes, we will choose the permutation
σ∗ such that

σ∗ = argmin
σ∈Σk

k

∑
i=1

H(xi, σi(y)), (3)

where Σk is the set of all the permutations of length k and σi(y) denotes the ith element of permuted y
by σ.

We give an example case in Figure 6, in which the chromosomes (1, 2) and (3, 4) are both parents,
and now we normalize (3, 4). Because k is 2, the number of all the permutations is just 2. We
compute ∑k

i=1 H(xi, σi(y)) for each permutation. If σ1 = (1 2
1 2), σ1(y) = (3, 4). Then, H(x1, σ1

1 (y)) =
4, H(x2, σ1

2 (y)) = 2, and their sum is 6. For the second permutation σ2 = (1 2
2 1), σ2(y) = (4, 3).

Then, H(x1, σ2
1 (y)) = 2, H(x2, σ2

2 (y)) = 2, and their sum is 4. Since this is smaller than 6, σ2 = (1 2
2 1) is

the optimal permutation.

2 + 2 = 4

(0  0  1  0  1)
T

(1  1  0  0  0)
T

(0  0  1  0  1)
T

(0  0  0  1  1)
T

(0  1  1  0  0)(0  1  1  0  0)

(1  1  0  0  0)
T

(0  0  0  1  1)
T

1 2

3 4

4 2+ = 6Hamming Distance

1 2

4 3
T T

Figure 6. Normalization with Hamming distance in the example from Figure 1.

Enumerating all k! permutations is intractable for a large k, and thus this procedure is intractable.
However, the problem can be solved using the Hungarian method [40], which is a network-flow-based
technique. It provides an optimal result, and runs in O(k3) time [41]. Alternatively, we can use a
fast heuristic [42], which runs in O(k2) and produces results very close to the optimum. Either of
these methods can be treated as a function that accepts a 2D array, in which the elements are the
distances between two genes, and returns the permutation with the minimum total distance between
chromosomes. This normalization is shown in the pseudocode of Figure 7.
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OPT_normalization(x, y)
{

for i← 0 to k
for j← 0 to k

D[xi, yj]← H(xi, yj);
σ∗ ← argminσ∈Σk

∑k
i=1 H(xi, σi(y)); // using the Hungarian method or its fast variant

y← σ∗(y);
}

Figure 7. Pseudocode of normalization by the optimal rearrangement.

After we rearrange the second parent according to the permutation σ∗, a standard crossover
is applied.

Now, we investigate the relation between this optimal rearrangement and the feasibility. There
may be more than one optimal rearrangement satisfying Equation (3), but we can show that one
of them is always feasible. Feasibility is preserved by an optimal permutation σ∗ which locates all
common indices in the same positions by σ∗, as we now prove:

Proposition 3. If x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are two chromosomes and xp = yq, then there
exists σ∗ ∈ Σk such that σ∗p (y) = yq and ∑k

i=1 d(xi, σ∗i (y)) ≤ ∑k
i=1 d(xi, σi(y)) for all σ ∈ Σk, where d is a

distance metric.

Proof. Let σ′ be argminσ∈Σk ∑k
i=1 d(xi, σi(y)). There is an index r satisfying σ′r(y) = yq. Let σ′′ be the

same permutation as σ′, except that σ′(y)p and σ′r(y) are exchanged:

σ′′i (y) =


σ′r(y) if i = p,

σ′p(y) if i = r,

σ′i (y) otherwise.

Then,

k

∑
i=1

d(xi, σ′′i (y)) = d(xp, σ′′p (y)) + d(xr, σ′′r (y)) + ∑
i 6=p,i 6=r

d(xi, σ′′i (y))

= d(xp, σ′r(y)) + d(xr, σ′p(y)) + ∑
i 6=p,i 6=r

d(xi, σ′i (y))

= d(xp, yq) + d(xr, σ′p(y)) + ∑
i 6=p,i 6=r

d(xi, σ′i (y))

= d(xr, σ′p(y)) + ∑
i 6=p,i 6=r

d(xi, σ′i (y)) (∵ d(xp, yq) = 0 by assumption)

≤ d(xr, xp) + d(xp, σ′p(y)) + ∑
i 6=p,i 6=r

d(xi, σ′i (y)) (∵ triangular inequality)

= d(xr, yq) + d(xp, σ′p(y)) + ∑
i 6=p,i 6=r

d(xi, σ′i (y))

= d(xr, σ′r(y)) + d(xp, σ′p(y)) + ∑
i 6=p,i 6=r

d(xi, σ′i (y))

=
k

∑
i=1

d(xi, σ′i (y))

≤
k

∑
i=1

d(xi, σi(y)) for all σ ∈ Σk.
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Hence, ∑k
i=1 d(xi, σ′′i (y)) ≤ ∑k

i=1 d(xi, σi(y)) for all σ ∈ Σk and σ′′p (y) = yq.

This proof relies on the triangular inequality, which is a key property of any valid distance.
Thus, Proposition 3 holds for distances other than Hamming distance. We could use discrete metric,
introduced in Section 2. This distance provides a very rough comparison of two solutions, but
Proposition 3 still holds. Equation (3) can be rewritten using discrete metric ρ instead of Hamming
distance H:

σ∗ = argmin
σ∈Σk

k

∑
i=1

ρ(xi, σi(y)). (4)

In particular, in this case, feasibility is preserved by any optimal permutation σ∗ in Equation (4).
Its proof is quite similar to the proof of Proposition 3.

Proposition 4. If x = (x1, x2, . . . , xk) and y = (y1, y2, . . . , yk) are two chromosomes and xp = yq, then
σ∗p (y) = yq, where σ∗ is a permutation such that ∑k

i=1 ρ(xi, σ∗i (y)) ≤ ∑k
i=1 ρ(xi, σi(y)) for all σ ∈ Σk.

Proof. We assume that σ∗p (y) 6= yq. There is an index r satisfying σ∗r (y) = yq. Let σ′ be the same
permutation as σ∗, except that σ∗(y)p and σ∗r (y) are exchanged:

σ′i (y) =


σ∗r (y) if i = p,

σ∗p (y) if i = r,

σ∗i (y) otherwise.

Then,

k

∑
i=1

ρ(xi, σ′i (y)) = ρ(xp, σ′p(y)) + ρ(xr, σ′r(y)) + ∑
i 6=p,i 6=r

ρ(xi, σ′i (y))

= ρ(xp, σ∗r (y)) + ρ(xr, σ∗p (y)) + ∑
i 6=p,i 6=r

ρ(xi, σ∗i (y))

= ρ(xp, yq) + ρ(xr, σ∗p (y)) + ∑
i 6=p,i 6=r

ρ(xi, σ∗i (y))

= ρ(xr, σ∗p (y)) + ∑
i 6=p,i 6=r

d(xi, σ∗i (y)) (∵ xp = yq by assumption)

< 1 + 1 + ∑
i 6=p,i 6=r

d(xi, σ∗i (y))

= ρ(xp, σ∗p (y)) + ρ(xr, xp) + ∑
i 6=p,i 6=r

ρ(xi, σ∗i (y)) (∵ xp 6= σ∗p (y) and xr 6= xp)

= ρ(xp, σ∗p (y)) + ρ(xr, yq) + ∑
i 6=p,i 6=r

ρ(xi, σ∗i (y))

= ρ(xp, σ∗p (y)) + ρ(xr, σ∗r (y)) + ∑
i 6=p,i 6=r

ρ(xi, σ∗i (y))

=
k

∑
i=1

ρ(xi, σ∗i (y)).

This contradicts the assumption that ∑k
i=1 ρ(xi, σ∗i (y)) ≤ ∑k

i=1 ρ(xi, σi(y)) for all σ ∈ Σk.

Using discrete metric will only cause identical indices to be rearranged into the same positions.
In fact, normalization by discrete metric is exactly the same as rearranging for preserving feasibility
introduced in Section 3.1.
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4. Experiments

4.1. Test Sets and Test Environments

Our experiments were conducted on 65 instances of 11 set cover problems with various size
and densities, from the OR-library [43]. Although these benchmark data were designed as set cover
problems, the data can also be considered as maximum k-coverage problems, as in [27]. Some details
of these problems are presented in Table 1, where m and n are the numbers of rows and columns,
respectively, and density is the percentage of ‘1’s in the MKCP matrix A. The present authors previously
experimented with problems with fixed values of k of 10 and 20 [28]. However, in this study, we varied
k with the tightness ratio α, which is the product of k and the density of a problem. The higher is the
tightness ratio, the larger is the value of the object function, which is the coverage, that we are likely
to achieve. If the tightness ratio is 1, the optimum coverage is likely to be very close to n. We used
tightness ratios of 0.8, 0.6, and 0.4.

We implemented all our tested algorithms in C language using gcc version 5.4.0, and ran them on
Ubuntu 16.04.6.

Table 1. Problem set.

Problem m n Density #Instances
Set Tested

I-4 200 1000 2% 10
I-5 200 2000 2% 10
I-6 200 1000 5% 5
I-A 300 3000 2% 5
I-B 300 3000 5% 5
I-C 400 4000 2% 5
I-D 400 4000 5% 5
I-E 500 5000 10% 5
I-F 500 5000 20% 5
I-G 1000 10,000 2% 5
I-H 1000 10,000 5% 5

4.2. Effect of Normalization on a Crossover

To see whether or not normalization is effective at crossover, we performed experiments with
three methods of rearranging the second of two parents before a crossover:

• REPAIR: The second parent is not rearranged before the crossover, but infeasible offspring are
repaired to restore feasibility after the crossover.

• FP: The second parent is rearranged to produce only feasible offspring using the normalization in
Figure 3.

• OPT: The second parent is rearranged by the normalization in Figure 7, to minimize the sum of
the distances using the permutation σ∗ of Equation (3).

REPAIR produces feasible offspring by the method of replacing duplicate column indices with a
randomly chosen one among the indices that are not contained in the offspring. OPT was implemented
using the Hungarian method [40], which runs in O(k3) time.

To determine the most effective method, we performed the following steps:

1. N parent chromosomes were randomly generated. (N was set to 100.)
2. The chromosomes were randomly paired, making N/2 couples.
3. The second parent in each pair was rearranged using the methods described above.
4. A uniform crossover was applied to each couple.
5. We computed the mean and the standard deviation for the coverage of each of the N/2 offspring.
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This procedure was applied to a single instance of each problem listed in Table 1 using REPAIR,
FP, and OPT. Table 2 shows the results for each of these 11 instances. We see that OPT normalization
outperforms the others, and can therefore be expected to improve the performance of a GA. Moreover,
the results of the one-tailed t-test show that the objective values of offspring produced using OPT
normalization were better than those of their parents. On the contrary, the values produced using
REPAIR and FP were similar to those of their parents. This suggests that, compared to other methods,
OPT normalization would strongly support the function of the crossover operator in searching the
solution space in a promising direction, without replacement strategy.

Table 2. Effect of normalization on a single crossover, after the REPAIR, FP, and OPT procedures.

Tightness Parents REPAIR FP OPT

Ratio Instance k Ave SD Ave SD Ave SD Ave SD

scp41 40 110.27 6.33 110.30 5.89 110.00 5.46 113.80 6.12
scp51 40 110.72 6.62 110.00 6.95 111.82 6.90 115.02 6.77
scp61 16 111.33 6.43 111.24 6.64 111.20 6.73 114.20 6.24
scpa1 40 167.69 7.76 166.80 7.83 167.68 8.47 173.66 8.93
scpb1 16 168.31 9.27 170.80 9.79 168.90 9.11 171.36 9.25

0.8 scpc1 40 220.40 10.53 221.04 10.83 220.42 9.76 225.84 9.91
scpd1 16 223.74 9.22 222.34 10.15 224.36 8.69 228.56 9.48

scpnre1 8 284.43 10.23 285.08 10.93 285.76 11.08 287.14 9.27
scpnrf1 4 295.44 10.76 294.94 9.94 294.44 9.50 297.34 9.75
scpnrg1 40 553.30 14.49 553.96 14.56 553.82 16.10 561.28 12.16
scpnrh1 16 560.94 14.49 562.12 16.57 563.14 16.24 567.46 17.09

scp41 30 90.40 6.41 90.80 6.34 89.98 4.82 95.34 6.14
scp51 30 90.77 6.74 91.92 6.92 91.44 6.50 94.20 6.64
scp61 12 90.96 6.54 90.56 6.17 90.94 5.86 91.88 7.75
scpa1 30 137.54 8.09 136.74 8.95 137.60 7.63 143.74 8.01
scpb1 12 138.05 8.31 138.44 8.36 139.68 9.08 141.68 8.28

0.6 scpc1 30 181.59 10.64 178.52 10.55 180.24 11.30 186.06 10.09
scpd1 12 185.27 9.08 184.80 9.06 185.34 9.01 188.30 7.72

scpnre1 6 233.02 11.34 231.60 12.83 234.04 12.41 234.12 11.04
scpnrf1 3 244.40 11.37 245.04 10.48 244.24 10.28 245.68 9.57
scpnrg1 30 452.91 14.48 452.70 14.52 452.58 14.07 461.34 13.42
scpnrh1 12 461.87 13.66 460.80 16.68 462.22 16.58 462.40 15.61

scp41 20 66.44 5.52 66.84 5.59 67.30 6.09 68.06 5.19

scp51 20 66.41 5.54 67.44 6.61 66.84 6.44 68.98 6.71
scp61 8 66.55 6.80 67.68 6.05 66.72 5.91 67.74 5.71
scpa1 20 100.82 8.40 99.80 7.62 100.00 7.63 103.54 6.80
scpb1 8 101.25 7.43 101.74 8.91 101.06 7.38 104.06 8.43

0.4 scpc1 20 132.47 10.42 131.68 8.78 133.14 9.07 136.14 9.92
scpd1 8 135.48 10.49 136.32 8.49 134.72 9.46 136.94 9.96

scpnre1 4 171.43 10.32 172.04 10.14 172.94 12.05 173.16 11.10
scpnrf1 2 179.95 10.83 180.04 9.85 179.94 11.46 182.90 11.22
scpnrg1 20 331.51 13.57 332.10 13.64 330.52 14.89 337.30 14.60
scpnrh1 8 338.58 14.59 336.84 14.80 337.30 14.42 343.44 13.90

t-test p-value * - 4.25× 10−1 1.09× 10−1 7.52× 10−12

Ave and SD are the average and the standard deviation of the fitness of 100 parents (in the column of
“Parents”) or 50 offspring (in the remaining columns of REPAIR, FP, and OPT), respectively. REPAIR produces
feasible offspring by random repair. FP rearranges the second parent to produce feasible offspring using the
normalization in Figure 3. OPT is optimized normalization of the second parent. * The one-tailed t-test of the
null hypothesis that the result of given method is equal to fitness of parents.

4.3. Performance of GAs with Normalization Methods

Our underlying evolutionary model is similar to the model of CHC [44], which was applied to
many problems [45–50]. We paired a population of N chromosomes randomly, and then we applied
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crossover to each pair, generating a total of N/2 offspring. We ranked all parents and offspring and the
fittest N individuals among them became the population in the next generation. We used 100 as the
size of population in our experiments. We reinitialized the population, except for the best individual,
if there were no changes over kr(1− r) generations, where r is a divergence ratio that wes set to 0.25.
This GA stopped after 500 generations and returned the best it has found. The pseudocode of our GA
is given in Figure 8.

Initialize a population P of N individuals;
for i← to maximum generations
{

Randomly pair a population P of N individuals; {N/2 pairs}
for each pair (p1, p2) ∈ P {N/2 iterations}
{

Normalize p2 to make close to p1; {optionally applied}
o ← crossover(p1, p2); {make offspring from parents}

}
P← the best N individuals among N parents and N/2 offspring;
if there are no changes in P over kr(1− r) generations, then

Reinitialize a population P, except for the best individual;
}
return the best individual;

Figure 8. Pseudocode of our genetic algorithm.

In the following experiments, we changed the normalization method in a single GA. We compared
the output of our GA with the best result that we found in this study, using the metric %-gap, which is
100× |best− output|/best.

Thirty trials were performed for each method, and the averaged results are shown in Table 3.
The results labeled RR-GA were produced without normalization: infeasible offspring produced were
repaired randomly using the same method as REPAIR in Section 4.2. We also compared the results
from the GA with a multi-start method using randomly generated solutions. In each run of this
method, called Multi-Start, we sampled 106 random solutions and chose the best one. Even RR-GA
performed significantly better than Multi-Start, suggesting that GAs are an appropriate mechanism for
solving the MKCP.

The results labeled FP-GA in Table 3 were produced by rearranging the genes of the second parent
to produce feasible offspring without the need for repair. FP-GA outperformed RR-GA for large values
of k but not for small values. It seems that the effect of mutation by repair is rather effective when the
solution space is small.

The results labeled OPT-GA in Table 3 were produced by the GA with the proposed normalization.
Using the same GA as FP-GA, OPT-GA rearranges the genes of the second parent to minimize
the sum of distances between genes (column vectors) before applying recombination. OPT-GA
clearly outperforms Multi-Start and RR-GA; the results of one-tailed t-tests prove that OPT-GA also
outperforms FP-GA significantly.

The results of the t-tests show that Multi-Start is clearly the worst technique, even though it is
allowed 106 evaluations, while the GA-based methods produce relatively small 2.5× 104 chromosomes.
RR-GA and FP-GA have similar performance, and OPT-GA clearly does best.
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Table 3. Results of three GAs compared with random solutions to MKCP.

Tightness Instance Multi-Start RR-GA t-Test 1 FP-GA t-Test 2 OPT-GA t-Test 3

Ratio Set k %-Gap Ave %-Gap Ave p-Value %-Gap Ave p-Value %-Gap Ave p-Value

I-4 40 28.17 141.35 7.08 182.86 6.62× 10−16 3.36 190.19 3.45× 10−11 1.96 192.95 2.56× 10−10

I-5 40 28.67 141.52 6.84 184.82 2.92× 10−19 3.95 190.57 1.71× 10−9 1.64 195.14 5.16× 10−10

I-6 16 20.56 143.77 4.22 173.35 8.21× 10−10 4.21 173.37 4.67× 10−1 2.53 176.42 6.86× 10−5

I-A 40 27.62 207.57 6.16 269.13 1.09× 10−9 4.29 274.49 4.85× 10−6 1.81 281.61 5.45× 10−6

I-B 16 20.56 208.93 4.52 251.10 2.69× 10−7 4.73 250.54 8.86× 10−2 2.68 255.94 1.05× 10−4

0.8 I-C 40 26.81 269.33 6.12 345.48 2.89× 10−8 4.85 350.16 7.50× 10−5 2.10 360.28 2.11× 10−5

I-D 16 18.78 271.43 3.91 321.14 8.71× 10−8 4.15 320.31 6.58× 10−2 1.90 327.84 2.65× 10−6

I-E 8 12.65 336.81 3.63 371.60 7.01× 10−8 4.04 369.99 9.37× 10−3 2.65 375.37 1.31× 10−4

I-F 4 6.23 346.58 2.25 361.27 2.18× 10−6 2.42 360.66 1.27× 10−1 1.83 362.82 1.78× 10−3

I-G 40 21.61 630.13 4.73 765.78 3.64× 10−10 3.82 773.12 4.74× 10−4 1.64 790.58 1.47× 10−5

I-H 16 14.79 634.61 3.31 720.14 1.81× 10−8 3.75 716.83 1.29× 10−2 1.93 730.41 5.89× 10−5

I-4 30 31.62 121.57 6.72 165.85 3.47× 10−16 4.75 169.35 8.86× 10−9 2.69 173.01 1.76× 10−9

I-5 30 32.71 121.79 6.76 168.76 1.25× 10−17 5.69 170.70 1.25× 10−5 2.53 176.42 1.53× 10−12

I-6 12 21.51 124.00 4.35 151.12 3.29× 10−7 4.21 151.35 1.62× 10−1 2.56 153.95 1.02× 10−3

I-A 30 31.03 178.49 6.12 242.97 2.64× 10−8 5.30 245.09 6.19× 10−3 2.36 252.70 6.20× 10−5

I-B 12 22.15 179.34 4.83 219.27 5.21× 10−7 5.22 218.36 1.65× 10−2 3.00 223.47 1.61× 10−5

0.6 I-C 30 29.54 230.25 5.89 307.54 1.41× 10−9 5.19 309.85 1.43× 10−3 2.63 318.20 3.56× 10−7

I-D 12 20.18 232.11 4.28 278.34 5.40× 10−8 4.73 277.03 1.78× 10−2 2.71 282.91 8.94× 10−6

I-E 6 11.82 287.65 3.12 316.02 8.78× 10−8 3.48 314.85 2.63× 10−2 2.25 318.84 7.78× 10−5

I-F 3 4.29 296.71 1.43 305.56 5.35× 10−7 1.91 304.09 1.05× 10−3 1.13 306.50 1.72× 10−4

I-G 30 24.17 531.23 5.18 664.26 2.06× 10−9 5.00 665.56 1.31× 10−1 2.42 683.65 2.75× 10−5

I-H 12 15.06 535.09 2.95 611.43 2.77× 10−8 3.34 608.92 9.63× 10−3 1.80 618.66 2.49× 10−4

I-4 20 32.30 95.98 5.56 133.91 1.71× 10−14 4.54 135.36 2.39× 10−7 2.40 138.39 2.27× 10−9

I-5 20 34.33 96.27 6.20 137.51 5.07× 10−16 6.12 137.62 2.93× 10−1 2.76 142.55 8.79× 10−10

I-6 8 19.63 98.21 3.14 118.37 3.63× 10−6 3.38 118.08 1.62× 10−1 2.08 119.66 6.08× 10−4

I-A 20 32.95 140.65 5.88 197.46 1.94× 10−7 6.12 196.95 1.14× 10−1 2.92 203.66 1.14× 10−5

I-B 8 21.41 141.44 4.02 172.76 5.61× 10−7 4.84 171.27 3.75× 10−3 2.48 175.53 1.48× 10−4

0.4 I-C 20 31.50 179.73 5.50 247.96 2.99× 10−8 5.77 247.24 1.12× 10−1 2.66 255.41 5.49× 10−7

I-D 8 19.61 180.87 3.74 216.59 1.92× 10−6 4.48 214.91 2.07× 10−2 2.56 219.23 2.34× 10−6

I-E 4 9.00 222.76 2.14 239.55 1.89× 10−8 2.64 238.34 1.59× 10−2 1.64 240.78 1.21× 10−6

I-F 2 1.87 229.63 1.72 229.97 1.22× 10−1 1.97 229.39 2.48× 10−2 1.55 230.37 8.79× 10−3

I-G 20 25.35 405.93 4.45 519.61 5.35× 10−9 4.65 518.51 2.74× 10−2 2.32 531.16 2.91× 10−5

I-H 8 14.64 408.88 3.15 463.92 2.75× 10−9 3.52 462.16 2.56× 10−2 1.87 470.06 4.82× 10−5

Averages from 30 runs. Multi-Start generates random solutions and chooses the best. RR-GA is a genetic algorithm with random repair. FP-GA is a genetic algorithm with
FP normalization. OPT-GA is a genetic algorithm with OPT normalization. 1 The one-tailed t-test with the null hypothesis of RR-GA = Multi-Start. 2 The one-tailed t-test with the
null hypothesis of FP-GA = RR-GA. 3 The one-tailed t-test with the null hypothesis of OPT-GA = FP-GA.
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5. Conclusions

We present the maximum k-coverage problem (MKCP) and analyze its representation and solution
space. If we apply a GA to the MKCP, then we immediately encounter the issue of redundancy in
the genotype space, which is larger than the phenotype space that we characterize as a quotient
space. We introduce a method of normalizing chromosomes that ensures a crossover produces feasible
offspring with genes that are column vectors of the MKCP matrix and are as dissimilar as possible.
This normalization was implemented using the Hungarian method [40]. We performed experiments
which showed the effectiveness of this approach.

In this study, we adopted two locus-based metrics of the discrete metric and its extended version
derived from Hamming distance between genes (column vectors). However, other metrics such as
some variants of Cayley metric on permutations [51,52] may also be applied to the proposed theoretical
framework. In the case of such non-locus-based metric, we should design a new crossover tailored to
the metric. This investigation will be a promising work, which we leave for future study.

As mentioned in the Introduction, the proposed theoretical framework can be applied to
real-world applications such as the cyber-physical social systems and public safety networks. We
leave this applied work for future study. We also expect that this approach can be applied to other
problems which have the same representation for their solutions. By expanding this technique to
solution representations of variable length as in [53,54], we believe it could also be applied to the set
cover problem.

Author Contributions: Conceptualization, Y.Y. and Y.-H.K.; methodology, Y.-H.K.; software, Y.Y.; validation, Y.Y.;
formal analysis, Y.Y.; investigation, Y.Y.; resources, Y.Y.; data curation, Y.Y.; writing—original draft preparation,
Y.Y.; writing—review and editing, Y.-H.K.; visualization, Y.Y.; supervision, Y.-H.K.; project administration, Y.-H.K.;
and funding acquisition, Y.-H.K. All authors have read and agreed to the published version of the manuscript.

Funding: The present research was conducted by the Research Grant of Kwangwoon University in 2020. This
research was a part of the project titled ‘Marine Oil Spill Risk Assessment and Development of Response Support
System through Big Data Analysis’ funded by the Korea Coast Guard. This work was also supported by the
National Research Foundation of Korea (NRF) grant funded by the Korea government (Ministry of Science, ICT &
Future Planning) (No. 2017R1C1B1010768).

Acknowledgments: The authors thank Byung-Ro Moon for his valuable suggestions, which improved this paper.

Conflicts of Interest: The authors declare that they have no conflict of interest.

Disclosure: A preliminary version of this paper appeared in the Proceedings of the Genetic and Evolutionary
Computation Conference, pp. 593–598, 2008. In comparison with the conference paper, this paper was newly
rewritten with the following new materials: (i) new work: complete literature survey (Section 1) and complete
theoretical work of the proposed normalization (Sections 2 and 3.2); and (ii) improved work: an improved genetic
algorithm (through the improvement of normalization technique), and its largely-extended experiments together
with their statistical verification (Section 4).

References

1. Hochbaum, D.S.; Pathria, A. Analysis of the greedy approach in problems of maximum k-coverage.
Nav. Res. Logist. 1998, 45, 615–627. [CrossRef]

2. Caprara, A.; Fischetti, M.; Toth, P.; Vigo, D.; Guida, P.L. Algorithms for railway crew management. Math. Program.
1997, 79, 125–141. [CrossRef]

3. Indyk, P.; Mahabadi, S.; Mahdian, M.; Mirrokni, V.S. Composable Core-sets for Diversity and Coverage
Maximization. In Proceedings of the 33rd ACM SIGMOD-SIGACT-SIGART Symposium on Principles of
Database Systems, Snowbird, UT, USA, 22–27 June 2014; pp. 100–108.

4. Indyk, P.; Vakilian, A. Tight Trade-offs for the Maximum k-Coverage Problem in the General Streaming
Model. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems, Amsterdam, The Netherlands, 30 June–5 July 2019; pp. 200–217.

5. Saha, B.; Getoor, L. On Maximum Coverage in the Streaming Model & Application to Multi-topic Blog-Watch.
In Proceedings of the the SIAM International Conference on Data Mining, Sparks, NV, USA, 30 April–2 May
2009; pp. 697–708.

http://dx.doi.org/10.1002/(SICI)1520-6750(199809)45:6<615::AID-NAV5>3.0.CO;2-5
http://dx.doi.org/10.1007/BF02614314


Mathematics 2020, 8, 513 14 of 16

6. Zheng, S.; Dmitriev, P.; Giles, C.L. Graph Based Crawler Seed Selection. In Proceedings of the 18th
International Conference on World Wide Web, WWW ’09, Madrid, Spain, 20–24 April 2009; pp. 1089–1090.

7. Chierichetti, F.; Kumar, R.; Tomkins, A. Max-cover in Map-reduce. In Proceedings of the 19th International
Conference on World Wide Web, Raleigh, NC, USA, 26–30 April 2010; pp. 231–240.

8. Li, F.H.; Li, C.T.; Shan, M.K. Labeled Influence Maximization in Social Networks for Target Marketing.
In Proceedings of the IEEE International Conference on Privacy, Security, Risk, and Trust, and IEEE
International Conference on Social Computing, Boston, MA, USA, 9–11 October 2011; pp. 560–563.

9. Hammar, M.; Karlsson, R.; Nilsson, B.J. Using Maximum Coverage to Optimize Recommendation Systems
in e-Commerce. In Proceedings of the 7th ACM Conference on Recommender Systems, Hong Kong, China,
12–16 October 2013; pp. 265–272.

10. Yoon, Y.; Kim, Y.H. An Efficient Genetic Algorithm for Maximum Coverage Deployment in Wireless Sensor
Networks. IEEE Trans. Cybern. 2013, 43, 1473–1483. [CrossRef] [PubMed]

11. Yaghini, M.; Karimi, M.; Rahbar, M. A set covering approach for multi-depot train driver scheduling.
J. Comb. Optim. 2015, 29, 636–654. [CrossRef]

12. Liu, Q.; Cai, W.; Shen, J.; Fu, Z.; Liu, X.; Linge, N. A speculative approach to spatial-temporal efficiency with
multi-objective optimization in a heterogeneous cloud environment. Secur. Commun. Netw. 2016, 9, 4002–4012.
[CrossRef]

13. Máximo, V.R.; Nascimento, M.C.V.; Carvalho, A.C.P.L.F. Intelligent-guided adaptive search for the maximum
covering location problem. Comput. Oper. Res. 2017, 78, 129–137. [CrossRef]

14. Tsiropoulou, E.E.; Thanou, A.; Papavassiliou, S. Quality of Experience-based museum touring: A human in
the loop approach. Soc. Netw. Anal. Min. 2017, 7, 33. [CrossRef]

15. Sikeridis, D.; Tsiropoulou, E.E.; Devetsikiotis, M.; Papavassiliou, S. Socio-spatial resource management in
wireless powered public safety networks. In Proceedings of the IEEE Military Communications Conference
(MILCOM), Los Angeles, CA, USA, 29–31 October 2018, pp. 810–815.

16. Fragkos, G.; Tsiropoulou, E.E.; Papavassiliou, S. Disaster Management and Information Transmission
Decision-Making in Public Safety Systems. In Proceedings of the IEEE Global Communications Conference
(GLOBECOM), Waikoloa, HI, USA, 9–13 December 2019, pp. 1–6.

17. Garey, M.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; Freeman:
San Francisco, CA, USA, 1979.

18. Caserta, M.; Doerner, K.F. Tabu search-based metaheuristic algorithm for the large-scale set covering problem.
In Metaheuristics: Progress in Complex Systems Optimization; Springer: New York, NY, USA, 2007; pp. 43–63.

19. Aickelin, U. An indirect genetic algorithm for set covering problems. J. Oper. Res. Soc. 2002, 53, 1118–1126.
[CrossRef]

20. Beasley, J.E.; Chu, P.C. A Genetic Algorithm for the Set Covering Problem. Eur. J. Oper. Res. 1996, 94, 392–404.
[CrossRef]

21. Balaji, S.; Revathi, N. A new approach for solving set covering problem using jumping particle swarm
optimization method. Nat. Comput. 2016, 15, 503–517. [CrossRef]

22. Al-Shihabi, S.; Arafeh, M.; Barghash, M. An improved hybrid algorithm for the set covering problem.
Comput. Ind. Eng. 2015, 85, 328–334. [CrossRef]

23. Ausiello, G.; Boria, N.; Giannakos, A.; Lucarelli, G.; Paschos, V. Online maximum k-coverage. Discret. Appl.
Math. 2012, 160, 1901–1913. [CrossRef]

24. Yu, H.; Yuan, D. Set coverage problems in a one-pass data stream. In Proceedings of the the SIAM
International Conference on Data Mining, Austin, TX, USA, 2–4 May 2013, pp. 758–766.

25. Chandu, D.P. Big Step Greedy Heuristic for Maximum Coverage Problem. Int. J. Comput. Appl. 2015, 125, 19–24.
26. Wang, Y.; Ouyang, D.; Yin, M.; Zhang, L.; Zhang, Y. A restart local search algorithm for solving maximum

set k-covering problem. Neural Comput. Appl. 2018, 29, 755–765. [CrossRef]
27. Lin, G.; Guan, J. Solving maximum set k-covering problem by an adaptive binary particle swarm optimization

method. Knowl.-Based Syst. 2018, 142, 95–107. [CrossRef]
28. Yoon, Y.; Kim, Y.H.; Moon, B.R. Feasibility-Preserving Crossover for Maximum k-Coverage Problem.

In Proceedings of the Genetic and Evolutionary Computation Conference, Atlanta, GA, USA, 12–16 July
2008; pp. 593–598.

http://dx.doi.org/10.1109/TCYB.2013.2250955
http://www.ncbi.nlm.nih.gov/pubmed/23757541
http://dx.doi.org/10.1007/s10878-013-9612-1
http://dx.doi.org/10.1002/sec.1582
http://dx.doi.org/10.1016/j.cor.2016.08.018
http://dx.doi.org/10.1007/s13278-017-0453-2
http://dx.doi.org/10.1057/palgrave.jors.2601317
http://dx.doi.org/10.1016/0377-2217(95)00159-X
http://dx.doi.org/10.1007/s11047-015-9509-2
http://dx.doi.org/10.1016/j.cie.2015.04.007
http://dx.doi.org/10.1016/j.dam.2012.04.005
http://dx.doi.org/10.1007/s00521-016-2599-7
http://dx.doi.org/10.1016/j.knosys.2017.11.028


Mathematics 2020, 8, 513 15 of 16

29. Fraleigh, J.B. A First Course in Abstract Algebra, 7th ed.; Addison Wesley: Boston, MA, USA, 2002.

30. Burago, D.; Burago, Y.; Ivanov, S.; Burago, I.D. A Course in Metric Geometry; American Mathematical Society:
Providence, RI, USA, 2001.

31. Yoon, Y.; Kim, Y.H.; Moraglio, A.; Moon, B.R. Quotient geometric crossovers and redundant encodings.
Theor. Comput. Sci. 2012, 425, 4–16. [CrossRef]

32. Choi, S.S.; Moon, B.R. Normalization in Genetic Algorithms. In Proceedings of the Genetic and Evolutionary
Computation Conference, Chicago, IL, USA, 12–16 July 2003; pp. 862–873.

33. Dorne, R.; Hao, J.K. A New Genetic Local Search Algorithm for Graph Coloring. In Proceedings of the Fifth
Conference on Parallel Problem Solving from Nature, Amsterdam, The Netherlands, 27–30 September 1998;
pp. 745–754.

34. Laszewski, G. Intelligent Structural Operators for the k-way Graph Partitioning Problem. In Proceedings of
the Fourth International Conference on Genetic Algorithms, San Diego, CA, USA, 13–16 July 1991; pp. 45–52.

35. Mühlenbein, H. Parallel genetic algorithms in combinatorial optimization. In Computer Science and Operations
Research: New Developments in Their Interfaces; Pergamon: Oxford, MS, USA, 1992; pp. 441–456.

36. Van Hoyweghen, C.; Naudts, B.; Goldberg, D.E. Spin-flip symmetry and synchronization. Evol. Comput.
2002, 10, 317–344. [CrossRef]

37. Kang, S.J.; Moon, B.R. A Hybrid Genetic Algorithm for Multiway Graph Partitioning. In Proceedings of the
Genetic and Evolutionary Computation Conference, Las Vegas, NV, USA, 8–12 July 2000, pp. 159–166.

38. Moraglio, A.; Kim, Y.H.; Yoon, Y.; Moon, B.R. Geometric Crossovers for Multiway Graph Partitioning.
Evol. Comput. 2007, 15, 445–474. [CrossRef]

39. Choi, S.S.; Moon, B.R. Normalization for Genetic Algorithms with Nonsynonymously Redundant Encodings.
IEEE Trans. Evol. Comput. 2008, 12, 604–616. [CrossRef]

40. Kuhn, H.W. The Hungarian Method for the assignment problem. Nav. Res. Logist. Q. 1955, 2, 83–97.
[CrossRef]

41. Papadimitriou, C.H.; Steiglitz, K. Combinatorial Optimization: Algorithms and Complexity; Prentice-Hall:
Englewood Cliffs, NJ, USA, 1955.

42. Avis, D. A survey of heuristics for the weighted matching problem. Networks 1983, 13, 475–493. [CrossRef]

43. Beasley, J.E. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 1990, 41, 1069–1072.
[CrossRef]

44. Eshelman, L.J. The CHC adaptive search algorithm: How to have safe search when engaging in nontraditional
genetic recombination. In Foundations of Genetic Algorithms; Morgan Kaufmann: Burlington, MA, USA, 1991;
pp. 265–283.

45. Alba, E.; Luque, G.; Araujo, L. Natural language tagging with genetic algorithms. Inf. Process. Lett. 2006,
100, 173–182. [CrossRef]

46. Cordón, O.; Damasb, S.; Santamaría, J. Feature-based image registration by means of the CHC evolutionary
algorithm. Image Vis. Comput. 2006, 24, 525–533. [CrossRef]

47. Guerra-Salcedo, C.; Whitley, D. Genetic Search for Feature Subset Selection: A Comparison Between CHC
and GENESIS. In Proceedings of the Third Annual Conference on Genetic Programming; Morgan Kaufmann:
Burlington, MA, USA, 1998; pp. 504–509.

48. Nebro, A.J.; Alba, E.; Molina, G.; Chicano, F.; Luna, F.; Durillo, J.J. Optimal antenna placement using a new
multi-objective CHC algorithm. In Proceedings of the 9th Annual Conference on Genetic and Evolutionary
Computation, London, UK, 7–11 July 2007; pp. 876–883.

49. Tsutsui, S.; Goldberg, D.E. Search space boundary extension method in real-coded genetic algorithms.
Inf. Sci. 2001, 133, 229–247. [CrossRef]

50. Yoon, Y.; Kim, Y.H.; Moraglio, A.; Moon, B.R. A Theoretical and Empirical Study on Unbiased Boundary-
extended Crossover for Real-valued Representation. Inf. Sci. 2012, 183, 48–65. [CrossRef]

51. Pinch, R.G.E. The distance of a permutation from a subgroup of Sn. arXiv 2005, arXiv:math/0511501.

52. Kim, Y.H.; Moraglio, A.; Kattan, A.; Yoon, Y. Geometric generalisation of surrogate model-based optimisation
to combinatorial and program spaces. Math. Probl. Eng. 2014, 2014, 184540. [CrossRef]

http://dx.doi.org/10.1016/j.tcs.2011.08.015
http://dx.doi.org/10.1162/106365602760972749
http://dx.doi.org/10.1162/evco.2007.15.4.445
http://dx.doi.org/10.1109/TEVC.2007.913699
http://dx.doi.org/10.1002/nav.3800020109
http://dx.doi.org/10.1002/net.3230130404
http://dx.doi.org/10.1057/jors.1990.166
http://dx.doi.org/10.1016/j.ipl.2006.07.002
http://dx.doi.org/10.1016/j.imavis.2006.02.002
http://dx.doi.org/10.1016/S0020-0255(01)00087-1
http://dx.doi.org/10.1016/j.ins.2011.07.013
http://dx.doi.org/10.1155/2014/184540


Mathematics 2020, 8, 513 16 of 16

53. Nam, Y.W.; Kim, Y.H. Automatic jazz melody composition through a learning-based genetic algorithm.
In Proceedings of the 8th International Conference on Computational Intelligence in Music, Sound, Art and
Design (EvoMUSART), Leipzig, Germany, 24–26 April 2019; Lecture Notes in Computer Science. Springer:
Berlin, Germany; Volume 11453, pp. 217–233.

54. Lee, J.; Kim, Y.H. Epistasis-based basis estimation method for simplifying the problem space of an
evolutionary search in binary representation. Complexity 2019, 2019, 2095167. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1155/2019/2095167
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Representation and Space of Solution to MKCP
	Normalization in MKCP
	Preserving Feasibility
	Normalization for Improving Solution Quality

	Experiments
	Test Sets and Test Environments
	Effect of Normalization on a Crossover
	Performance of GAs with Normalization Methods

	Conclusions
	References

