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Abstract: The purpose of this paper is to define generalized (αβ-ψ)-contraction in the context of
F -metric space and obtain some new fixed point results. As applications, we solve a nonlinear
neutral differential equation with an unbounded delay ϑ/(ι) = −ρ1(ι)ϑ(ι) + ρ2(ι)L(ϑ(ι− ς(ι))) +

ρ3(ι)ϑ
/(ι− ς(ι)), where ρ1(ι), ρ2(ι) are continuous, ρ3(ι) is continuously differentiable and ς(ι) > 0,

for all ι ∈ R and is twice continuously differentiable.
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1. Introduction and Preliminaries

In 1906, M. Frechet introduced the notion of metric space [1], which is one pillar of not only
mathematics but also physical sciences. Because of its importance and simplicity, this notion has been
extended, improved and generalized in many different ways.

In 2018, Jleli et al. [2] introduced a fascinating generalization of metric space as follows:
Let f ∈ F and f : (0,+∞)→ R be such that:

(F1) 0 < ϑ < θ =⇒ f (ϑ) ≤ f (θ),
(F2) for {ϑn} ⊆ R+, limn→∞ ϑn = 0⇐⇒ limn→∞ f (ϑn) = −∞.

Definition 1 ([2]). Let M be a nonempty set, and let dF : M×M → [0,+∞) be a given mapping.
Suppose that there exists ( f , h) ∈ F × [0,+∞) such that

(D1) (ϑ, θ) ∈ M×M, dF (ϑ, θ) = 0⇐⇒ ϑ = θ.
(D2) dF (ϑ, θ) = dF (θ, ϑ), for all (ϑ, θ) ∈ M×M,
(D3) for every (ϑ, θ) ∈ M×M, N ∈ N, N ≥ 2, and (ϑi)

N
i=1 ⊂M, with (ϑ1, ϑN) = (ϑ, θ), we get

dF (ϑ, θ) > 0 implies f (dF (ϑ, θ)) ≤ f (
N−1

∑
i=1

dF (ϑi, ϑi+1)) + h.

Then dF is said to be an F -metric onM, and the pair (M, dF ) is said to be an F -metric space.
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Remark 1. They showed that any metric space is an F -metric space but the converse is not true in general,
which confirms that this concept is more general than the standard metric concept.

Example 1 ([2]). The set of real numbers R is an F -metric Space if we define dF by

dF (ϑ, θ) =

{
(ϑ− θ)2 if (ϑ, θ) ∈ [0, 3]× [0, 3]
|ϑ− θ| if (ϑ, θ) 6∈ [0, 3]× [0, 3]

with f (ι) = ln(ι) and h = ln(3).

Definition 2 ([2]). Let (M, dF ) be an F -metric space.
(i) Let {ϑn} be a sequence inM. We say that {ϑn} is F -convergent to ϑ ∈ M if {ϑn} is convergent to ϑ

with respect to the F -metric dF .
(ii) A sequence {ϑn} is F -Cauchy, if

lim
n,m→∞

dF (ϑn, ϑm) = 0.

(iii) We say that (M, dF ) is F -complete, if every F -Cauchy sequence inM is F -convergent to a certain
element inM.

Theorem 1 ([2]). Let (M, dF ) be an F -metric space andH :M→M be a given mapping. Suppose that the
following conditions are satisfied:

(i) (M, dF ) is F -complete,
(ii) there exists k ∈ (0, 1) such that

dF (H(ϑ),H(θ)) ≤ kdF (ϑ, θ).

Then there exists ϑ∗ ∈ M such that Hϑ∗ = ϑ∗ which is unique. Furthermore, for ϑ0 ∈ M,
{ϑn} ⊂ M given by

ϑn+1 = H(ϑn),

for all n ∈ N, is F -convergent to ϑ∗.
Afterwards, Hussain et al. [3] considered the notion of α-ψ-contraction in the setting of F -metric

spaces and proved the following fixed point theorem.

Theorem 2 ([3]). Let (M, dF ) be an F -metric space and H : M → M be β-admissible mapping.
Suppose that the following conditions are satisfied: (i) (M, dF ) is F -complete,

(ii) there exists β :M×M→ [0,+∞) and ψ ∈ Ψ such that

β(ϑ, θ)dF (H(ϑ),H(θ)) ≤ ψ(M(ϑ, θ)),

where
M(ϑ, θ) = max{dF (ϑ, θ), dF (ϑ,Hϑ), dF (θ,Hθ)},

for all ϑ, θ ∈ M,
(iii) there exists ϑ0 ∈ M such that β(ϑ0,H(ϑ0)). Then there exists unique ϑ∗ ∈ M such thatHϑ∗ = ϑ∗.

For more details in this direction, we refer the readers to References [4–10].
On the other hand, Samet et al. [11] introduced the concepts of α-ψ-contractive and α-admissible

mappings and established various fixed point theorems for such mappings in complete metric spaces.
Denote with Ψ the family of nondecreasing functions ψ : [0,+∞) → [0,+∞) such that

∑∞
n=1 ψn(ϑ) < +∞ for all ϑ > 0, where ψn is the n-th iterate of ψ.

The following lemma is well known.
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Lemma 1. If ψ ∈ Ψ, then the following hold:
(i) (ψn(ϑ))n∈N converges to 0 as n→ ∞ for all ϑ ∈ (0,+∞),
(ii) ψ(ϑ) < ϑ for all ϑ > 0,
(iii) ψ(ϑ) = 0 iff ϑ = 0.

Samet et al. [11] defined the notion of α-admissible mappings as follows:

Definition 3 ([11]). LetH be a self-mapping onM and α :M×M→ [0,+∞) be a function. We say that
H is an α-admissible mapping if

α(ϑ, θ) ≥ 1 =⇒ α(Hϑ,Hθ) ≥ 1,

for all ϑ, θ∈M.

Hussain et al. [12] extended the above notion of α-admissible mapping as follows.

Definition 4 ([12]). LetH be a self-mapping onM and α, β :M×M→ [0,+∞) be two functions. We say
thatH is an α-admissible mapping with respect to β if

α(ϑ, θ) ≥ β(ϑ, θ) =⇒ α(Hϑ,Hθ) ≥ β(Hϑ,Hθ),

for all ϑ, θ∈M.

If β(ϑ, θ) = 1, then Definition 4 reduces to Definition 3.
Later on, the authors (see References [13,14]) utilized the above concepts and obtained different

fixed point results.
In this paper, we define the notion of generalized (αβ-ψ)-contraction and establish some new

fixed point theorems in the context of F -metric spaces. We also furnish a notable example to describe
the significance of established results.

2. Results and Discussions

Definition 5. Let (M, dF ) be an F -metric space and H : M → M. Then H is said to be generalized
(αβ-ψ)-contraction if there exists α, β : M×M→ [0, ∞) and ψ ∈ Ψ such that α(ϑ,Hϑ)α(θ,Hθ) ≥
β(ϑ,Hϑ)β(θ,Hθ) implies

dF (Hϑ,Hθ) ≤ ψ (max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) , (1)

for all ϑ, θ ∈ M.

Theorem 3. Let (M, dF ) be an F -metric space and let H : M → M be generalized (αβ-ψ)-contraction.
Suppose that the following assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping with respect to β,
(iii) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ β(ϑ0,Hϑ0),
(v) either H is continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ β(ϑn, ϑn+1),

then α(ϑ,Hϑ) ≥ β(ϑ,Hϑ).

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Proof. Let ϑ0 ∈M be such that α(ϑ0,Hϑ0) ≥ β(ϑ0,Hϑ0) and construct {ϑn} inM by ϑn+1 = Hnϑ0 =

Hϑn, ∀ n ∈ N. By (ii), we have

α(ϑ0, ϑ1) = α(ϑ0,Hϑ0) ≥ β(ϑ0,Hϑ0) = β(ϑ0, ϑ1).
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Continuing in this way, we get

α(ϑn−1, ϑn) = α(ϑn−1,Hϑn−1) ≥ β(ϑn−1,Hϑn−1) = β(ϑn−1, ϑn), (2)

for all n ∈ N. Then

α(ϑn−1,Hϑn−1)α(ϑn,Hϑn) ≥ β(ϑn−1,Hϑn−1)β(ϑn−1,Hϑn−1), (3)

for all n ∈ N. Clearly, if there exists n0 = 1, 2, ... for which ϑn0+1 = ϑn0 , thenHϑn0 = ϑn0 and the proof
is completed. Hence, we suppose that ϑn+1 6= ϑn or dF (Hϑn−1,Hϑn) > 0 for every n ∈ N. Now asH
is generalized (αβ-ψ)-contraction, so we have

dF (ϑn, ϑn) = dF (Hϑn−1,Hϑn)

≤ ψ (max {dF (ϑn−1, ϑn), min {dF (ϑn−1,Hϑn−1), dF (ϑn,Hϑn)}}) ,

for all n ∈ N. Now if dF (ϑn−1,Hϑn−1) < dF (ϑn,Hϑn), then

max {dF (ϑn−1, ϑn), min {dF (ϑn−1,Hϑn−1), dF (ϑn,Hϑn)}} = dF (ϑn−1, ϑn),

for all n ∈ N. If dF (ϑn,Hϑn) < dF (ϑn−1,Hϑn−1), then

max {dF (ϑn−1, ϑn), min {dF (ϑn−1,Hϑn−1), dF (ϑn,Hϑn)}} = dF (ϑn−1, ϑn),

for all n ∈ N. Thus in all case, we have

dF (ϑn, ϑn) ≤ ψ (dF (ϑn−1, ϑn)) , (4)

for all n ∈ N. Continuing in this way, we get

dF (ϑn, ϑn) ≤ ψn (dF (ϑ0, ϑ1)) , (5)

for all n ∈ N. Suppose f ∈ F and h ∈ [0,+∞) are such that the assertion (D3) hold and suppose ε > 0.
Now from (F2), there exists δ > 0 such that

0 < ι < δ =⇒ f (ι) < f (δ)− h. (6)

Let n(ε) ∈ N be such that 0 < ∑n≥n(ε) ψn(dF (ϑ0, ϑ1)) < δ. Hence, by (5), (F1) and (F2), we have

f (
m−1

∑
i=n

dF (ϑi, ϑi+1)) ≤ f (
m−1

∑
i=n

ψi(dF (ϑ0, ϑ1))) ≤ f ( ∑
n≥n(ε)

ψn(dF (ϑ0, ϑ1))) < f (ε)− h, (7)

for m > n ≥ n(ε). Using (D3) and (7), we obtain dF (ϑn, ϑm) > 0, m > n ≥ n(ε) implies

f (dF (ϑn, ϑm)) ≤ f (
m−1

∑
i=n

dF (ϑi, ϑi+1)) + h < f (ε).

By (F1), we have dF (ϑn, ϑm) < ε, m > n ≥ n(ε). This proves that {ϑn} is F -Cauchy.
Since (M, dF ) is F -complete, so ∃ ϑ∗ ∈ M such that

lim
n→∞

dF (ϑn, ϑ∗) = 0. (8)
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Secondly as ϑn → ϑ∗ and α(ϑn, ϑn+1) ≥ β(ϑn, ϑn+1), then α(ϑ∗,Hϑ∗) ≥ β(ϑ∗,Hϑ∗). Thus

α(ϑ∗,Hϑ∗)α(ϑn,Hϑn) ≥ β(ϑ∗,Hϑ∗)β(ϑn,Hϑn).

We start with contradiction by supposing that dF (H(ϑ∗), ϑ∗) > 0. By (F1) and (D3), we get

f (dF (H(ϑ∗), ϑ∗)) ≤ f (dF (H(ϑ∗),H(ϑn)) + dF (H(ϑn), ϑ∗)) + h

≤ f (dF (H(ϑ∗),H(ϑn)) + dF (H(ϑn), ϑ∗)) + h.

By (1), we have

f (dF (H(ϑ∗), ϑ∗)) ≤ f (dF (H(ϑ∗),H(ϑn)) + dF (H(ϑn), ϑ∗)) + h

≤ f (ψ (max{dF (ϑ∗, ϑn), min(dF (ϑ∗,H(ϑ∗)), dF (ϑn,H(ϑn))})
+dF (ϑn+1, ϑ∗)) + h,

= f (ψ (max{D(ϑ∗, ϑn), min(dF (ϑ∗,H(ϑ∗)), dF (ϑn, ϑn+1))})
+dF (ϑn+1, ϑ∗)) + h,

for all n ∈ N. Letiing n→ ∞ and using (F2) and (8), we get

lim
n→∞

f (dF (H(ϑ∗), ϑ∗)) ≤ lim
n→∞

f (dF (ϑ∗, ϑn) + D(ϑn+1, ϑ∗)) + h = −∞.

This implies that dF (H(ϑ∗), ϑ∗) = 0, which is a contradiction.
Thus dF (H(ϑ∗), ϑ∗) = 0, that is, H(ϑ∗) = ϑ∗. As consequence, ϑ∗ ∈ M is the fixed point

ofH.

Example 2. LetM = R endowed with F -metric dF given by

dF (ϑ, θ) =

{
e|ϑ−θ|, if ϑ 6= θ

0, if ϑ = θ.

Then (M,dF ) is F -complete F -metric space with f (ι) = −1
ι and h = 1. Define H : M → M and

α, β :M×M→ [0, ∞) by

H(ϑ) =


3ϑ, if ϑ > 1

ϑ
4 , if 0 ≤ ϑ ≤ 1

0, otherwise

and

α(ϑ, θ) = β(ϑ, θ) =

{
1, if ϑ, θ∈[0, 1]
0, otherwise.

Clearly,H is generalized (αβ-ψ)-contraction mapping with ψ(ϑ) = ϑ
2 for all ϑ ≥ 0 that is

dF (Hϑ,Hθ) ≤ ψ (max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) .

Moreover, there exists ϑ0 ∈ M such that α(ϑ0,Hϑ0) = 1 = β(ϑ0,Hϑ0) and H is an α-admissible
mapping with respect to β. Thus all the hypotheses of Theorem 3 are satisfied. ConsequentlyH0 = 0.

Corollary 1. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
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(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

α(ϑ,Hϑ)α(θ,Hθ) ≥ 1 =⇒ dF (Hϑ,Hθ) ≤ ψ (max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) ,

(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,

then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Proof. Consider β :M×M→ [0,+∞) as β(ϑ, θ) = 1 for all ϑ, θ∈M in Theorem 3.

The following corollaries are direct consequences of Theorem 3.

Corollary 2. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

(dF (Hϑ,Hθ) + l)α(ϑ,Hϑ)α(θ,Hθ) ≤ ψ (max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) + l,

where l > 0,
(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1, then

α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 3. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

(α(ϑ,Hϑ)α(θ,Hθ) + 1)dF (Hϑ,Hθ) ≤ 2ψ(max{dF (ϑ,θ),min{dF (ϑ,Hϑ),dF (θ,Hθ)}}),

(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,

then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 4. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

α(ϑ,Hϑ)α(θ,Hθ)dF (Hϑ,Hθ) ≤ k max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}} ,

(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
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(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,
then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.
If α(ϑ, θ) = 1, then we have the following corollaries.

Corollary 5. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an β-subadmissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

β(ϑ,Hϑ)β(θ,Hθ) ≤ 1 =⇒ dF (Hϑ,Hθ) ≤ ψ (max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) ,

(iv) there exists ϑ0 ∈M such that β(ϑ0,Hϑ0) ≤ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, β(ϑn, ϑn+1) ≤ 1,

then β(ϑ,Hϑ) ≤ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 6. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold: (i) (M, dF ) is F -complete,

(ii)H is an β-subadmissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

dF (Hϑ,Hθ) + l ≤ [ψ (max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) + l]β(ϑ,Hϑ)β(θ,Hθ) ,

where l > 0,
(iv) there exists ϑ0 ∈M such that β(ϑ0,Hϑ0) ≤ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, β(ϑn, ϑn+1) ≤ 1,

then β(ϑ,Hϑ) ≤ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 7. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an β-subadmissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

2dF (Hϑ,Hθ) ≤ (β(ϑ,Hϑ)β(θ,Hθ) + 1)ψ(max{dF (ϑ,θ),min{dF (ϑ,Hϑ),dF (θ,Hθ)}}) ,

(iv) ∃ ϑ0 ∈M such that β(ϑ0,Hϑ0) ≤ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, β(ϑn, ϑn+1) ≤ 1,

then β(ϑ,Hϑ) ≤ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 8. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an β-subadmissible mapping,
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(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

dF (Hϑ,Hθ) ≤ ψ (β(ϑ,Hϑ)β(θ,Hθ)max {dF (ϑ, θ), min {dF (ϑ,Hϑ), dF (θ,Hθ)}}) ,

(iv) there exists ϑ0 ∈M such that β(ϑ0,Hϑ0) ≤ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, β(ϑn, ϑn+1) ≤ 1,

then β(ϑ,Hϑ) ≤ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 9. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(ii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

α(ϑ,Hϑ)α(θ,Hθ) ≥ 1 =⇒ dF (Hϑ,Hθ) ≤ ψ (dF (ϑ, θ)) ,

(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,

then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 10. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(ii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

(α(ϑ,Hϑ)α(θ,Hθ) + 1)dF (Hϑ,Hθ) ≤ 2ψ(dF (ϑ,θ)),

(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,

then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 11. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(iii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

α(ϑ,Hϑ)α(θ,Hθ)dF (Hϑ,Hθ) ≤ ψ (dF (ϑ, θ)) ,

(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,

then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.
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Corollary 12 ([3]). Let (M, dF ) be a an F -metric space and let H : M→M is continuous. Assume that
the following assertions hold:

(i) (M, dF ) is F -complete,
(ii) if for ϑ, θ ∈M and ψ ∈ Ψ such that

dF (Hϑ,Hθ) ≤ ψ (dF (ϑ, θ)) .

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Proof. Taking α(ϑ, θ) = 1, for all ϑ, θ ∈ M in the Corollary 11.

Corollary 13. Let (M, dF ) be a an F -metric space and let H : M → M. Assume that the following
assertions hold:

(i) (M, dF ) is F -complete,
(ii)H is an α-admissible mapping,
(iii) if there exists k ∈ (0, 1) such that

α(ϑ,Hϑ)α(θ,Hθ)dF (Hϑ,Hθ) ≤ kdF (ϑ, θ),

for all ϑ, θ ∈M
(iv) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(v) either H is an continuous or if {ϑn} is a sequence in M such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1,

then α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 14 ([2]). Let (M, dF ) be a an F -metric space and let H : M → M be a continuous mapping.
Assume that the following assertions hold:

(i) (M, dF ) is F -complete,
(ii) if there exists k ∈ (0, 1) such that

dF (Hϑ,Hθ) ≤ kdF (ϑ, θ),

for all ϑ, θ ∈M.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Proof. Taking α(ϑ, θ) = 1, for all ϑ, θ ∈ M in the Corollary 13.

3. Consequences

The following results are direct consequences of main results by taking f (ι) = ln(ι) and h = ln(1).

Theorem 4. Let (M, d) be a complete metric space and let H : M → M. Suppose that the following
assertions hold:

(i) there exist two functions α, β : M×M→ [0, ∞) and k ∈ [0, 1) such that α(ϑ,Hϑ)α(θ,Hθ) ≥
β(ϑ,Hϑ)β(θ,Hθ) implies

d(Hϑ,Hθ) ≤ k max {d(ϑ, θ), min {d(ϑ,Hϑ), d(θ,Hθ)}}

(ii)H is an α-admissible mapping with respect to β,
(iii) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ β(ϑ0,Hϑ0),
(iv) eitherH is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ β(ϑn, ϑn+1),

then α(ϑ,Hϑ) ≥ β(ϑ,Hϑ).
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Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Proof. Taking ψ(ι) = kι, where k ∈ [0, 1) in Theorem 3.

Corollary 15. Let (M, d) be a complete metric space and let H : M → M. Assume that the following
assertions hold:

(i)H is an α-admissible mapping,
(ii) if for ϑ, θ ∈M such that α(ϑ,Hϑ)α(θ,Hθ) ≥ 1 implies

d(Hϑ,Hθ) ≤ k max {d(ϑ, θ), min {d(ϑ,Hϑ), d(θ,Hθ)}} ,

(iii) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(iv) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1, then

α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Proof. Taking β(ϑ, θ) = 1 in above corollary.

Example 3. LetM = [0, ∞) be endowed with the usual metric d(ϑ, θ) = |ϑ− θ| for all ϑ, θ ∈ M and let
H :M→M be defined byHϑ = ϑ

4 . Also, define α :M×M→ [0, ∞) by α(ϑ, θ) = 3 and ∃k = 1
2 ∈ (0, 1).

Clearly,H is an α-admissible mapping. Also, α(ϑ,Hϑ)α(θ,Hθ) = 9 ≥ 1 for all ϑ, θ ∈ M. Hence

d(Hϑ,Hθ) =
1
4
|ϑ− θ| ≤ 1

2
max

{
|ϑ− θ|, min

{
|ϑ− ϑ

4
|, |θ − θ

4
|
}}

.

Then the conditions of Corollary 15 hold andH has a fixed point which is 0.

Corollary 16. Let (M, d) be a complete metric space and let H : M → M. Assume that the following
assertions hold:

(i)H is an α-admissible mapping,
(ii) if for ϑ, θ ∈M such that

(d(Hϑ,Hθ) + l)α(ϑ,Hϑ)α(θ,Hθ) ≤ k max {d(ϑ, θ), min {d(ϑ,Hϑ), d(θ,Hθ)}}+ l,

where l > 0,
(iii) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(iv) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1, then

α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 17. Let (M, d) be a complete metric space and let H : M → M. Assume that the following
assertions hold:

(i)H is an α-admissible mapping,
(ii) if for ϑ, θ ∈M such that

(α(ϑ,Hϑ)α(θ,Hθ) + 1)d(Hϑ,Hθ) ≤ 2k max{d(ϑ,θ),min{d(ϑ,Hϑ),d(θ,Hθ)}},

(iii) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(iv) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1, then

α(ϑ,Hϑ) ≥ 1.
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Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 18. Let (M, d) be a complete metric space and let H : M → M. Assume that the following
assertions hold:

(i)H is an α-admissible mapping,
(ii) if for ϑ, θ ∈M such that

α(ϑ,Hϑ)α(θ,Hθ)d(Hϑ,Hθ) ≤ k max {d(ϑ, θ), min {d(ϑ,Hϑ), d(θ,Hθ)}} ,

(iii) there exists ϑ0 ∈M such that α(ϑ0,Hϑ0) ≥ 1,
(iv) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, α(ϑn, ϑn+1) ≥ 1, then

α(ϑ,Hϑ) ≥ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.
If α(ϑ, θ) = 1, then we have the following corollaries.

Corollary 19. Let (M, d) be a complete metric space and let H : M → M. Assume that the following
assertions hold:

(i)H is an β-subadmissible mapping,
(ii) if for ϑ, θ ∈M such that β(ϑ,Hϑ)β(θ,Hθ) ≤ 1 implies

d(Hϑ,Hθ) ≤ k max {d(ϑ, θ), min {d(ϑ,Hϑ), d(θ,Hθ)}} ,

(iii) there exists ϑ0 ∈M such that β(ϑ0,Hϑ0) ≤ 1,
(iv) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, β(ϑn, ϑn+1) ≤ 1, then

β(ϑ,Hϑ) ≤ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Corollary 20. Let (M, d) be a complete metric space and let H : M → M. Assume that the following
assertions hold:

(i)H is an β-subadmissible mapping,
(ii) if for ϑ, θ ∈M such that

d(Hϑ,Hθ) + l ≤ [k max {d(ϑ, θ), min {d(ϑ,Hϑ), d(θ,Hθ)}}+ l]β(ϑ,Hϑ)β(θ,Hθ) ,

where l > 0.
(iii) there exists ϑ0 ∈M such that β(ϑ0,Hϑ0) ≤ 1,
(iv) either H is an continuous or if {ϑn} is a sequence inM such that ϑn → ϑ, β(ϑn, ϑn+1) ≤ 1, then

β(ϑ,Hϑ) ≤ 1.

Then there exists ϑ∗ ∈ M such that ϑ∗ = Hϑ∗.

Remark 2. One can easily derive the main results of References [11] and [15] from our Corollaries 11 and 14
respectively by taking f (ι) = ln(ι) and h = ln(1).

4. Applications

In the present section, we solve the following differential equation

ϑ/(ι) = −ρ1(ι)ϑ(ι) + ρ2(ι)L(ϑ(ι− ς(ι))) + ρ3(ι)ϑ
/(ι− ς(ι)). (9)

The lemma of Djoudi et al. [16] is very handy in the proof our theorem.
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Lemma 2 ([16]). Suppose that ς/(ι) 6= 1 ∀ι ∈ R. Then ϑ(ι) is a solution of (9) iff

ϑ(ι) =

(
ϑ(0)− ρ3(0)

1− ς/(0)
ϑ(−ς(0))

)
ρ−

∫ ι
0 α(ς)dς +

ρ3(ι)

1− ς/(ι)
ϑ(ι− ς(ι))

−
∫ ι

0
(h(ω))ϑ(ω− ς(ω)))− ρ2(ω)L (ϑ(ω− ς(ω)))) ρ−

∫ ι
ω α(ς)dςdω, (10)

where

h(ω) =
ς//(ω)ρ3(ω) +

(
ρ/

3 (ω) + ρ3(ω)ρ1(ω)
)
(1− ς/(ω))

(1− ς/(ω))2 . (11)

Now assume that φ : (−∞, 0] → R is a continuous bounded initial function, then ϑ(ι) = ϑ(ι, 0, φ) is
a solution of (9) if ϑ(ι) = φ(ι) for ι ≤ 0 and assures (9) for ι ≥ 0. Assume C be the collection of π : R → R
which are continuous functions. Define Bφ by

Bφ = {π : R→ R such that φ(ι) = π(ι) if t ≤ 0, π(ι)→ 0 as ι→ ∞, π ∈ C} .

Then Bφ is a Banach space equipped with the supremum norm ‖·‖.

Lemma 3 ([3]). The space (Bφ, ‖ · ‖) provided with d given by

d(ι, ι∗) = ||ι−ι∗|| = sup
ϑ∈I
|ι(ϑ)− ι∗(ϑ)|

for ι, ι∗ ∈ Bφ, is an F -metric space.

Theorem 5. LetH : Bφ → Bφ be a mapping defined by

(Hπ)(ι) =

(
π(0)− ρ3(0)

1− ς/(0)
π(−ς(0))

)
ρ−

∫ ι
0 α(ς)dς +

ρ3(ι)

1− ς/(ι)
π(ι− ς(ι))

−
∫ ι

0
(h(ω)π(ω− ς(ω))− ρ2(ω)L (π(ω− ς(ω))))ρ−

∫ ι
ω α(ς)dςdω, ι ≥ 0 (12)

for all π ∈ Bφ . Assume that these assertions are satisfied:
(i) there exists µ ≥ 0 and φ ∈ Ψ so that∫ ι

0
|h(ω)(π(ω− ς(ω)))− $(ω− ς(ω))|ρ−

∫ ι
ω α(ς)dς

≤ µ

2
φ (max {‖π − $‖ , min {‖π −Hπ‖ , ‖$−H$‖}}) (13)

and ∫ ι

0
|(ρ2(ω))L(π(ω− ς(ω)))−L($(ω− ς(ω)))|ρ−

∫ ι
ω α(ς)dς

≤ µ

2
φ (max {‖π − $‖ , min {‖π −Hπ‖ , ‖$−H$‖}}) (14)

for all π, $ ∈ Bφ.
(ii) ThenH has a fixed point.

Proof. Define α : C× C→ R by

α(π, $) = β(π, $) =

{
1, if π, $ ∈ Bφ,
0, otherwise.
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Now for π, $ ∈ Bφ such that α(π, $) = β(π, $) ≥ 1. It follows from (12) that H(π),H($) ∈ Bφ.
Therefore α(H(π),H($)) = β(H(π),H($)) ≥ 1. Since, (13)–(15) hold, then for π, $ ∈ Bφ , we have

|(Hπ)(ι)− (H$)(ι)| ≤
∣∣∣∣ ρ3(ι)

1− ς/(ι)

∣∣∣∣ ‖π − $‖

+
∫ ι

0
|h(ω)(π(ω− ς(ω)))− $(ω− ς(ω))|ρ−

∫ ι
ω α(ς)dς

∫ ι

0
|(ρ2(ω))L(π(ω− ς(ω)))−L($(ω− ς(ω)))|ρ−

∫ ι
ω α(ς)dς

≤
∣∣∣∣ ρ3(ι)

1− ς/(ι)

∣∣∣∣ ‖π − $‖+ µφ (max {‖π − $‖ , min {‖π −Hπ‖ , ‖$−H$‖}})

≤
{∣∣∣∣ ρ3(ι)

1− ς/(ι)

∣∣∣∣+ µ

}
φ (max {‖π − $‖ , min {‖π −Hπ‖ , ‖$−H$‖}})

≤ φ (max {‖π − $‖ , min {‖π −Hπ‖ , ‖$−H$‖}}) .

Hence,
dF (Hπ,H$) ≤ ψ (max {dF (π, $), min {dF (π,Hπ), dF ($,H$)}})

implies thatH is generalized (αβ-ψ)-contraction. Thus by Theorem 3,H has a unique fixed point in
Bφ which solves (9).

5. Conclusions

In this paper, we defined generalized (αβ-ψ)-contraction in the setting of F -metric space and
obtained some new fixed point results. As consequence of main results, we derived some fixed point
results in metric spaces. We investigated the existence of solution for the following nonlinear neutral
differential equation with an unbounded delay as application of our main results.
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