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Abstract: In this study, a new approach for time series modeling and prediction, “deep assessment
methodology,” is proposed and the performance is reported on modeling and prediction for upcoming
years of Gross Domestic Product (GDP) per capita. The proposed methodology expresses a function
with the finite summation of its previous values and derivatives combining fractional calculus and
the Least Square Method to find unknown coefficients. The dataset of GDP per capita used in this
study includes nine countries (Brazil, China, India, Italy, Japan, the UK, the USA, Spain and Turkey)
and the European Union. The modeling performance of the proposed model is compared with the
Polynomial model and the Fractional model and prediction performance is compared to a special
type of neural network, Long Short-Term Memory (LSTM), that used for time series. Results show
that using Deep Assessment Methodology yields promising modeling and prediction results for GDP
per capita. The proposed method is outperforming Polynomial model and Fractional model by 1.538%
and by 1.899% average error rates, respectively. We also show that Deep Assessment Method (DAM)
is superior to plain LSTM on prediction for upcoming GDP per capita values by 1.21% average error.

Keywords: deep assessment; fractional calculus; least squares; modeling; GDP per capita;
prediction; LSTM

1. Introduction

In the last quarter of the century, the data exchange with not only person to person but also, machine
to machine has increased tremendously. Developments in technology and informatics in parallel
with the development of data science lead the companies, institutions, universities and especially,
the countries to give priority to evaluating produced data and predicting what can be forthcoming.
The modeling of all technical, economic, social events and data has been the interest of scientists
for many years [1–4]. Many authors have been investigating the modeling and predicting events,
options, choices and data. Especially, there is a huge research interest in finding any relation between
telecommunication, economic growth and financial development [5–12]. One of the approaches to
model a physical phenomenon or a mathematical study is to model the dependent variable satisfying
differential equation with respect to the independent variable. However, the differential equations with
an integer-order proposed for mathematical economics or data modeling cannot describe processes
with memory and non-locality because the integer-order derivatives have the property of the locality.
On the other hand, the fractional-order differential equation is a branch of mathematics that focuses on
fractional-order differential and integral operators and can be used to address the limitations of integer
order differential models. Using the fractional calculus or converting the integer-order differential
equation into the non-integer order differential equations lead to a very essential advantage which is
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memory property of the fractional-order derivative. This is very crucial for models related to economics
which in general, deal with the past and the effect of the past and now on future [12,13]. The memory
capability of the fractional differential approach is the foundation of our motivation.

Fractional calculus (FC) as a question to Wilhelm Leibniz (1646–1716) first arose in 1695 from
French Mathematician Marquis de L’Hopital (1661–1704) [11]. The main question of interest was what
if the order of derivative were a real number instead of an integer. After that, the FC idea has been
developed by many mathematicians and researchers throughout the eighteenth and nineteenth centuries.
Now, there exist several definitions of the fractional-order derivative, including Grünwald-Letnikov,
Riemann-Liouville, Weyl, Riesz and the Caputo representation. The fractional approach is used in
many studies because the fractional derivative represents the intermediate states between two known
states. For example, zero order-derivative of the function means the function itself while the first-order
derivative represents the first derivative of the function. Between these known states, there are infinite
intermediate states [11]. The use of semi-derivatives and integrals in the mass and heat transfer become
an important instant in the field of fractional calculus due to employing the mathematical definitions
into physical phenomena [12,13]. In the last decade, using fractional operators which explain the
events, situations or modes between two different stages or the phenomena with memory provide
more accurate models in many branches of science and engineering including chemistry, biology,
biomedical devices, nanotechnology, diffusion, diffraction and economics [12–31]. In References [25–31],
the modeling and comparison of the countries and trends in the sense of economics and its parameters
are implemented. In References [25,26], economic processes with memory are discussed and modeling
is obtained by using the fractional calculus. The studies with similar purposes as we aim such as
modeling or prediction exist. In these studies, the fractional calculus is employed to model the
given dataset and to predict for the forthcoming. In Reference [28], the orthogonal distance fitting
method is used. The study is trying to minimize the sum of the orthogonal distance of data points
in order to obtain an optimized continuous curve representing the data points. In Reference [32],
the one-parameter fractional linear prediction is studied using the memory of two, three or four
samples, without increasing the number of predictor coefficients defined in the study. In Reference [33],
the generalized formulation of the optimal low-order linear prediction by using the fractional calculus
approach is developed with restricted memory. All these studies focus on modeling or prediction for a
phenomenon with fractional calculus. Also, in our previous studies, methods based on FC that works
for modeling were introduced. In these studies, the children’s physical growth, subscriber’s numbers
of operators, GDP per capita were modeled and compared with other modeling approaches such as
Fractional Model-1 and Polynomial Models [34–36]. According to the results, proposed fractional
models had better results compared to the results obtained from Linear and Polynomial Models [34–36].
Our previous works do not take into account the previous values of the dataset for any time instant.
Their purpose is to model the dataset with minimum error and faster way compared with classical
methods such as Polynomial and Linear Regression.

In this study, we extend our prior works by predicting the next incoming values as well as
modeling the data itself. We introduce a new mathematical model, namely “Deep Assessment,”
based on the fractional differential equation for modeling and prediction by using the properties of
fractional calculus. Different to the literature and our early studies mentioned above, this model can
be used for prediction as well as modeling. The proposed approach is built on the fractional-order
differential equation and corresponding Laplace transform properties are utilized. Here, the modeling
is implemented with mathematical tools similar to those developed in the previous study [4] with
a different approach in which the finite numbers of previous values and the derivatives are taken
into account. Then, the prediction is obtained by assuming a value in a specific time can be expressed
as the summation of the previous values weighted by unknown coefficients and the function to be
modeled is continuous and differentiable. In this way, the proposed method takes previous values and
variation rates between different time samples (derivative) of the dataset into account while modeling
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the data itself and predicting upcoming values. Combining the previous values with the variations
weighted by the unknown coefficients lead to calling the method “deep assessment.”

In this study, we assessed the proposed method by the modeling, testing and predicting GDP
per capita of the following countries and the European Union: Brazil, China, European Union, India,
Italy, Japan, the UK, the USA, Spain and Turkey. GDP per capita is a measure of a country’s total
economic output divided by the number of the population of the country. In general, it is a reasonable
and good measurement of a country’s living quality and standard [37]. Therefore, the modeling of
GDP per capita is crucial and predicting GDP per capita is very essential not only for researchers but
also for companies, investors, manufacturers and institutions. To assess the performance of Deep
Assessment in modeling, we compare the proposed model with Polynomial Regression and Fractional
Model-1 [34]. Besides, in the same way, for the prediction, we compared the model with Long-Short
Term Memory (LSTM), a special type of neural networks used in time series problems.

The structure of the study is the following. Section 2 explains the formulation of the problem.
After that, Section 3, namely Our Approach, is devoted to explaining how to obtain modeling, simulation,
testing and prediction. Then, in Section 4, the results are presented. Lastly, Section 5 highlights the
conclusion of the study.

2. Formulation of the Problem

In this section, the mathematical foundation of the proposed method is given. Before going
into the mathematical manipulations, it is better to explain the approach and the main steps for the
formulation. The study aims to model and then, to predict GDP per capita data at any time t by using
the previous GDP per capita values of the countries. Here, we assume that countries’ historical data
and the change of these data over time create an eco-genetics for the forthcoming. In other words,
mathematically, GDP per capita at a time t is assumed to be the summation of both its previous
values and the changes in time with unknown constant coefficients. In the second stage, we express
a function for the GDP per capita as a series expansion by using Taylor expansion of a continuous
and bounded function. Then, the differential equation obtained from this series expansion is defined.
After that, the unknown constant coefficients are found by the least-squares method. The method aims
to minimize the error between the proposed GDP per capita function and the dataset.

First, it is a reasonable idea to approximate a function g(x) as the finite summation of the
previous values of the same function weighted with unknown coefficients αk and the summation of the
derivatives of the previous values of the same function weighted with unknown coefficients βk because,
intuitively, the recent value of data, in general, is related to and correlated with its previous values
and the change rates. The purpose is to find the upcoming values of any dataset with a minimum
error by employing the previously inherited features of the dataset. As a starting point, an arbitrary
function is assumed to be approximately the finite summation of the previous values and the change
rates weighted with some constant coefficients. To use the heritability of fractional calculus, this
presupposition for modeling of the function itself and predicting future values is done [6,28,34].

g(x) �
∑l

k=1
αkg(x− k) +

∑l

k=1
βkg′(x− k). (1)

Here, g′ is the first derivative of g(x− k)with respect to x. After assuming Equation (1), the function
g(x) can be expanded as the summation of polynomials with unknown constant coefficients, an as
given in Equation (2). Here, g(x) is assumed to be a continuous and differentiable function.

g(x) =
∑
∞

n=0
anxn. (2)
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Then, g(x− k) becomes as Equation (3)

g(x− k) =
∞∑

n=0

an(x− k)n (3)

The final form of g(x) is given as Equation (4).

g(x) �
∑l

k=1
αk

∑
∞

n=0
an(x− k)n +

∑l

k=1
βk

∑
∞

n=0
ann(x− k)n−1. (4)

After combining αkan as akn, βkan as bkn and approximating Equation (4), Equation (5) is obtained.
Here, truncation of ∞ to M is performed. After truncation, the first derivative of g(x) is taken and
given in Equation (6).

g(x) �
l∑

k=1

M∑
n=0

akn(x− k)n +
l∑

k=1

M∑
n=0

bknn(x− k)n−1 (5)

dg(x)
dx

�
∑l

k=1

∑M

n=1
aknn(x− k)n−1 +

∑l

k=1

∑M

n=1
bknn(n− 1)(x− k)n−2. (6)

The expression given in Equation (7) is the definition of Caputo’s fractional derivative [11].
Throughout the study, Caputo’s description of the fractional derivative is employed.

D
γ
x g(x) =

dγg(x)
dxγ

=
1

Γ(n− γ)

∫ x

0

g(n)(k)dk

(x− k)γ−n+1
, (n− 1 < γ < n). (7)

In Equation (7), Γ(1− γ) is the Gamma function, the fractional derivative is taken with respect to x
in the order of γ and g(n) corresponds to the nth derivative again, with respect to x. In our study, n = 1
is assumed and the fractional-order spans between 0 and 1. Here, two expansions are done to express
g(x), approximately. The first one is to express the function as the finite summation of the previous
values of the function. Second, expressing the function g(x) as the summation of polynomials known
as Taylor Expansion assuming that g(x) is a continuous and differentiable function.

Finally, the mathematical background is enough to go further in the proposed methodology.
As a summary, above, we mentioned three important tools. First, a function is expressed as the
summation of its previous samples. Second, Taylor expansion for a continuous and differentiable
function is defined. After that, the Caputo definition of the fractional derivative is given. Now, it is time
to express Deep Assessment Methodology by using fractional calculus for the modeling and prediction.
Apart from above, there is an assumption that the fractional derivative f (x) in the order of γ is equal to
Equation (8). After this assumption, it is required to find unknown f (x) which satisfies the fractional
differential equation below and models the discrete dataset.

dγ f (x)
dxγ

�
∑l

k=1

∑
∞

n=1
aknn(x− k)n−1 +

∑l

k=1

∑
∞

n=1
bknn(n− 1)(x− k)n−2, (8)

where, f (x) stands for the GDP per capita of the countries and x corresponds to the time.
Note that, in (6), allowing the order of the derivation in the left-hand side of Equation (6) to be

non-integer gives a more general model [28]. This generalization is employed in Deep Assessment
Methodology for f (x) which stands for the GDP per capita.

Here, the motivation is to find akn and bkn given in Equation (8). To find the unknowns, the
differential equation needs to be solved. The strategy is as follows—first, it is required to take the
Laplace transform which leads to having an algebraic equation instead of a differential equation.
In other words, the Laplace transform is taken for Equation (8) to reduce the differential equation
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to algebraic equation, then, by using inverse Laplace transform properties, the final form of f (x) is
obtained as Equation (9) [11].

f (x,γ) � f (0) +
∑l

k=1
∑
∞

n=1 aknCkn(x,γ) +
∑l

k=1
∑
∞

n=1 bknDkn(x,γ),
where,

Ckn(x,γ) , Γ(n+1)
Γ(n+γ) (x− k)n+γ−1

Dkn(x,γ) , Γ(n+1)
Γ(n+γ−1) (x− k)n+γ−2.

(9)

To obtain the numerical calculation, the infinite summation of polynomials is approximated as a
finite summation given in Equation (10).

f (x,γ) � f (0) +
∑l

k=1

∑M

n=1
aknCkn(x,γ) +

∑l

k=1

∑M

n=1
bknDkn(x,γ). (10)

Here, f (0), akn and bkn are unknown coefficients that need to be determined. Note that, below,
properties of the Laplace transform (L) are given to find Equations (9) and (10) [11].

L

[
(x− k)n−1

]
=

Γ(n)
sn e−ks and L

[
dγ f (x)

dxγ

]
= sγF(s) − sγ−1 f (0) for 0 < γ < 1.

where, L stands for the Laplace transform and L[ f (x)] = F(s).
For the numerical calculation, the infinite summation is converted into a finite summation, as

given in Equation (10).

3. Our Approach

3.1. Modeling with Deep Assessment

In this part, the methodology for the modeling of the problem is given in detail. To predict the
upcoming years, the problem has four regions as given in Figure 1. Dataset spans in Region 1, 2 and 3.
Note that, there is no data for Region 4 where the prediction is aimed. Region 1 is called “before
modeling region” which consists of historical data. Each of the coefficients (x− k)n+γ−1 and derivative
coming from previous values of GDP per capita for different values of k and multiplication by different
weights as given in Equation (10) will add the contribution to the recent data. For modeling, the
historical data is employed directly for the modeling of the data located in Region 2. Region 2 and 3 are
named as modeling and testing, respectively. In the modeling region, the GDP per capita is tried to be
modeled and the unknown coefficients are found. Note that, the approach uses the previous l values
(Pi−1, Pi−2, . . . , Pi−l and corresponding f (i− 1), f (i− 2), . . . f (i− l)) for arbitrary Pi located in Region 2.
The third region consists of the data used to test for upcoming predictions. Finally, Region 4 is called
the “prediction region” where the aim is to find the GDP per capita values for the time that the actual
values have not known yet and implement prediction. The region division is required because there
are parameters given in the previous section (Equation (10)) such as M, l, γ which need to be found
before the prediction. In Region 2, the modeling is done to find the optimum values of coefficients
akn, M, l, γ in Equation (10) for modeling. To model the data, Least Squares Method is employed,
which is explained later in this section. After that, one of the purposes of the study is achieved. This is
the modeling of the data using the fractional approach. Then, the second purpose comes which is to
predict the values of GDP per capita for the upcoming unknown years. In order to find optimum
M, l, γ values for the prediction, Region 3, namely testing is needed. In the region, there is an iterative
solution where the real discrete data is again known. For instance, in Region 3, it is required to find
f (m1 + 1). Then, by using the proposed method employing the fractional calculus and Least Squares
Method, f (m1 + 1) is obtained with a minimum error by optimizing M, l, γ values for f (m1 + 1) itself.
Then, f (m1 + 1) is included the dataset for the next test which is done for f (m1 + 2). This continues
up to f (m). Then, with optimized M, l, γ, the predicted f (mx) is found in Region 4.
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To model the known data, f (x) representing the data optimally should be obtained. In other
words, the unknowns akn, bkn and f (0) in Equation (10) or Equation (11) should be determined. For this,
the Least Squares Method is employed.

f (i,γ) = f (0) +
∑l

k=1

∑M

n=1
aknCkn(i,γ) +

∑l

k=1

∑M

n=1
bknDkn(i,γ). (11)

In Equation (12), the squares of total error εT
2 is given. The main purpose of the modeling region

is to minimize εT
2 by a gradient-based approach which requires minimization of the square of the total

error as the following.

εT
2 =

m1∑
i=l

(Pi − f (i,γ))2 (12)

∂εT
2

∂ f (0)
= 0,

∂εT
2

∂art
= 0,

and
∂εT

2

∂brt
= 0.

where, r = 1, 2, 3, . . . l and t = 1, 2, 3, . . .M.
It is better to give an example of how to obtain ∂εT

2

∂art
= 0 and ∂εT

2

∂brt
= 0.

∂εT
2

∂art
= 0→

∂
∂art

m1∑
i=l

(Pi − f (i,γ))2 = 0

Then,

2
m1∑
i=l

[Pi − f (i,γ)]Crt(i,γ) = 0

m1∑
i=l

Crt(i,γ)Pi = f (0)
m1∑
i=l

Crt(i,γ) +
m1∑
i=l

 l∑
k=1

M∑
n=1

aknCkn(i,γ)

Crt(i,γ)

The same procedure is followed for ∂εT
2

∂brt
= 0.

∂εT
2

∂brt
= 0→

∂
∂brt

m1∑
i=l

(Pi − f (i,γ))2 = 0

Then,
m1∑
i=l

[Pi − f (i,γ)]Drt(i,γ) = 0

m1∑
i=l

Drt(i,γ)Pi = f (0)
m1∑
i=l

Drt(i,γ) +
m1∑
i=l

 l∑
k=1

M∑
n=1

aknDkn(i,γ)

Drt(i,γ)

This leads to having a system of linear algebraic equations (SLAE) as given in (13).

[A].[B] = [C] (13)

where, [A], [B] and [C] is shown in Equations (14), (15) and (16), respectively.
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To find f (x) the continuous curve modeling with a minimum error, the optimum fractional-order
γ is inquired between (0, 1). Then, with optimum fractional-order γ, the unknown coefficients are
determined. In the study, the GDP per capita of Brazil, China, the European Union, India, Italy, Japan,
the UK, the USA, Spain and Turkey were used from 1960 until 2018 [38]. The dataset is shown in
Tables A1 and A2.

Among them, the year 2018 is in Region 3 as testing to predict for the next years.
Here,
t (years): [1960, 1961, ..., 2018]
i (points): [1, 2, ..., 59]
Pi (value of i): [P1, P2, . . . , P59]
Pi: It shows the actual GDP per capita of each country in each ith year. For example, P2 is the GDP

per capita of the country in 1961.
i: It stands for the number for each year. For example, i = 1 for 1960, i = 3 for 1962 and i = 59

for 2018.

A =

[
A1,1 A1,2

A2,1 A2,2

]
(14)

A matrix consists of the matrix set below, where,

Ckn(x,γ) = Ckn and Dkn(x,γ) = Dkn

A1,1 =



m1 − l + 1
m1∑
i=l

C11 . . .
m1∑
i=l

C1M

m1∑
i=l

C21 . . .
m1∑
i=l

C2M . . .
m1∑
i=l

Cl1 . . .
m1∑
i=l

ClM∑
C11

m1∑
i=l

C11C11 . . .
m1∑
i=l

C1MC11

m1∑
i=l

C21C11 . . .
m1∑
i=l

C2MC11 . . .
m1∑
i=l

Cl1C11 . . .
m1∑
i=l

ClMC11∑
C12

m1∑
i=l

C11C12 . . .
m1∑
i=l

C1MC12

m1∑
i=l

C21C12 . . .
m1∑
i=l

C2MC12 . . .
m1∑
i=l

C11C12 . . .
m1∑
i=l

ClMC12

...
...

...
...

...
...

...
...

...
...

...∑
Clm

m1∑
i=l

C11ClM . . .
m1∑
i=l

C1MClM

m1∑
i=l

C21ClM . . .
m1∑
i=l

C2MClM . . .
m1∑
i=l

Cl1ClM . . .
m1∑
i=l

ClMClM



A2,1 =



∑
D11

m1∑
i=l

C11D11 . . .
m1∑
i=l

C1MD11

m1∑
i=l

C21D11 . . .
m1∑
i=l

C2MD11 . . .
m1∑
i=l

Cl1D11 . . .
m1∑
i=l

ClMD11

m1∑
i=l

D12

m1∑
i=l

C11D12 . . .
m1∑
i=l

C1MD12

m1∑
i=l

C21D12 . . .
m1∑
i=l

C2MD12 . . .
m1∑
i=l

Cl1D12 . . .
m1∑
i=l

ClMD12

...
...

...
...

...
...

...
...

...
...

...
m1∑
i=l

DlM

m1∑
i=l

C11DlM . . .
m1∑
i=l

C1MDlM

m1∑
i=l

C21DlM . . .
m1∑
i=l

C2MD1M . . .
m1∑
i=l

Cl1DlM

...
m1∑
i=l

ClMDlM



A1,2 =



m1∑
i=l

D11 . . .
m1∑
i=l

D1M . . .
m1∑
i=l

DlM

m1∑
i=l

D11C11 . . .
m1∑
i=l

D1MC11 . . .
m1∑
i=l

DlMC11

m1∑
i=l

D11C12 . . .
m1∑
i=l

D1MC12 . . .
m1∑
i=l

DlMC12

...
...

...
...

...
m1∑
i=l

D11ClM . . .
m1∑
i=l

D1MClM . . .
m1∑
i=l

DlMClM



A2,2 =



m1∑
i=l

D11D11 · · ·

m1∑
i=l

D1MD11 · · ·

m1∑
i=l

DlMD11

m1∑
i=l

D11D12 · · ·

m1∑
i=l

D1MD12 · · ·

m1∑
i=l

DlMD12

...
...

...
...

...
m1∑
i=l

D11DlM · · ·

m1∑
i=l

D1MDlM · · ·

m1∑
i=l

DlMDlM



[B] =
[

f (0) a11 a12 . . . a1M a21 a22 . . . a2M . . . al1 . . . alM b11 b12 · · · b1M b21 . . . b2M . . . bl1 bl2 . . . blM
]T (15)
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[C] =
[ m1∑

i=l
Pi

m1∑
i=l

PiC11

m1∑
i=l

PiC12 . . .
m1∑
i=l

PiClM

m1∑
i=l

PiD11

m1∑
i=l

PiD12 . . .
m1∑
i=l

PiDlM

]T

(16)
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3.2. Prediction with Deep Assessment

To find the optimized values of the unknowns for the prediction, the testing region (3rd region) is
required. The predictions obtained in the test region (m1 < i < m) are also given in Table 1. For testing,
the data up to m1 = 58 have been taken into consideration in the operations. The f (m1 + 1) value was
found from the obtained modeling. Then, the value is kept, and the next step was started again for
( f (m1 + 2)). These operations are done until the last value of the test zone. In our case, m = 59.

Table 1. Comparison of modeling results (γ, M and MAPE values) of countries for l = 10.

Country
γ

Deep
Assessment

γ
Fractional Model-1

Deep Assessment *
(l<i<m)

Polynomial
Model *
(l<i<m)

Fractional
Model-1 *
(l<i<m)

M

US 0.44 0.54 0.81% 1.01% 1.06% 15
UK 0.14 0.85 5.38% 7.03% 6.61% 15

Brazil 0.06 0.58 7.26% 7.13% 9.00% 17
China 0.03 0.95 2.84% 5.62% 5.67% 11
India 0.15 0.02 3.09% 2.51% 4.10% 16
Japan 0.26 0.69 4.45% 4.64% 5.82% 20

EU 0.06 0.89 4.02% 3.41% 5.71% 20
Italy 0.39 1 4.70% 8.81% 8.81% 9

Spain 0.22 0.58 4.44% 6.49% 6.36% 13
Turkey 0.71 0.01 6.09% 11.81% 8.93% 10

* MAPEModeling values.

The last region is called the “Prediction Region.” Here, using Region 1, 2 and 3, the prediction
for the upcoming years is obtained. After having modeled and tested regions, the unknowns in
Equation (11) have already found in an optimal manner. After testing, Region 4 is started. In the
region, the first prediction f (m + 1) is found by using the coefficients and unknowns found by the
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testing region. After that, the first predicted value ( f (m + 1)) is included in Region 3 (testing) for the
consecutive prediction f (m + 2). This procedure is reiterated and recycled up to f (mx).

The prediction results for 2019 are given in Table 2. For example, as of the end of 2019 ( f (m + 2)),
Brazil, China, European Union, India, Italy, Japan, the UK, the USA, Spain and Turkey’s GDP per
capita values are expected as listed.

Table 2. Test (m1 < i < m) results (γ, l, M and MAPE) of GDP per capita for corresponding countries.

Country γ l M γ
Interpolation Deep Assessment * Deep

Learning *

Brazil 0.18 24 3 0.32 0.1303% 0.4728%
China 0.97 11 3 0.5 0.7147% 1.6365%

India 0.96 3 2 0.99 0.3379%
5 0.7203%

Italy 0.43 20 4 0.43 0.1048% 3.0796%
Japan 0.57 4 3 1 0.3499% 1.1091%
Spain 0.99 2 3 0.99 0.0560% 1.5683%

Turkey 0.39 17 4 0.39 0.1167% 2.3691%
EU 0.32 20 5 0.22 0.1044% 0.2522%
US 0.39 25 2 0.18 0.1081% 0.8424%
UK 0.18 18 7 0.05 0.9129% 3.0508%

* MAPEPrediction values.

In Figure 2, the algorithm for prediction with DAM is illustrated. The first step of the algorithm
is to initialize the parameters (l, M, x1, x2, . . . xm and P1, P2, . . . Pm). Then, the counter variable N
is introduced, which counts the number of prediction steps. The total number of required predicted
steps is denoted as n0. As an initial value, the fractional-order γ is assigned 0 and the increment is
0.01 for each loop to find the optimized value. For each value of γ between 0 and 1, matrix A given
as Equation (14) is created and then, the unknown coefficients given in Equation (10) are calculated.
After that, using the actual data in Region 1 and Region 2, the modeling of data between Pl and Pm is
actualized for Region 2. Then, the error defined in Equation (12) is calculated. The value of the error
is analyzed and compared to previously obtained values. If it is smaller than the previous one, the
corresponding fractional-order value is memorized. At the end of Loop II, the optimal value of the
fractional-order, which coincides with the optimal modeling is found and corresponding coefficients
given in Equation (10) is determined. Then, the prediction for the next forthcoming value is made
with Equation (10). After that, all the procedures starting from the increment of N is repeated so that
the previously predicted value is added to the initial data for the next step prediction. This process is
repeated up to the termination of Loop I. Finally, n0 the number of predictions is obtained. Keep in
mind that, for the parameters l and M, there exist two loops starting from 1 to L0 and 1 to M0 searching
the optimum values of the parameters in order to get the outcomes with a minimum error for the
testing region, respectively. Here, L0 and M0 are pre-defined some constant values.
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3.3. Long Short-Term Memory

In our study, we compare the modeling with the polynomial curve fitting method and in the
prediction, we compare Deep Assessment with the LSTM method. Conventional neural networks are
insufficient for modeling the content of temporal data. Recursive neural networks (RNN) model the
sequential structure of data by feeding itself with the output of the previous time step. LSTMs are
special types of RNNs that operate over sequences and are used in time series analysis [39]. An LSTM
cell has four gates: input, forget, output and gate. With these gates, LSTMs optionally inherit the
information from the previous time steps. Forget gate ( f ), input gate (i) and output gate (o) are
sigmoid functions (σ) and they take values between 0 and 1. Gate g has hyperbolic tangent (tanh)
activation and is between −1 and 1. The Gate and forward propagation equations are listed below
as Equations (17)–(22). Here cl

t and hl
t refer to cell state and hidden state of layer l at time step t,

respectively. Each gate takes input from the previous time step (hl
t−1) and previous layer (hl−1

t ) and has
its own set of learnable parameters W’s and b’s.

ft = σ
(
W f [hl

t−1, hl−1
t ] + b f

)
(17)

it = σ
(
Wi[hl

t−1, hl−1
t ] + bi

)
(18)

ot = σ
(
Wo[hl

t−1, hl−1
t ] + bo

)
(19)

gt = tanh
(
Wg[hl

t−1, hl−1
t ] + bg

)
(20)

cl
t = f � cl

t−1 + i � g (21)

hl
t = o � tanh

(
cl

t

)
(22)

Here,� is the Hadamard product. Each LSTM neuron in a network may consist of one or more cells.
In every time step, every cell updates its own cell state, cl

t. Equation (22) describes how these cells get
updated with forget gate and input gate; f gate decides how much of previous cell state that cell should
remember while i gate decides how much it should consider the new input from the previous layer.
Then, LSTM neuron updates its internal hidden state by multiplying output and squashed version of
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cl
t. An LSTM neuron gives outputs only in hidden state information to another LSTM neuron. Gate o

and ct are used internally in the computation of forward time steps [40]. To forecast time series and
compare our proposed approach to neural networks, we employed a stacked LSTM model with 2
layers of LSTMs (each having 50 hidden units) and a linear prediction layer. LSTM model is trained
with the Adam optimizer [40].

4. Numerical Results

In this section, we report the modeling and prediction performance of the Deep Assessment
methodology. Further, we compare the proposed method to other modeling and prediction approaches
such as Polynomial Model, Fractional Model-1 [34,35] and LSTM. In this section, results are reported
with the Mean Average Precision Error (MAPE) metric and calculated as follows:

MAPE =
1
k

∑k

i=1

∣∣∣∣∣∣v(i) −
∼
v(i)

v(i)

∣∣∣∣∣∣× 100, (23)

where k is the total number of samples, v(i) is the actual value and
∼
v(i) is the predicted value for

ith sample.
Before presenting the results, it is important to highlight that for modeling, M0 and l0 are taken 20

and 10, respectively whereas for prediction, M0 and l0 are taken 8 and 25, respectively. The number of
prediction, n0 is equal to 1.

4.1. Modeling Results

In this part, we compare the modeling performance with Polynomial, Fractional Model-1 and
Deep Assessment models.

To achieve modeling, l value needs to be investigated. For the modeling of the GDP per capita of
each country, the required previous data l of past years used in the algorithm differs after optimization.
In order to make a fair evaluation, l value is fixed among all countries to 10. Modeling results for
Deep Assessment, Polynomial Model and Fractional Model-1 are shown in Table 1. Optimized M
values after processing can be seen in the last column. The Deep Assessment model has a %4.308
average MAPE and outperforms Polynomial and Fractional Model-1 by %1.538 and %1.899 average
error rates. All three methods model the US best with %0.81, %1.01 and %1.06 error. Further, in the
case of Italy, Fractional Model-1 uses the fractional-order value of 1 and produces %8.81 MAPE, equal
to the Polynomial method as expected because for the fractional-order value of 1 is the same with the
Polynomial Method. However, DAM yields fractional order of 0.39, decreasing the error to 4.70%,
justifying the advantage of employing fractional calculus and previous values of the data itself.

MAPEModeling =
1

m− l + 1

∑m

i=l

∣∣∣∣∣∣P(i) − f (i,γ)
P(i)

∣∣∣∣∣∣× 100. (24)

GDP per capita data, Deep Assessment, Polynomial and Fractional Model-1 modeling results
are shown in Figure 1 for each country. One can conclude that when data points have high variance
all models produce high error rates, as in Turkey and Italy. For Japan and Brazil, DAM (Deep
Assessment Method) and Polynomial models produce similar results. Also, it can be seen from the
Figure 3, both Deep Assessment and Fractional Model-1 have a low bias when compared to the
Polynomial model and overfits to dataset less. This is possible because of the memory property of the
proposed approach. Except for Brazil, India and the EU, the proposed method yields superior results
compared to other models.
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Figure 3. Modelling results of the countries (Brazil, China, India, Italy, Japan, the UK, the USA,
Spain and Turkey) and the European Union or Deep Assessment (Blue), Fractional Model 1 (Yellow),
Polynomial Model (Purple).

4.2. Prediction Results

In this section, we compare the accuracy rate of the prediction of Deep Assessment and Deep
Learning models. As in modeling, the GDP per capita dataset is used to assess the performance of the
proposed method. Table 2 illustrates optimized γ, l, M values and the corresponding performance of
DAM and LSTM. Here, column 6 reports the performance of DAM while column 7 represents LSTM.
Column 5 shows that the Deep Assessment methodology predicts GDP per capita with an average
0.29% error with predicting all countries with 1.< (less than 1 percent) of error. The best-predicted
country is Spain while UK’s prediction is the least accurate with 0.91% error. On the other hand,
LSTM yields 1.51% error on average. For both DAM and LSTM, UK yields the highest error. Table 2
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demonstrates that in the implemented setting, DAM outperforms LSTM by 1.21% average error and
produces fair results.

MAPEPrediction =
1

m1 − l + 1

∑m

i=m1

∣∣∣∣∣∣P(i) − f (i,γ)
P(i)

∣∣∣∣∣∣× 100. (25)

Table 3 reports the prediction of GDP per capita for the year 2019 is illustrated in Table 2 for both
DAM and LSTM methods. For countries Brazil, China, India, Turkey, the UK and the US, predictions
obtained by the two models are similar. On the other hand, Italy and Spain yield different results.

Table 3. GDP per Capita Prediction of Countries for 2019 (US dollars).

Country Deep Assessment Deep Learning

Brazil 7932 8013
China 10,312 10,273
India 2154 1967
Italy 39,028 35,141

Japan 34,421 37,994
Spain 30,385 35,372

Turkey 8260 8920
US 65,767 63,844
UK 44,897 44,702
EU 40,487 36,487

5. Conclusions

In this study, a model called “Deep Assessment” is introduced which employs Fractional Calculus
to model discrete data as the summation of previous values and derivatives. Different to the literature
and our previous work, the proposed approach also predicts the incoming values of the discrete data
in addition to modeling. The method is evaluated on modeling and predicting GDP per capita, using a
dataset including the period of 1960–2018 for nine countries (Brazil, China, European Union, India,
Italy, Japan, UK, the USA, Spain and Turkey) and the European Union. Using the fractional differential
equation and the summation of previous values for the modeling of GDP per capita at a specific time
instant bring non-locality, memory and generalization of the problem for different fractional order.
In experiments, first, GDP per capita is modeled. The Deep Assessment model has a 4.308% average
MAPE and outperforms Polynomial and Fractional Model-1 by 1.538% and 1.899% average error rates
for modeling. For prediction, LSTM, a special type of neural network is used to assess the performance
of the model. In the selected test region, it is shown that Deep Assessment is superior to LSTM by 1.51%
average error. Results illustrate that the proposed method yields promising results and demonstrates
the benefits of combining fractional calculus and differential equations. Evaluation of multivariable
and multifunctional problems, analyzing time windows, randomness, noise and error changes are left
to future work.
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Appendix A

Table A1. GDP per capita (US dollars) values of the countries.

i Years Brazil China EU India Italy

1 1960 210.1099 89.52054 890.4056 82.1886 804.4926
2 1961 205.0408 75.80584 959.71 85.3543 887.3367
3 1962 260.4257 70.90941 1037.326 89.88176 990.2602
4 1963 292.2521 74.31364 1135.194 101.1264 1126.019
5 1964 261.6666 85.49856 1245.499 115.5375 1222.545
6 1965 261.3544 98.48678 1346.058 119.3189 1304.454
7 1966 315.7972 104.3246 1448.551 89.99731 1402.442
8 1967 347.4931 96.58953 1546.804 96.33914 1533.693
9 1968 374.7868 91.47272 1602.06 99.87596 1651.939
10 1969 403.8843 100.1299 1762.472 107.6223 1813.388
11 1970 445.0231 113.163 1950.732 112.4345 2106.864
12 1971 504.7495 118.6546 2195.145 118.6032 2305.61
13 1972 586.2144 131.8836 2611.729 122.9819 2671.137
14 1973 775.2733 157.0904 3296.935 143.7787 3205.252
15 1974 1004.105 160.1401 3685.596 163.4781 3621.146
16 1975 1153.831 178.3418 4274.046 158.0362 4106.994
17 1976 1390.625 165.4055 4406.238 161.0921 4033.099
18 1977 1567.006 185.4228 4968.988 186.2135 4603.6
19 1978 1744.257 156.3964 6064.883 205.6934 5610.498
20 1979 1908.488 183.9832 7377.165 224.001 6990.286
21 1980 1947.276 194.8047 8384.718 266.5778 8456.919
22 1981 2132.883 197.0715 7391.077 270.4706 7622.833
23 1982 2226.767 203.3349 7093.702 274.1113 7556.523
24 1983 1570.54 225.4319 6859.966 291.2381 7832.575
25 1984 1578.926 250.714 6572.019 276.668 7739.715
26 1985 1648.082 294.4588 6775.647 296.4352 7990.687
27 1986 1941.491 281.9281 9265.924 310.4659 11,315.02
28 1987 2087.308 251.812 11,432.23 340.4168 14,234.73
29 1988 2300.377 283.5377 12,711.96 354.1493 15,744.66
30 1989 2908.496 310.8819 12,936.46 346.1129 16,386.66
31 1990 3100.28 317.8847 15,989.22 367.5566 20,825.78
32 1991 3975.39 333.1421 16,496.51 303.0556 21,956.53
33 1992 2596.92 366.4607 17,919.02 316.9539 23,243.47
34 1993 2791.209 377.3898 16,256.42 301.159 18,738.76
35 1994 3500.611 473.4923 17,194.12 346.103 19,337.63
36 1995 4748.216 609.6567 19,898.44 373.7665 20,664.55
37 1996 5166.164 709.4138 20,295.17 399.9501 23,081.6
38 1997 5282.009 781.7442 19,121.21 415.4938 21,829.35
39 1998 5087.152 828.5805 19,763.51 413.2989 22,318.14
40 1999 3478.373 873.2871 19,698.89 441.9988 21,997.62
41 2000 3749.753 959.3725 18,261.97 443.3142 20,087.59
42 2001 3156.799 1053.108 18,457.89 451.573 20,483.22
43 2002 2829.283 1148.508 20,055.33 470.9868 22,270.14
44 2003 3070.91 1288.643 24,310.25 546.7266 27,465.68
45 2004 3637.462 1508.668 27,960.05 627.7742 31,259.72
46 2005 4790.437 1753.418 29,115.63 714.861 32,043.14
47 2006 5886.464 2099.229 30,960.56 806.7533 33,501.66
48 2007 7348.031 2693.97 35,630.94 1028.335 37,822.67
49 2008 8831.023 3468.304 38,185.62 998.5223 40,778.34
50 2009 8597.915 3832.236 34,019.28 1101.961 37,079.76
51 2010 11,286.24 4550.454 33,740.65 1357.564 36,000.52
52 2011 13,245.61 5618.132 36,506.64 1458.104 38,599.06
53 2012 12,370.02 6316.919 34,328.82 1443.88 35,053.53
54 2013 12,300.32 7050.646 35,683.86 1449.606 35,549.97
55 2014 12,112.59 7651.366 36,787.23 1573.881 35,518.42
56 2015 8814.001 8033.388 32,319.45 1605.605 30,230.23
57 2016 8712.887 8078.79 32,425.13 1729.268 30,936.13
58 2017 9880.947 8759.042 33,908 1981.269 32,326.84
59 2018 8920.762 9770.847 36,569.73 2009.979 34,483.2
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Table A2. GDP per capita (US dollars) values of the countries.

i Years Japan Spain UK US Turkey

1 1960 478.9953 396.3923 1397.595 3007.123 509.4239
2 1961 563.5868 450.0533 1472.386 3066.563 283.8283
3 1962 633.6403 520.2061 1525.776 3243.843 309.4467
4 1963 717.8669 609.4874 1613.457 3374.515 350.6629
5 1964 835.6573 675.2416 1748.288 3573.941 369.5834
6 1965 919.7767 774.7616 1873.568 3827.527 386.3581
7 1966 1058.504 889.6599 1986.747 4146.317 444.5494
8 1967 1228.909 968.3068 2058.782 4336.427 481.6937
9 1968 1450.62 950.5457 1951.759 4695.923 526.2135
10 1969 1669.098 1077.679 2100.668 5032.145 571.6178
11 1970 2037.56 1212.289 2347.544 5234.297 489.9303
12 1971 2272.078 1362.166 2649.802 5609.383 455.1049
13 1972 2967.042 1708.809 3030.433 6094.018 558.421
14 1973 3997.841 2247.553 3426.276 6726.359 686.4899
15 1974 4353.824 2749.925 3665.863 7225.691 927.7991
16 1975 4659.12 3209.837 4299.746 7801.457 1136.375
17 1976 5197.807 3279.313 4138.168 8592.254 1275.956
18 1977 6335.788 3627.591 4681.44 9452.577 1427.372
19 1978 8821.843 4356.439 5976.938 10,564.95 1549.644
20 1979 9105.136 5770.215 7804.762 11,674.19 2079.22
21 1980 9465.38 6208.578 10,032.06 12,574.79 1564.247
22 1981 10,361.32 5371.166 9599.306 13,976.11 1579.074
23 1982 9578.114 5159.709 9146.077 14,433.79 1402.406
24 1983 10,425.41 4478.5 8691.519 15,543.89 1310.256
25 1984 10,984.87 4489.989 8179.194 17,121.23 1246.825
26 1985 11,584.65 4699.656 8652.217 18,236.83 1368.401
27 1986 17,111.85 6513.503 10,611.11 19,071.23 1510.677
28 1987 20,745.25 8239.614 13,118.59 20,038.94 1705.895
29 1988 25,051.85 9703.124 15,987.17 21,417.01 1745.365
30 1989 24,813.3 10,681.97 16,239.28 22,857.15 2021.859
31 1990 25,359.35 13,804.88 19,095.47 23,888.6 2794.35
32 1991 28,925.04 14,811.9 19,900.73 24,342.26 2735.708
33 1992 31,464.55 16,112.19 20,487.17 25,418.99 2842.37
34 1993 35,765.91 13,339.91 18,389.02 26,387.29 3180.188
35 1994 39,268.57 13,415.29 19,709.24 27,694.85 2270.338
36 1995 43,440.37 15,471.96 23,123.18 28,690.88 2897.866
37 1996 38,436.93 16,109.08 24,332.7 29,967.71 3053.947
38 1997 35,021.72 14,730.8 26,734.56 31,459.14 3144.386
39 1998 31,902.77 15,394.35 28,214.27 32,853.68 4496.497
40 1999 36,026.56 15,715.33 28,669.54 34,513.56 4108.123
41 2000 38,532.04 14,713.07 28,149.87 36,334.91 4316.549
42 2001 33,846.47 15,355.7 27,744.51 37,133.24 3119.566
43 2002 32,289.35 17,025.53 30,056.59 38,023.16 3659.94
44 2003 34,808.39 21,463.44 34,419.15 39,496.49 4718.2
45 2004 37,688.72 24,861.28 40,290.31 41,712.8 6040.608
46 2005 37,217.65 26,419.3 42,030.29 44,114.75 7384.252
47 2006 35,433.99 28,365.31 44,599.7 46,298.73 8035.377
48 2007 35,275.23 32,549.97 50,566.83 47,975.97 9711.874
49 2008 39,339.3 35,366.26 47,287 48,382.56 10,854.17
50 2009 40,855.18 32,042.47 38,713.14 47,099.98 9038.52
51 2010 44,507.68 30,502.72 39,435.84 48,466.82 10,672.39
52 2011 48,168 31,636.45 42,038.5 49,883.11 11,335.51
53 2012 48,603.48 28,324.43 42,462.71 51,603.5 11,707.26
54 2013 40,454.45 29,059.55 43,444.56 53,106.91 12,519.39
55 2014 38,109.41 29,461.55 47,417.64 55,032.96 12,095.85
56 2015 34,524.47 25,732.02 44,966.1 56,803.47 10,948.72
57 2016 38,794.33 26,505.62 41,074.17 57,904.2 10,820.63
58 2017 38,331.98 28,100.85 40,361.42 59,927.93 10,513.65
59 2018 39,289.96 30,370.89 42,943.9 62,794.59 9370.176
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