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Abstract: Due to the great success of convolutional neural networks (CNNs) in the area of computer
vision, the existing methods tend to match the global or local CNN features between images for
near-duplicate image detection. However, global CNN features are not robust enough to combat
background clutter and partial occlusion, while local CNN features lead to high computational
complexity in the step of feature matching. To achieve high efficiency while maintaining good
accuracy, we propose a coarse-to-fine feature matching scheme using both global and local CNN
features for real-time near-duplicate image detection. In the coarse matching stage, we implement the
sum-pooling operation on convolutional feature maps (CFMs) to generate the global CNN features,
and match these global CNN features between a given query image and database images to efficiently
filter most of irrelevant images of the query. In the fine matching stage, the local CNN features are
extracted by using maximum values of the CFMs and the saliency map generated by the graph-based
visual saliency detection (GBVS) algorithm. These local CNN features are then matched between
images to detect the near-duplicate versions of the query. Experimental results demonstrate that our
proposed method not only achieves a real-time detection, but also provides higher accuracy than the
state-of-the-art methods.

Keywords: convolutional feature maps; deep convolutional neural network; CNN features;
sum-pooling; near-duplicate image detection; digital forensics

1. Introduction

With the rapid development of Internet technology and the increasing popularity of mobile
devices, it is very easy for users to capture, transmit and share images through the networks. In these
image data, near-duplicate images occupy a significant proportion. The task of near-duplicate image
detection is to efficiently and effectively detect near-duplicate versions of a given query image from a
large-scale image database. Near-duplicate image detection has been successfully applied in many
applications, such as image copyright protection [1–3], coverless information hiding [4–6], secret image
sharing [7] and redundancy elimination [8].

In recent years, deep learning techniques such as convolutional neural networks (CNNs) have
received extensive attention in the area of computer vision [9,10]. In view of this fact, some researchers
tend to use the features extracted from CNNs instead of hand-crafted features for the tasks of
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near-duplicate image detection or content-based image retrieval [11–17]. In literature, it has been
proven that CNN-based features achieve superior performance than the traditional hand-crafted
features. In general, the existing CNN-based features can be divided into two categories: global CNN
features and local CNN features.

The global CNN features are extracted by feeding the whole region of an image into a pretrained
CNN model and pooling the outputs of the intermediate layers such as convolutional layers or fully
connected layers. The most typical pooling methods used for global CNN feature extraction include
max-pooling [18–28], sum-pooling [29–32], and average-pooling [33]. Researchers have proposed some
improved versions of these pooling methods to extract the global CNN features, such as centering
prior-based sum-pooled convolution (SPoC) feature [29], the cross-dimensional weighting (CroW)
feature [30], and the regional maximum activations of convolution (R-MAC) [18].

Recently, some researchers have focused on training deep learning models to extract image
features [34–37]. However, since these methods fail to sufficiently consider the influence of background
clutter and partial occlusion on the final representation, the extracted global CNN features are not
robust enough to combat these attacks.

Instead of capturing the characteristics of the whole image region, the local CNN features [19–22,38–42]
characterize the local image regions. Generally, similar to the traditional hand-crafted local features such
as scale-invariant feature transform (SIFT) [43], the extraction of local CNN features consists of two stages:
image region detection and descriptor generation. A number of image regions are first detected from each
image, and the local descriptors are generated from the outputs of intermediate layers of a pretrained
CNN model within the regions. In [44], the local CNN features were proven to perform better than
the traditional hand-crafted local features in many image retrieval/detection tasks. However, since a
large number of local regions are usually detected from each image, the extraction and matching of
local features usually have high computational complexity. To reduce the computational complexity,
local features are usually integrated into a single image representation using a variety of integration
methods such as bag of words (BOW) model [45], fisher vector (FV) [46], and vector of locally aggregated
descriptors (VLAD) [47] for near-duplicate image detection. However, the integration process causes
a lot of important information to be lost and thus decreases the detection accuracy significantly.

In summary, although the extraction and matching of global CNN features are computationally
efficient, the global CNN features suffer from the robustness problem in near-duplicate image detection.
On the contrary, the local CNN features achieve higher robustness, but the matching of local CNN
features between images has high computational complexity since a large number of local CNN
features are extracted from each image.

In order to exploit the advantages of both global features and local features, we propose a
coarse-to-fine feature matching scheme using both global and local CNN features for near-duplicate
image detection. The main contributions of our method are summarized as follows:

(1) A coarse-to-fine feature matching scheme is proposed. The proposed coarse-to-fine feature
matching scheme consists of a coarse matching stage and a fine matching stage. In the coarse matching
stage, we match the global CNN features between a given query image and database images to filter
most of irrelevant images of the query from an image database. In the fine matching stage, we extract
and match the local CNN features between images to find the near-duplicate versions of the query.
The proposed coarse-to-fine feature matching scheme allows a real-time and accurate near-duplicate
image detection. Thus, it has important significance in practical applications of content-based image
detection/retrieval.

(2) The saliency map-based local CNN features are extracted. In the tasks of facial expression
recognition and image classification, the introduction of attention mechanisms leads to the significant
improvements [48–51]. Motivated by these works, after the global CNN feature matching, we detect
the saliency map by the graph-based visual saliency detection (GBVS) algorithm [52] and extract the
local CNN features from the local regions surrounding the maximum values of the saliency map.
The extracted local CNN features not only have high robustness to background clutter and partial
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occlusion, but also achieve high repeatability due to the good stability of the maximum values of the
saliency map. Consequently, in the fine feature matching stage, the local CNN feature matching further
improves the accuracy of near-duplicate image detection.

The rest of this paper is organized as follows. Section 2 introduces the related works. The details
of the proposed detection method are presented in the Section 3. Section 4 displays and analyzes the
experimental results. Finally, conclusions are drawn in Section 5.

2. Related Works

With the increasing popularity of CNNs, the recent near-duplicate image detection methods tend
to use the features extracted from pre-trained CNN models instead of the traditional hand-crafted
features. The existing CNN-based features can be roughly categorized into global CNN features and
local CNN features.

The global CNN features are usually extracted by feeding the whole region of an image
into a pre-trained CNN model and then pooling the outputs of the intermediate layers such as
convolutional layers and fully connected layers. In literature, the popular pooling methods include
max-pooling [18–28], sum-pooling [29–32], and average-pooling [33]. Generally, the outputs of a
convolutional layer are a set of convolutional feature maps (CFMs), and the global CNN features are
extracted by implementing a pooling operation on the CFMs. The max-pooling method computes
the maximum value of each CFM and concatenates all the maximum values to form the global CNN
features, while sum-pooling and average-pooling methods compute the sum and the average value
of each CFM, respectively. To improve the performance of the extracted global CNN features on
near-duplicate image detection, researchers have proposed some improved versions of these pooling
methods to extract the global CNN features. Babenko et al. [29] proposed the SPoC descriptor, which
is generated by an improved version of the sum-pooling, i.e., centering prior-based sum-pooling.
In particular, instead of directly computing the sum of all activations of each CFM, SPoC [29] is
extracted by performing centering prior-based sum-pooling on the CFMs, where the activations near
to the center of feature maps are assigned larger weighting coefficients. Kalantidis et al. [30] generated
CroW by computing the weighted sum values on the CFMs, where the weights of detected interest
regions are set to be larger, while the weights of other regions are set to lower. Tolias et al. [18] proposed
an aggregation method based on variable sliding windows to generate the global CNN feature, i.e.,
R-MAC, where the max-pooling operation is implemented to aggregate activations of CFMs within
sliding windows. The above global feature extraction methods have improved the performance of
near-duplicate image detection to some extent.

Recently, some researchers have focused on training deep learning models to extract global image
features. Lia et al. [34] evaluated a set of CNN-learned descriptors and concluded that the features
learned from fine-tuned CNNs perform better than the off-the-shelf features. Shervin et al. [35] gave a
summary of promising works that use deep learning-based models for biometric recognition. Shervin et
al. [36] identified mild traumatic brain injury patients by combining a bag of adversarial features (BAF)
and unsupervised feature learning techniques. Zhang et al. [37] learned a general straightforward
similarity function from raw image pairs for near-duplicate image detection.

However, since those global CNN features are extracted from the whole image region, they show
weak robustness in regards to the background clutter and partial occlusion, which negatively influence
on the performance of near-duplicate image detection.

In order to address the problem of weak robustness, one possible solution is to extract local CNN
features for near-duplicate image detection. In literature, a variety of local CNN features have been
proposed. Generally, similar to the traditional hand-crafted local features, the extraction of local CNN
features consists of two steps: region detection and descriptor generation. In the image region detection,
there are three kinds of popular regions: the image patches, interest point-based regions, and the object
region proposals. In the descriptor generation stage, by feeding a given image into a pretrained CNN
model, the local CNN features are extracted from the outputs of convolutional layers or fully connected
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layers within each image region. Gong et al. [38] detected local image patches by adopting a multi-scale
sliding window strategy on CFMs, and then concatenated the local CNN features extracted from all
the image patches. In contrast from the R-MAC, the feature extraction is implemented at a multi-scale
level. Razavian et al. [19] divided images into a set of patches at the multi-scale level, the union
of which covers the whole image, for local CNN feature extraction. Zagoruyko et al. [20] detected
the regions surrounding the difference of Gaussian (DOG) feature points, while Fischer et al. [44]
detected the maximally stable extremal regions (MSER). Mopuri et al. [21] extracted image patches
using selective search [39]. In [40], Uricchio et al. utilized the EdgeBox algorithm proposed by [41] for
region generation. By using the edge information, the EdgeBox first determines the number of contours
in image boxes and the number of edges that overlap the edge of the boxes to score these boxes for
generation of object region proposals. Salvador et al. [22] located the potential object regions in an
image by employing the region proposal network (RPN) [42]. Besides these region detection algorithms,
attention mechanisms have been introduced to capture local characteristics in image classification and
facial expression recognition tasks [48,49,51]. Assaf et al. [48] improved the classical Capsule Network
(CapsNet) architecture by embedding the self-attention module between the convolutional layers and
the primary CapsNet layers for image classification. Shervin et al. [49] proposed the spatial transformer
network [50] to detect important face parts for facial expression recognition. Wang et al. [51] built the
residual attention network by stacking multiple attention modules within the feed forward network
architecture for image classification. Since the local CNN features are extracted at the region-level
and some regions still survive after the attacks of background clutter and partial-occlusion, the local
CNN features show much higher robustness than the global CNN features. However, due to the large
number of local features, the extraction and matching of these local features is very time-consuming,
which leads to the limited efficiency for near-duplicate image detection. Although some aggregation
methods, such as the bag of words (BOW) model [45], fisher vector (FV) [46], and the vector of locally
aggregated descriptors (VLAD) [47] integrate local features into a single image representation to
improve the efficiency, the detection accuracy will decrease significantly due to the information loss
caused by the aggregation process. In summary, it is hard to directly use these CNN features to achieve
a real-time and accurate near-duplicate image detection.

According to the above, there is still a lot of room for improvement in the performance of
near-duplicate image detection. To achieve a real-time and accurate near-duplicate image detection,
we attempt to take the advantages of both global and local CNN features. In this paper, we propose
a coarse-to-fine matching scheme using global and local CNN features for near-duplicate image
detection. In the coarse matching stage, we implement the sum-pooling operation on whole region
of each image to extract global features and then match them between images. Since only a single
global CNN feature is extracted from each image, the coarse matching stage can efficiently filter
most of the irrelevant images of a given query image to narrow the search scope largely. In the fine
matching stage, motivated by the attention-based image classification and facial expression recognition
works [48,49,51], we match the robust and stable local CNN features that are extracted from the regions
surrounding the maximum values of CFMs and the saliency map generated by the graph-based visual
saliency detection (GBVS) algorithm [52]. Consequently, the proposed approach can effectively and
efficiently detect near-duplicate images of a given query from image databases.

3. The Proposed Method

In this section, we introduce the proposed near-duplicate image detection approach in detail.
Figure 1 shows the framework of the proposed approach. As shown in Figure 1, the proposed approach
consists of two main components, which are the coarse matching stage and the fine matching stage, respectively.

We first generate convolutional feature maps (CFMs) by feeding images into a pre-trained CNN
model. Then, in Section 3.2, we extract global features from each image using sum-pooling operation
and then match these features between images to obtain the candidate images of a given query from an
image database. Finally, in Section 3.3, local CNN features of the query image and candidate images
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are extracted and then matched to further detect the near-duplicate versions of the query. The details
are given below.Mathematics 2020, 8, x FOR PEER REVIEW 5 of 16 
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Figure 1. The framework of the proposed near-duplicate image detection system.

3.1. CFM Generation

According to [25], a CNN model is composed of a set of layers including convolutional layers and
fully connected layers. In the early years, researchers employed the outputs of fully connected layers
to generate image representations. However, some research [23,24,29,44,53] indicates that the features
extracted from convolutional layers, especially the last convolutional layer, show better performance
than the features extracted from fully connected layers, where the output of a convolutional layer is a set
of feature maps, i.e., CFMs. In our approach, we feed each image to a pretrained CNN model, and use
the output of the last convolutional layer for feature extraction. Note that we test the performances of
our method when using different CNN models in the experimental part. To obtain a good trade-off

between accuracy and efficiency, we adopt AlexNet [25] as the pretrained CNN model in our method.
Figure 2 shows the 256 CFMs generated from the last convolutional layer after feeding an image into
the AlexNet model, where the sizes of CFMs are proportional to the size of the original image.
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3.2. Coarse Matching Stage

We will encounter the problem of high computational complexity if the local CNN features
are directly extracted and matched between images to detect near-duplicate images from an image
database, which usually consists of thousands of images. Due to the high efficiency of global feature
extraction and matching, we first extract and match global features to implement a coarse feature
matching to efficiently filter most irrelevant images of a given query.

3.2.1. The Extraction of Global CNN Feature

According to [29], the global CNN features generated by sum-pooling of CFMs performs not only
better than traditional hand-crafted features, but also better than those generated by max-pooling of
CFMs. Thus, we adopt sum-pooling operation on the CFMs to extract the global features.

For a given image Ii, we feed it into the pretrained AlexNet model and collect the output of the
fifth convolutional layer to form a set of CFMs, denoted as MSi =

{
M1

i , M2
i , . . . , Mk

i , . . . , MM
i

}
, where

1 ≤ k ≤ M and M = 256. For each CFM, i.e., Mk
i , its size and activations are denoted as W × H and

Fk
i =

{
f k
i (x, y)

∣∣∣1 ≤ x ≤W, 1 ≤ y ≤ H
}
, respectively. Subsequently, we use Equation (1) to extract global

features by sum-pooling operation:

φ
(
Fk

i

)
=

H∑
y=1

W∑
x=1

f k
i (x, y) (1)

After this, we concatenate all of these feature values to obtain a 256-dimensional feature vector
∂(Ii) =

(
φ
(
F1

i

)
,φ

(
F2

i

)
, . . . ,φ

(
Fk

i

)
, . . . ,φ

(
FM

i

))
, and normalize the feature vector as V(Ii) =

∂(Ii)
‖∂(Ii)‖2

.

3.2.2. Global Feature Matching

For a given query image Iq and a database image Id, we can obtain two corresponding normalized
feature vectors V

(
Iq
)

and V(Id) by the above feature extraction process. Then, we employ Equation (2)
to compute the inner product of the two feature vectors to measure the global similarity between the
two images.

SIM
(
Iq, Id

)
=

〈
V
(
Iq
)
, V(Id)

〉
(2)

After computing the similarity, we sort all similarity values in descending order{
SIM1, SIM2, . . . , SIMND

}
, where SIM1 > SIM2 > . . . > SIMn > SIMn+1 > . . . > SIMND and ND

means the number of database images. In our method, we only keep NTop = 1000 detected images of
the query as its candidate images, and remove the others.
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3.3. Fine Matching Stage

Due to the weak robustness of global CNN features, the detection accuracy of the coarse matching
stage is limited. Therefore, in the fine matching stage, we extract and match local features between
images to further increase the detection accuracy. It is worth noting that, since only a small number of
candidate images need to be verified to confirm whether they are the near-duplicate versions of the
query, the efficiency of the fine matching is relatively high.

3.3.1. Central Cropping

Due to the fact that the target objects tend to be located near to the geometrical center of an image,
we propose a central cropping strategy on CFMs to reduce the influence of irrelevant background
before local feature extraction. As the feature extraction is based on CFMs, we implement the central
cropping on the CFMs. In the cropping process, we make the sizes of the cropped CFMs proportional
to the sizes of the original CFMs. Denote the ratio between the area of each cropped CFM and that of
each original CFM as α. If the area of an original CFM is SCFM = W ×H, the area of a cropped CFM is
S′CFM = α× SCFM, where 0 < α < 1. Thus, the width and height of the cropped CFM are W′ =

√
α×W

and H′ =
√
α×H, respectively. To generate the cropped CFM, we set the coordinates of the central

point of the cropped CFM by  xc =
⌊

W
2

⌋
+ 1

yc =
⌊

H
2

⌋
+ 1

(3)

Thus, the cropped CFM can be denoted as R = [(xc,yc), W′, H′], which will be used for local
region detection.

3.3.2. Local Region Detection

Since the maximum activations of a CFM are stable and their surrounding regions contain rich
information, we detect the points with maximum activations, i.e., maximum points on the cropped
CFMs, and then generate the regions surrounding these maximum points for local CNN feature
extraction. Figure 3 shows the flowchart of local region generation on cropped CFMs. For a CFM Mk

i ,
we select the maximum value among all the activations by

mk
i = max

{
f k
i (x, y)

∣∣∣1 ≤ x ≤W, 1 ≤ y ≤ H
}

(4)
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In addition, we generate the saliency map for local feature extraction. In our method, we generate
the saliency map by the famous graph-based visual saliency detection (GBVS) algorithm [52].
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Then, we also apply central cropping on the saliency map, and detect the local maximum values of the
saliency map, as illustrated in Figure 3.

Next, by setting each detected point as a center, the patch surrounding the point is used as the
local region, where the side length of the patch is denoted as L. Suppose NP maximum points are
generated from the CFMs in total. Thus, NP corresponding local regions are generated. To reduce
storage memory and computational complexity in feature extraction and matching, we will not use all
the regions generated from CFMs for feature extraction. Instead, we sort these regions in descending
order according to the activation values of the corresponding maximum points, and select the first N
regions for local feature extraction. Since the number of local maximums of the saliency map is limited,
we use all the regions generated from the saliency map for local feature extraction.

3.3.3. Local Features Extraction and Matching

After generating a set of local regions, we extract a 256-dimensional feature vector by sum-pooling
the activations of CFMs within each local region rather than the whole image region, and then normalize
it. Thus, for a given image Ii, we can extract a set of 256-dimensional normalized local feature vectors
VSIi =

{
V1(Ii), V2(Ii), . . . , VM(Ii)

}
, the number of which is denoted as M. Next, we match these local

features between images. For a query image Iq and a candidate image Ic, by the above local feature
extraction method, we can obtain their M 256-dimensional local feature vectors, denoted as VSq ={
V1

(
Iq
)
, V2

(
Iq
)
, . . . , VM

(
Iq
)}

and VSc =
{
V1(Ic), V2(Ic), . . . , VM(Ic)

}
, respectively. Then, we sequentially

compare each pair of feature vectors to compute their similarity by inner products. By comparing a
query feature vector Vk

(
Iq
)

to each feature vector V j
(
Iq
)

in VSc, where 1 ≤ j ≤ M, we can obtain M

similarity scores and then select the maximum score as the matching score of Vk
(
Iq
)
.

max
{〈

Vk
(
Iq
)
, V j(Ic)

〉∣∣∣ j = 1, 2, . . . , M
}

(5)

Thus, there are M matching scores in total. Next, we sum up all the matching scores as the final
similarity between the query image Iq and the candidate image Ic by Equation (6).

SIM
(
Iq, Ic

)
=

M∑
k=1

max
{〈

Vk
(
Iq
)
, V j(Ic)

〉∣∣∣ j = 1, 2, . . . , M
}

(6)

Finally, we compare the similarity score to a pre-set threshold to determine whether the candidate
image Ic is a near-duplicate version of the query Iq.

4. Experiments

In this section, we first introduce the public datasets and the evaluation criteria used in our
method. Second, for the three parameters of our method, i.e., the cropping ratio α between areas of
cropped CFMs and original CFMs, the maximum number of regions N, and the side length of regions
L, we determine the parameter settings to achieve the optimal performance of our proposed method.
Third, we measure the detection performance of the proposed method and compare it with those
of its two versions, which separately use global CNN features or local CNN features, as well as the
state-of-the-art features.

4.1. Datasets and Evaluation Criteria

In this experiment, we adopt three near-duplicate image detection datasets, i.e., the Oxford5k
dataset [54], the Holidays dataset [55], and the Paris6k dataset [56]. The Oxford5k dataset consists of
5062 pictures of Oxford buildings collected from the Flickr website. These images have been manually
labeled as one of 11 different landmarks, each of which contains five query images. The Holidays
dataset contains a total of 1491 pictures, which are divided into 500 groups. Each group of images
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contains a specific object or scene captured by different viewpoints. The first image of each group is
used as the query image. The Paris6k dataset is composed of 6412 pictures of Paris buildings from the
Flickr website. There are 500 query images in total. The above three public datasets are used to test the
detection performance of different methods. We use the mAP value, which represents the average
detection accuracy at different recall rates, to measure the detection accuracy. In addition, we adopt
the average query time to test the detection efficiency.

4.2. Parameter Determination

In this subsection, we observe the effects of the three parameters of the proposed method, and then
find the proper parameter settings for the proposed method. The three important parameters are α,
N and L, representing the cropping ratio between areas of cropped CFMs and CFMs, the maximum
number of regions, and the side length of regions, respectively. We implement the experiment on
the Oxford5k dataset. We first fix parameters L and N to the default values, 3 and 100, respectively,
to test the impact of the parameter α in the aspects of the accuracy and efficiency. The effects of α
are illustrated in Figures 4 and 5. From Figure 4, we can clearly observe that a larger α is helpful for
performance improvement, because larger cropped CFMs contain more crucial content. However,
increasing α does not consistently improve the performance. This might be because larger cropped
CFMs (α > 0.5) also contain more irrelevant background clutter, which would introduce more noises in
the image features. From Figure 5, it is clear that the increase of α leads to the increase of detection
time, because more features will be extracted from larger cropped CFMs. Therefore, to find a good
trade-off between accuracy and efficiency, we set the parameter α as 0.5, which provides good accuracy
and high efficiency.
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The effects of N on the detection accuracy and efficiency are illustrated in Figures 6 and 7,
respectively. It can be clearly observed that a larger N is helpful for performance improvement.
However, when N is too large, it becomes very likely that many irrelevant local regions are used for
feature extraction. Thus, we set the parameter N as 100 for the following experiments.
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The effects of L are illustrated in Figures 8 and 9. It is clear that the detection performance degrades
if L is too large or too small. That is because a smaller L results in smaller local regions, which contain
insufficient visual content; If the area of local regions is too large, these regions would be sensitive to
background clutter and partial occlusion. To find a good trade-off between accuracy and efficiency,
we set the value of L as five.
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In the proposed method, we adopt the optimal settings of these three parameters, i.e., 0.5 for α,
100 for N and 5 for L in the following experiments.

4.3. Performance When Using Different Pre-Trained Networks

In the experiments, we also test the performances of our method when using different kinds of
pre-trained networks to observe their impacts on our method. We chose four famous convolutional
neural networks including AlexNet [25], VGG16 [57], VGG19 [57], and ResNet-18 [58] to implement
the test, where the last convolutional layers, or ReLu layers, of these networks are adopted. Table 1
shows the mAP values and time costs of our method when using different pre-trained CNNs on
Oxford5k dataset.

Table 1. Performances of our method when using different pre-trained convolutional neural networks
(CNNs) on Oxford5k.

Layer Number of Feature Maps mAP Time (Second)

AlexNet Conv5_3 256 0.715 0.2253
Vgg16 Relu5_3 512 0.728 1.7124
Vgg19 Relu5_4 512 0.719 1.9412
ResNet Conv5_x 512 0.725 1.9728

In Table 1, it is clearly observed that the detection accuracy when using Vgg16, Vgg19,
and ResNet-18 is slightly higher than that when using AlexNet. However, AlexNet leads to much
higher time efficiency than the other networks, due to the fewer feature maps needed to be processed
for feature extraction. Thus, to find a good trade-off between accuracy and efficiency, we chose AlexNet
in our method.

4.4. Performance Comparison

After selecting the parameters, we use Oxford5k as the baseline dataset to compare the detection
performances between our method and its two other versions in the aspects of detection accuracy,
average time cost, and average memory consumption.

The two versions are the methods that separately use the extracted global CNN features or local
CNN features. In Table 2, the “global CNN features” and the “local CNN features” denote the methods
using the extracted global CNN features and local CNN features, respectively. The “Time” means the
average time cost for a query image, while the “Memory” represents the average memory required to
store the features of an image.
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Table 2. Comparison between the proposed method and its two versions on Oxford5k.

Global CNN Features Local CNN Features The Proposed Method

mAP 0.5271 0.780 0.715
Time (seconds) 0.0376 1.6259 0.2253
Memory (bytes) 256

As shown in Table 2, the proposed method achieves a significant improvement in detection
accuracy compared to the method only using global CNN features, and it has much higher detection
efficiency compared to the method only using local CNN features. Moreover, since our method stores
two types of CNN features, the memory consumption of the proposed method is higher than that of
the two other methods. However, its total memory is slightly higher than that of the method using
CNN local features, since the number of candidate images has been greatly reduced by the coarse
feature matching. Additionally, the detection accuracy of the proposed method is comparable to that of
the method only using local CNN features. That is because most of potential near-duplicate versions
of a given query are kept by the coarse feature matching.

Also, we compare our method with five state-of-the-art methods: max-pooling [18], VLAD-CNN [24],
SPoC [29], R-MAC [18], and CroW [30]. Table 3 shows the mAP values of these methods on three
different datasets. From Table 3, it is clear that our method achieves higher detection accuracy than all
of those methods on Oxford5k and Holidays. The detection accuracy of our method is only slightly
lower than that of R-MAC on Paris6k. Overall, the proposed method generally outperforms these
state-of-the-art methods.

Table 3. Comparison of detection accuracy between our method and the state-of-the-art methods on
three different datasets.

Methods Oxford5k
(mAP)

Holidays
(mAP)

Paris6k
(mAP)

max-pooling [18] 0.524 0.711 ——
VLAD-CNN [24] 0.558 0.836 0.583

SPoC [29] 0.589 0.802 ——
R-MAC [18] 0.669 0.852 0.830
CroW [30] 0.684 0.851 0.765

Ours 0.715 0.886 0.772

Figure 10 shows some examples of detection results of the proposed method on Oxford5k.
In summary, our method achieves high detection efficiency and meets real-time detection demand,
while maintaining good accuracy in the task of near-duplicate image detection.
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Figure 10. Several examples of detection results of the proposed method. The four queries are listed in
the first column, and the corresponding top four ranked detection results of each query are shown in
the following columns.

5. Conclusions

We presented a coarse-to-fine feature matching scheme using both global feature and local feature
for near-duplicate image detection. By exploiting the advantages of both global and local CNN features,
the proposed method can achieve real-time and accurate near-duplicate image detection. In the coarse
matching stage, we extract global features to quickly filter most of the irrelevant images. In the
following fine matching stage, we detect CFMs and use the saliency map to extract and match the
proposed local CNN features to obtain the final detection results. The experimental results show our
method achieves desirable performances in both accuracy and efficiency, which makes it appealing for
practical applications of content-based image detection/retrieval tasks.

In our method, we directly use the pre-trained CNNs for near-duplicate image detection, but these
CNNs are originally designed for image classification. Thus, it might be more effective to adopt the
transfer learning methods to generate a fine-tuned CNN model for near-duplicate image detection.
Additionally, the saliency map is generated by an unsupervised method to locate potential object
regions for local feature extraction. In future work, we will study the supervised object recognition
methods to accurately locate the object regions for local feature extraction to further improve the
detection performance.

Author Contributions: Conceptualization, Y.C. and C.-N.Y.; Methodology, Y.C.; Software, K.L. and Y.L.; Validation,
K.L., Y.C. and Z.Z.; Formal analysis, Y.C.; Investigation, K.L.; Resources, Y.L.; Data curation, K.L. and Z.Z.;
Writing—Original draft preparation, Z.Z.; Writing-Review and editing, K.L., Y.C., C.-N.Y. and Y.L.; Visualization,
K.L. and Z.Z.; Supervision, Z.Z.; Project administration, Z.Z.; Funding acquisition, Z.Z. All authors have read and
agreed to the published version of the manuscript.

Funding: This research is funded in part by the National Natural Science Foundation of China under Grant
61972205, 61602253, U1836208, U1836110, 61872134, in part by the National Key R&D Program of China under
Grant 2018YFB1003205, in part by the Priority Academic Program Development of Jiangsu Higher Education
Institutions (PAPD) fund, in part by the Collaborative Innovation Center of Atmospheric Environment and
Equipment Technology (CICAEET) fund, China, and in part by Ministry of Science and Technology (MOST) under
contracts 1092634-F-259-001-through Pervasive Artificial Intelligence Research (PAIR) Labs, Taiwan.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 644 14 of 16

References

1. Zhou, Z.; Wang, Y.; Wu, Q.M.J.; Yang, C.N.; Sun, X. Effective and efficient global context verification for
image copy detection. IEEE Trans. Inf. Forensics Secur. 2016, 12, 48–63.

2. Zhou, Z.; Yang, C.N.; Chen, B.; Sun, X.; Liu, Q.; Wu, Q.M.J. Effective and efficient image copy detection with
resistance to arbitrary rotation. IEICE Trans. Inf. Syst. 2016, 99, 1531–1540. [CrossRef]

3. Zhou, Z.; Wu, Q.M.J.; Yang, Y.; Sun, X. Region-level visual consistency verification for large-scale
partial-duplicate image search. ACM Trans. Multimedia Comput. Commun. Appl. 2020. [CrossRef]

4. Cao, Y.; Zhou, Z.; Sun, X.; Gao, C. Coverless information hiding based on the molecular structure images of
material. Comput. Mater. Continua 2018, 54, 197–207.

5. Zhou, Z.; Cao, Y.; Wang, M.; Fan, E.; Wu, Q.M.J. Faster-RCNN based robust coverless information hiding
system in Cloud Environment. IEEE Access. 2019, 7, 179891–179897.

6. Cao, Y.; Zhou, Z.; Yang, C.N.; Sun, X. Dynamic content selection framework applied to coverless information
hiding. J. Int. Technol. 2018, 4, 1179–1186.

7. Liu, Y.; Yang, C.N.; Wu, C.; Sun, Q.; Bi, W. Threshold changeable secret image sharing scheme based on
interpolation polynomial. Multimedia Tools Appl. 2019, 13, 18653–18667.

8. Zhou, Z.; Wu, Q.M.J.; Huang, F.; Sun, X. Fast and accurate near-duplicate image elimination for visual sensor
networks. Int. J. Distrib. Sens. Netw. 2017, 13, 1550147717694172.

9. Yang, Y.; Wu, Q.M.J.; Feng, X.; Akilan, T. Recomputation of dense layers for the performance improvement
of DCNN. IEEE Trans. Pattern Anal. Mach. Intell. 2019. [CrossRef]

10. Yang, Y.; Wu, Q.M.J. Features combined from hundreds of mid-layers: Hierarchical networks with subnetwork
nodes. IEEE Trans. Neural Netw. Learn. Syst. 2019, 30, 3313–3325. [CrossRef]

11. Lin, G.; Liu, B.; Xiao, P.; Lei, M.; Bi, W. Phishing detection with image retrieval based on improved texton
correlation descriptor. Comput. Mater. Continua 2018, 57, 533–547. [CrossRef]

12. Xu, W.; Xiang, S.; Sachnev, V. A cryptograph domain image retrieval method based on Paillier Homomorphic
block encryption. Comput. Mater. Continua 2018, 55, 11–21.

13. Zheng, L.; Song, C. Fast near-duplicate image detection in Riemannian space by a novel hashing scheme.
Comput. Mater. Continua 2018, 56, 529–539.

14. Zhou, Z.; Mu, Y.; Wu, Q.M.J. Coverless image steganography using partial-duplicate image retrieval.
Soft Comput. 2019, 23, 4927–4938. [CrossRef]

15. Zhou, Z.; Wu, Q.M.J.; Wan, S.; Sun, W.; Sun, X. Integrating SIFT and CNN feature matching for partial-duplicate
image detection. IEEE Trans. Emerging Top. Comput. Intell. 2014, 23, 3368–3380. [CrossRef]

16. Zhou, Z.; Wu, Q.M.J.; Sun, X. Multiple distance-based coding: Toward scalable feature matching for
large-scale web image search. IEEE Trans. Big Data 2019. [CrossRef]

17. Zhou, Z.; Wu, Q.M.J.; Sun, X. Encoding multiple contextual clues for partial-duplicate image retrieval.
Pattern Recognit. Lett. 2018, 109, 18–26. [CrossRef]

18. Tolias, G.; Sicre, R.; Jégou, H. Particular object retrieval with integral max-pooling of CNN activations. arXiv
2015, arXiv:1511.05879.

19. Sharif Razavian, A.; Azizpour, H.; Sullivan, J. CNN features off-the-shelf: An astounding baseline for
recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops,
Columbus, OH, USA, 24–27 June 2014; pp. 806–813.

20. Zagoruyko, S.; Komodakis, N. Learning to compare image patches via convolutional neural networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 4353–4361.

21. Reddy Mopuri, K.; Venkatesh Babu, R. Object level deep feature pooling for compact image representation.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12
June 2015; pp. 62–70.

22. Salvador, A.; Giró-i-Nieto, X.; Marqués, F.; Satoh, S.I. Faster r-cnn features for instance search. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Las Vegas, NV, USA,
26 June–1 July 2016; pp. 9–16.

23. Razavian, A.S.; Sullivan, J.; Carlsson, S.; Maki, A. Visual instance retrieval with deep convolutional networks.
ITE Trans. Media Technol. Appl. 2016, 4, 251–258. [CrossRef]

http://dx.doi.org/10.1587/transinf.2015EDP7341
http://dx.doi.org/10.1145/3383582
http://dx.doi.org/10.1109/TPAMI.2019.2917685
http://dx.doi.org/10.1109/TNNLS.2018.2890787
http://dx.doi.org/10.32604/cmc.2018.03720
http://dx.doi.org/10.1007/s00500-018-3151-8
http://dx.doi.org/10.1109/TETCI.2019.2909936
http://dx.doi.org/10.1109/TBDATA.2019.2919570
http://dx.doi.org/10.1016/j.patrec.2017.08.013
http://dx.doi.org/10.3169/mta.4.251


Mathematics 2020, 8, 644 15 of 16

24. Yue-Hei Ng, J.; Yang, F.; Davis, L.S. Exploiting local features from deep networks for image retrieval.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, Boston,
MA, USA, 7–12 June 2015; pp. 53–61.

25. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.
In Proceedings of the Advances in Neural Information Processing Systems, Lake Tahoe, USA, 3–6 December
2012; pp. 1097–1105.

26. Revaud, J.; Weinzaepfel, P.; Harchaoui, Z.; Schmid, C. Deep matching: Hierarchical deformable dense
matching. Int. J. Comput. Vision 2016, 120, 300–323. [CrossRef]

27. Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago,
Chile, 7–13 December 2015; pp. 1440–1448.

28. Babenko, A.; Slesarev, A.; Chigorin, A.; Lempitsky, V. Neural codes for image retrieval. In Proceedings of the
European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 584–599.

29. Babenko, A.; Lempitsky, V. Aggregating deep convolutional features for image retrieval. arXiv 2015,
arXiv:1510.07493.

30. Kalantidis, Y.; Mellina, C.; Osindero, S. Cross-dimensional weighting for aggregated deep convolutional
features. In Proceedings of the European Conference on Computer Vision, Amsterdam, The Netherlands,
8–10 and 15–16 October 2016; pp. 685–701.

31. Rezende, R.S.; Zepeda, J.; Ponce, J.; Bach, F.; Perez, P. Kernel square-loss exemplar machines for image
retrieval. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 2396–2404.

32. Cao, J.; Liu, L.; Wang, P.; Huang, Z.; Shen, C.; Shen, H.T. Where to focus: Query adaptive matching for
instance retrieval using convolutional feature maps. arXiv 2016, arXiv:1606.06811.

33. Zhi, T.; Duan, L.Y.; Wang, Y.; Huang, T. Two-stage pooling of deep convolutional features for image retrieval.
In Proceedings of the 2016 IEEE International Conference on Image Processing (ICIP), Phoenix, Arizona,
USA, 25–28 September 2016; pp. 2465–2469.

34. Morra, L.; Lamberti, F. Benchmarking unsupervised near-duplicate image detection. Expert Syst. Appl. 2019,
135, 313–326. [CrossRef]

35. Minaee, S.; Abdolrashidi, A.; Su, H.; Bennamoun, M.; Zhang, D. Biometric recognition using deep learning:
A survey. arXiv 2019, arXiv:1912.00271.

36. Minaee, S.; Wang, Y.; Aygar, A.; Chung, S.; Wang, X.; Lui, Y.W.; Rath, J. MTBI identification from diffusion MR
images using bag of adversarial visual features. IEEE Trans Med. Imaging. 2019, 38, 2545–2555. [CrossRef]

37. Zhang, Y.; Zhang, Y.; Sun, J.; Li, H.; Zhu, Y. Learning near duplicate image pairs using convolutional neural
networks. Int. J. Perform. Eng. 2018, 14, 168–177. [CrossRef]

38. Gong, Y.; Wang, L.; Guo, R. Multi-scale orderless pooling of deep convolutional activation features. In Proceedings
of the European Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 392–407.

39. Uijlings, J.R.; Van De Sande, K.E.; Gevers, T.; Smeulders, A.W. Selective search for object recognition. Int. J.
Comput. Vis. 2013, 104, 154–171. [CrossRef]

40. Uricchio, T.; Bertini, M.; Seidenari, L.; Bimbo, A. Fisher encoded convolutional bag-of-windows for efficient
image retrieval and social image tagging. In Proceedings of the IEEE International Conference on Computer
Vision Workshops, Santiago, Chile, 13–16 December 2015; pp. 9–15.

41. Zitnick, C.L.; Dollár, P. Edge boxes: Locating object proposals from edges. In Proceedings of the European
Conference on Computer Vision, Zurich, Switzerland, 6–12 September 2014; pp. 391–405.

42. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal
networks. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada,
7–12 December 2015; pp. 91–99.

43. Lowe, D.G. Local feature view clustering for 3D object recognition. In Proceedings of the 2001 IEEE Computer
Society Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, 8–14 December 2001; p. 1-1.

44. Fischer, P.; Dosovitskiy, A.; Brox, T. Descriptor matching with convolutional neural networks: A comparison
to sift. arXiv 2014, arXiv:1405.5769.

45. Yang, J.; Jiang, Y.G.; Hauptmann, A.G.; Ngo, C.W. Evaluating bag-of-visual-words representations in scene
classification. In Proceedings of the International Workshop on Workshop on Multimedia Information
Retrieval, Augsburg, Germany, 28–29 September 2007; pp. 197–206.

http://dx.doi.org/10.1007/s11263-016-0908-3
http://dx.doi.org/10.1016/j.eswa.2019.05.002
http://dx.doi.org/10.1109/TMI.2019.2905917
http://dx.doi.org/10.23940/ijpe.18.01.p18.168177
http://dx.doi.org/10.1007/s11263-013-0620-5


Mathematics 2020, 8, 644 16 of 16

46. Sánchez, J.; Perronnin, F.; Mensink, T.; Verbeek, J. Image classification with the fisher vector: Theory and
Practice. Int. J. Comput. Vis. 2013, 105, 222–245. [CrossRef]

47. Jégou, H.; Douze, M.; Schmid, C.; Pérez, P. Aggregating local descriptors into a compact image representation.
In Proceedings of the CVPR 2010-23rd IEEE Conference on Computer Vision & Pattern Recognition,
San Francisco, CA, USA, 13–18 June 2010; pp. 3304–3311.

48. Hoogi, A.; Wilcox, B.; Gupta, Y.; Rubin, D.L. Self-Attention Capsule Networks for Image Classification. arXiv
2019, arXiv:1904.12483.

49. Minaee, S.; Abdolrashidi, A. Deep-emotion: Facial expression recognition using attentional convolutional
network. arXiv 2019, arXiv:1902.01019.

50. Jaderberg, M.; Simonyan, K.; Zisserman, A. Spatial transformer networks. In Advances in Neural Information
Processing Systems; Neural Information Processing Systems Foundation, Inc.: Montreal, QC, Canada, 2015;
pp. 2017–2025.

51. Wang, F.; Jiang, M.; Qian, C.; Yang, S.; Li, C.; Zhang, H.; Tang, X. Residual attention network for image
classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu,
HI, USA, 21–26 July 2017; pp. 3156–3164.

52. Harel, J.; Koch, C.; Perona, P. Graph-based visual saliency. In Advances in Neural Information Processing
Systems; Van Can: San Diego, CA, USA, 2007; pp. 545–552.

53. Azizpour, H.; Sharif Razavian, A.; Sullivan, J.; Maki, A.; Carlsson, S. From generic to specific deep
representations for visual recognition. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition Workshops, Boston, MA, USA, 7–12 June 2015; pp. 36–45.

54. Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; Zisserman, A. Object retrieval with large vocabularies and fast
spatial matching. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition,
Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8.

55. Jegou, H.; Douze, M.; Schmid, C. Hamming embedding and weak geometric consistency for large scale
image search. In Proceedings of the European Conference on Computer Vision, Marseille, France, 12–18
October 2008; pp. 304–317.

56. Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; Zisserman, A. Lost in quantization: Improving particular object
retrieval in large scale image databases. In Proceedings of the 2008 IEEE Conference on Computer Vision
and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8.

57. Simonyan, K.; Andrew, Z. Very deep convolutional networks for large-scale image recognition. arXiv 2014,
arXiv:1409.1556 1409.

58. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 26 June–1 July 2016;
pp. 770–778.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1007/s11263-013-0636-x
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction 
	Related Works 
	The Proposed Method 
	CFM Generation 
	Coarse Matching Stage 
	The Extraction of Global CNN Feature 
	Global Feature Matching 

	Fine Matching Stage 
	Central Cropping 
	Local Region Detection 
	Local Features Extraction and Matching 


	Experiments 
	Datasets and Evaluation Criteria 
	Parameter Determination 
	Performance When Using Different Pre-Trained Networks 
	Performance Comparison 

	Conclusions 
	References

