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Abstract: An exponential dichotomy is studied for linear differential equations. A constructive
method is presented to derive a roughness result for perturbations giving exponents of the dichotomy
as well as an estimate of the norm of the difference between the corresponding two dichotomy
projections. This roughness result is crucial in developing a Melnikov bifurcation method for either
discontinuous or implicit perturbed nonlinear differential equations.
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1. Introduction

Exponential dichotomy of a linear system of differential equations is a type of conditional stability
that goes back to an idea in Perron [1]. It was revealed to be a very important tool for the study of
nonlinear systems because of its roughness. Indeed, it has been used to show the existence of chaotic
behaviour in non autonomous perturbations of autonomous nonlinear equations having a homoclinic
solution, since transverse intersection of stable and unstable manifolds along a homoclinic solution
corresponds to the fact that the linearization of the nonlinear system along it has an exponential
dichotomy on R [2]. Exponential dichotomies are also related with the so called reducibillty. A linear
system of differential equations ẋ = A(t)x is said to be reducible if there exists an invertible C1 matrix
S(t) such that the change of variables x = S(t)y transforms the system into a block diagonal system

ẏ =

(
B1(t) 0

0 B2(t)

)
y.

In [3], it is proven that a system is reducible if and only if the original system has an exponential or
ordinary dichotomy. The difference between the two cases is that in ordinary dichotomy the exponents
are equal to zero. Another interesting property is the following (see [3]). The linear system ẋ = A(t)x
has an exponential dichotomy on R+ if and only if for every locally integrable function f (t), t ∈ R+,
such that

sup
t≥0

∫ t+1

t
f (s)ds < ∞,

the inhomogeneous linear system ẋ = A(t)x + f (t) has a bounded solution. Exponential dichotomies
have also relations with such notions as integral separation or spectral theory, see for example [4,5].
Recently, it has been proved in [6] that if a bounded linear Hamiltonian system is exponentially
separated into two subspaces of the same dimension, then it must have an exponential dichotomy.

Mathematics 2020, 8, 651; doi:10.3390/math8040651 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-9650-6847
https://orcid.org/0000-0002-7385-6737
http://dx.doi.org/10.3390/math8040651
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/4/651?type=check_update&version=2


Mathematics 2020, 8, 651 2 of 13

Let us start with the definition of exponential dichotomy. A linear system

ẋ = A(t)x (1)

where A(t) is a piecewise continuous n × n matrix, is said to have an exponential dichotomy on
an interval I ⊂ R (usually R,R+,R−) with projection P, constant k ≥ 1 and exponents α, β > 0 if the
fundamental matrix X(t) of the Equation (1) (with X(0) = I) satisfies the following conditions:

|X(t)PX(s)−1| ≤ ke−α(t−s) for s ≤ t, s, t ∈ I
|X(s)(I− P)X(t)−1| ≤ ke−β(t−s) for s ≤ t, s, t ∈ I.

(2)

Here R = (−∞, ∞), R+ = [0, ∞) and R− = (−∞, 0]. It follows immediately from the definition
that, if α′ ≤ α and β′ ≤ β then α′ and β′ are also exponents of the dichotomy with the same projection
P and constant k and also that the linear system (1) has an exponential dichotomy on an interval J ⊆ I
if it has one in the interval I. Next, from Gronwall inequality it follows that, on a compact interval,
the linear system (1) has an exponential dichotomy with any projection P and exponents α and β (but
the constant may change).

We give few examples of systems having an exponential dichotomy. An autonomous system
ẋ = Ax has an exponential dichotomy on R if and only if all the eigenvalues of A have nonzero real
parts. A periodic system ẋ = A(t)x has an exponential dichotomy on R if and only if all the Floquet
exponents have nonzero real parts. A scalar equation ẋ = a(t)x has an exponential dichotomy on
I = R+ or I = R−, if and only if

lim inf
t−s→∞

1
t− s

∫ t

s
a(τ)dτ > 0 or lim sup

t−s→∞

1
t− s

∫ t

s
a(τ)dτ < 0.

where the limits are taken as t− s→ ±∞ in case I = R± respectively.
Suppose the linear system ẋ = A(t)x has an exponential dichotomy on R+ with exponents α

and β. The result that motivates this paper is the following, see [3] (Proposition 1, p. 34).

Theorem 1 (Roughness). Let ẋ = A(t)x have an exponential dichotomy on R+ with exponents α and β.
Given 0 < α̃ < α and 0 < β̃ < β there exists ε > 0 such that if B(t) is a piecewise continuous matrix such
that supt∈R+

|B(t)| < ε then the linear system ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with
exponents α̃, β̃ (but the constant may be larger).

As a matter of fact in [3] (Proposition 1, p. 34), an estimate on the size of ε is also given, showing
that, if β = α and ε < α

4k2 then ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with exponent
α− 2kε. So if β = α and α̃ = β̃ < α we have ε = α−α̃

2k . We emphasize the fact that in [7] the assumptions
on B(t) have been weakened to obtain a roughness result valid also for unbounded perturbations.

However, the exponents of the dichotomy determine the rate of convergence to zero of bounded
solution either at ∞ (when the dichotomy is in R+) or at−∞ (when the dichotomy is in R−). Sometimes
it becomes important to determine this rate of convergence, and hence the exponents of the dichotomy,
for example when studying chaotic behaviour of discontinuous systems [8] or developing Melnikov
theory for implicit nonlinear differential equations [9]. As a matter of fact in [8] the following result
has been proved.

Theorem 2. Let ẋ = A(t)x have an exponential dichotomy on R+ with exponents α, β. Then there exists
ε > 0 such that if B(t) is a piecewise continuous function such that, for some T > 0, supt≥T |B(t)| < ε and

∫ ∞

T̄
|B(t)|dt <

1
k
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then the linear system ẋ = [A(t) + B(t)]x has an exponential dichotomy on [T, ∞) (and hence also on R+)
with the same exponents α, β.

Of course Theorems 1 and 2 hold equally well when the dichotomy of ẋ = A(t)x is on R−.
The proof given in [8] follows an idea in [3] where an exponential estimate is derived for bounded

solutions of certain integral inequalities. In this paper we want to give another, more direct, proof of
the same result. As a matter of fact we work directly in the space of continuous functions decaying to
zero as t→ ∞ at a certain given rate. This approach leads us to derive the first of the two exponential
estimates given in (2). The second is derived passing to the adjoint system and using the fact that one
has a certain freedom in choosing the projection of the dichotomy (see Proposition 2).

Our method has also the advantage that relates the projection of the dichotomy of the perturbed
system with the one of the unperturbed. As a matter of fact, we will give an estimate of the norm of
the difference between the two projections in term of supt∈I |B(t)|, where I = R+,R− is the interval
where the exponential dichotomy is considered. This estimate allows us to prove the same result also
when the dichotomy of the unperturbed system is on R, a fact that was not noted in [8].

We now briefly resume the content of this paper. In Section 2 we recall basic properties of
exponential dichotomy, stable and unstable spaces, roughness, freedom in the choice of the projection
etc. Section 3 is devoted to the proof of our main result. Finally, Section 4 contains applications to
asymptotically constant matrices and to the linearization of nonlinear systems.

We conclude this section by giving some notations used in the paper. For a linear map L from
a Banach space into another, we denote by RL and N L its range, resp. its kernel. Next C0

b(I)
denotes the Banach space of bounded continuous functions x(t) on the interval I with the norm
‖x‖ = supt∈I |x(t)|. When I = R+ or R− we omit I and write C0

b instead of C0
b(R+) or C0

b(R−).

2. Properties of Exponential Dichotomies

First we start with a remark. Let ν ∈ R be a real number. Then Y(t) = X(t)eνt is a fundamental
matrix of the linear system

ẋ = [A(t) + νI]x. (3)

Assuming that (1) has an exponential dichotomy on I with exponents α, β, we have, for s, t ∈ I,
with s ≤ t:

|Y(t)PY(s)−1| ≤ ke−(α−ν)(t−s)

|Y(s)(I− P)Y(t)−1| ≤ ke−(β+ν)(t−s)

that is (3) has an exponential dichotomy on I with the same projection P, constant k and exponents
(α− ν) and (β + ν). Viceversa, if (3) has an exponential dichotomy on I with projections P, constant
k and exponents α̃, β̃, then (1) has an exponential dichotomy on I with the same projections P and
constant k, and exponents α = α̃ + ν, β = β̃− ν. Taking ν = α−β

2 the exponents of the dichotomy of (3)
are then

α̃ = α− α− β

2
=

α + β

2
= β +

α− β

2
= β̃.

So, starting from a linear system with an exponential dichotomy, shifting the coefficient matrix by
νI, ν = α−β

2 , we can assume that the exponents are the same.

Proposition 1. Suppose that (1) has an exponential dichotomy of the intervals I1 and I2 with the same projection
and exponents. Suppose, also, that I1 ∩ I2 6= ∅. Then (1) has an exponential dichotomy of the interval I1 ∪ I2

with the same projection and exponents but possibly different constant.

Proof. If I1 ⊂ I2 or I2 ⊂ I1 there is nothing to prove. So we assume that I = I1 ∩ I2 is different from
both I1 and I2. We can also assume that I1 is on the left and I2 is on the right that is: if t1 ∈ I1 \ I and
t2 ∈ I2 \ I then t1 < t2.
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It is clear that (2) holds if s, t ∈ I1 or s, t ∈ I2. So, let s ∈ I1 \ I and t ∈ I2 \ I. Take t̄ ∈ I. Then
s < t̄ < t and we have:

|X(t)PX(s)−1| ≤ |X(t)PX(t̄)−1| |X(t̄)PX(s)−1|
≤ ke−α(t−t̄)ke−α(t̄−s) = k2e−α(t−s)

|X(s)(I − P)X(t)−1| ≤ |X(s)(I− P)X(t̄)−1| |X(t̄)(I− P)X(t)−1|
≤ keβ(s−t̄)keβ(t̄−t) = k2eβ(s−t)

the proof is complete.

Since in compact intervals I = [a, b] a linear system (1) has an exponential dichotomy with any
projection and any exponents, it follows from Proposition 1 that if a linear system has an exponential
dichotomy on an interval [T, ∞) (resp. (−∞,−T]) then it has an exponential dichotomy with the same
exponents and projection on R+ = [0, ∞) (resp. R− = (−∞, 0]). Hence, in the following we will only
consider I = R+ or I = R−.

When the dichotomy is on R+ (or on R−) we have some freedom in the choice of the projection.
Indeed we have the following

Proposition 2. [3] (p. 16–17). Suppose (1) has an exponential dichotomy on R+ with projection P. Then

RP = {ξ ∈ Rn : sup
t≥0
|X(t)ξ|eαt < ∞} = {ξ ∈ Rn : sup

t≥0
|X(t)ξ| < ∞}

but the kernel of P, N P, can be any complement of RP. Moreover if Q : Rn → Rn is another projection
such thatRQ = RP then there exist a constant kQ such that (2) holds with Q and kQ instead of P and k (with
the same exponents). If the dichotomy is on R− then it is N P which is uniquely defined being

N P = {ξ ∈ Rn : sup
t≤0
|X(t)ξ|e−βt < ∞} = {ξ ∈ Rn : sup

t≤0
|X(t)ξ| < ∞}.

Moreover RP can be any complement of N P and if Q : Rn → Rn is another projection such that
NQ = N P then there exist a constant kQ such that (2) holds with Q and kQ instead of P and k (with the
same exponents).

A consequence of the roughness Theorem 1 is the following.

Corollary 1. Suppose the linear system (1) has an exponential dichotomy on R+ [resp. R−] with projection P
and exponents α and β. Let B(t) be a matrix such that

lim
t→∞
|B(t)| = 0

where the limit is taken at +∞ if I = R+ and at −∞ when I = R−. Then, given α̃ < α and β̃ < β, the linear
system ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ [resp. R−] with exponent α̃ and β̃ and
projection P̃ such that N P̃ = N P [resp. RP̃ = RP].

Proof. Let α̃ and β̃ be as in the statement of the theorem and let ε > 0 be as in Theorem 1. It follows
from the assumption the existence of T such that for t ≥ T we have |B(t)| ≤ ε and the linear system
ẋ = A(t)x has an exponential dichotomy on [T,+∞) with projection P and exponents α and β. Then
from Theorem 1 it follows that ẋ = [A(t) + B(t)]x has an exponential dichotomy on [T, ∞) with
exponent α̃ and β̃ and projection as in the statement of the Corollary. However, we have already
observed that on [0, T], ẋ = [A(t) + B(t)]x has an exponential dichotomy with the same projection
and exponents. Then the conclusion follows from Proposition 1.
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Example. Consider the scalar equation ẋ =
(
−1 + 1

t+1

)
x. The unperturbed equation ẋ = −x has

an exponential dichotomy on R (and hence on both R+ and R−) with k = 1, α = 1 and projection
P = I. The solution of the perturbed equation with x(0) = 1 is x(t) = (t + 1)e−t and∣∣∣∣ x(t)

x(s)

∣∣∣∣ = t + 1
s + 1

e−(t−s).

Let α < 1. The function (t + 1)e−(1−α)t is increasing on
[
0, α

1−α

]
and decreasing on

[
α

1−α , ∞
)

hence

(t− s + 1)e−(1−α)(t−s) ≤ e−α

1− α

for any s ≤ t. Next, observe that for 0 ≤ s ≤ t we have

1
s + 1

≤ 1⇔ t− s
s + 1

≤ t− s⇔ t + 1
s + 1

≤ t− s + 1

hence
t + 1
s + 1

e−(t−s) ≤ e−α

1− α
e−α(t−s).

So the equation ẋ =
(
−1 + 1

t+1

)
x has an exponential dichotomy on R+ with exponent α < 1 but

not with exponent = 1 since otherwise there should exists k ≥ 1 such that

t + 1
s + 1

≤ k

for any 0 ≤ s ≤ t which is absurd. However, the fundamental solution of scalar equation ẋ =(
−1 + 1

t2+1

)
x is

x(t) = e−t+arctan t

and ∣∣∣∣ x(t)
x(s)

∣∣∣∣ = earctan t

earctan s e−(t−s) ≤ e
π
2 e−(t−s).

for any 0 ≤ s ≤ t. So, the scalar equation ẋ =
(
−1 + 1

t2+1

)
x has an exponential dichotomy on R+

with exponent α = −1.
The difference between the two examples is that the integral of 1

t+1 in [0, ∞) is divergent whereas
the integral of 1

t2+1 in [0, ∞) is convergent. Thus we guess that that the statement of Theorem 1 can be
improved when ∫ ∞

0
|B(t)|dt < ∞.

3. The Main Result

In this section we prove the following result.

Theorem 3. Suppose the linear system ẋ = A(t)x has an exponential dichotomy on R+ with exponents α, β.
Then there exists ε > 0 such that if B(t) is a piecewise continuous function such that supt∈R+

|B(t)| < ε and

∫ ∞

0
|B(t)|dt < ∞

then the linear system ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with the same exponents α, β

and projection Q such that
|Q− P| = O(ε).
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A similar result holds when the dichotomies are considered on R− and on R.

Proof. First, replacing A(t) with A(t) = A(t) + νI, ν = α−β
2 , we may assume that the exponents are

equal. Denote them by δ. Next, consider the perturbed system

ẋ = [A(t) + B(t)]x. (4)

Let δ̃ < δ and take ε > 0 as in Theorem 1. Then (4) has an exponential dichotomy on R+ with
projection, say, P̃ and exponent δ̃. We now follow the approach in [10] to construct a suitable projection
for the dichotomy of the perturbed equation.

Let XB(t) be the fundamental matrix of system (4) and X(t) be the fundamental matrix of
ẋ = A(t)x. A well known standard argument shows that a bounded solution of (4) satisfies the fixed
point equation

x̂(t) = X(t)Pξ +
∫ t

0
X(t)PX(s)−1B(s)x(s)ds−

∫ ∞

t
X(t)(I− P)X(s)−1B(s)x(s)ds.

for some ξ ∈ Rn. It is easy to see that if x(t), x1(t) and x2(t) are bounded functions then

|x̂(t)| ≤ k|ξ|+ 2k
δ
‖B‖ ‖x‖b

and
|x̂1(t)− x̂2(t)| ≤

2k
δ
‖B‖ ‖x1 − x2‖b

So taking ε > 0 such that 2kε < δ, we see that the map x(t) 7→ x̂(t) is a uniform contraction (with
respect to ξ) on the space C0

b(R+) of bounded continuous functions of R+. So, for any ξ ∈ Rn the map
x(t) 7→ x̂(t) has a unique fixed point x(t, ξ) such that

‖x(·, ξ)‖b ≤ k(1− 2kεδ−1)−1|ξ|. (5)

Note that x(t, Pξ) is the unique fixed point of

x̂(t) = X(t)P2ξ +
∫ t

0
X(t)PX(s)−1B(s)x(s)ds−

∫ ∞

t
X(t)(I− P)X(s)−1B(s)x(s)ds

and then x(t, Pξ) = x(t, ξ), because of P2 = P and the uniqueness of the fixed point.
It is straightforward to see that such a fixed point is a solution of (4) and that it is linear with

respect to ξ. So
x(t, ξ) = XB(t)Qξ.

where
Qξ = x(0, ξ) = Pξ −

∫ ∞

0
(I− P)X(s)−1B(s)x(s, ξ)ds.

We pause for a moment to observe that

|(Q− P)ξ| ≤
∫ ∞

0
ke−δs|B(s)||x(s, ξ)|ds ≤ k2(δ− 2kε)−1ε|ξ|

that is
|Q− P| ≤ k2(δ− 2kε)−1ε. (6)

From the previous considerations it follows that XB(t)ξ is a bounded solution of (4) if and only if
ξ = Qξ. Moreover, we have

PQ = P and
QPξ = x(0, Pξ) = x(0, ξ) = Qξ



Mathematics 2020, 8, 651 7 of 13

So
Q2 = [QP]Q = Q[PQ] = QP = Q

that is Q is a projection. Next, if ξ ∈ NQ then Pξ = PQξ = 0 and if ξ ∈ N P then Qξ = QPξ = 0. So

N P = NQ.

Finally, ξ ∈ RQ if and only if XB(t)ξ = XB(t)Qξ is a bounded solution of (4). From Proposition 2
it follows, then, that Q is a projection for the dichotomy of (4). So

|XB(t)QXB(s)−1| ≤ Ke−δ̃(t−s), 0 ≤ s ≤ t
|XB(s)(I−Q)XB(t)−1| ≤ Ke−δ̃(t−s), 0 ≤ s ≤ t

for some K ≥ 1, or, if we go back to the original system with A(t) instead of A(t) + νI:

|XB(t)QXB(s)−1| ≤ Ke−α̃(t−s), 0 ≤ s ≤ t
|XB(s)(I−Q)XB(t)−1| ≤ Ke−β̃(t−s), 0 ≤ s ≤ t.

Now assume that
∫ ∞

0
|B(t)|dt < ∞ and let T > 0 be such that

∆ :=
∫ ∞

T
|B(t)|dt <

1
2k

together with sup
t≥0
|B(t)| ≤ ε and α = β = δ. Let t ≥ s ≥ T. From the previous part we know that

x(t, s, ξ) = XB(t)QXB(s)−1ξ is a solution of ẋ = [A(t) + B(t)]x which is bounded for t ≥ s ≥ T.
Actually we have

|x(t, s, ξ)| ≤ k|ξ|e−δ̃(t−s).

We want to show that δ̃ can be replaced by δ. To this end we consider the map x(t) 7→ x̂(t):

x̂(t) = X(t)PX(s)−1ξ +
∫ t

s
X(t)PX(σ)−1B(σ)x(σ)dσ

−
∫ ∞

t
X(t)(I− P)X(σ)−1B(σ)x(σ)ds

(7)

in the space C0
δ([s, ∞)), s ≥ T, of functions x(t) such that

sup
t≥s
|x(t)|eδ(t−s) < ∞

with norm ‖x(·)‖ = supt≥s |x(t)|eδ(t−s). We have

|x̂(t)| ≤ ke−δ(t−s)|ξ|+
∫ t

s
ke−δ(t−s)|B(σ)|‖x(·)‖ds +

∫ ∞

t
keδ(t+s−2σ)|B(σ)|‖x(·)‖ds

≤ ke−δ(t−s)
(
|ξ|+

∫ ∞

s
|B(σ)|dσ‖x(·)‖

)
≤ ke−δ(t−s) (|ξ|+ ∆‖x(·)‖) .

or else
‖x̂(·)‖ ≤ k (|ξ|+ ∆‖x(·)‖)

and similarly
‖x̂1(·)− x̂2(·)‖ ≤ k∆‖x1(·)− x2(·)‖.

So we have proved the following
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Proposition 3. Suppose the linear system (1) has an exponential dichotomy on R+ with projection P constant
k and exponents α = β = δ. Let B(t) be a matrix and suppose there exists T ≥ 0 such that such that

‖B‖ = sup
t≥T
|B(t)| ≤ ε,

and ∫ ∞

T
|B(t)|dt = ∆ < ∞

where ε > 0 is sufficiently small and ∆ satisfies 2k∆ ≤ 1. Then for any s ≥ T the map (7) is a contraction on the
set C0

δ([s, ∞)) and contraction constant = 1
2 . Thus its unique fixed point x(t, s, ξ) belongs to C0

δ([s, ∞)) and

‖x(t, s, ξ)‖ ≤ 2k|ξ|.

Hence we proved that
|XB(t)QXB(s)−1| ≤ 2ke−δ(t−s)

for any t ≥ s ≥ T, and we extend this inequality for any t ≥ s ≥ 0 provided we change 2k with
a possibly larger constant K1. Next, from Proposition 2, we also know that

|XB(s)(I−Q)XB(t)−1| ≤ K2e−δ̃(t−s)

for 0 ≤ s ≤ t and possibly another constant K2, since we know that Q can be taken as a projection of
the dichotomy of the perturbed system. Thus:

|XB(t)QXB(s)−1| ≤ Ke−δ(t−s)

|XB(s)(I−Q)XB(t)−1| ≤ Ke−δ̃(t−s) (8)

(where δ̃ < δ) for any t ≥ s ≥ 0 and K = max{K1, K2}.
To complete the proof we still have to prove that, for T ≤ s ≤ t, it results

|XB(s)(I−Q)XB(t)−1| ≤ Ke−δ(t−s) (9)

for possibly another constant K. The fundamental matrix Y(t) = X(t)−1∗ of the adjoint system

ẋ = −A(t)∗x

has an exponential dichotomy on R+ with projection (I− P∗). Indeed:

|Y(t)(I− P∗)Y(s)−1| ≤ ke−δ(t−s)

|Y(t)P∗Y(s)−1| ≤ ke−δ(t−s)

for any 0 ≤ s ≤ t. From the previous part applied to the system ẋ = −[A(t) + B(t)]∗x we see that
a projection Q̃∗ exists such thatRQ̃∗ = RP∗ and

|YB(t)(I− Q̃∗)YB(s)−1| ≤ Ke−δ(t−s)

|YB(s)Q̃∗YB(t)−1| ≤ Ke−δ̃(t−s)

for 0 ≤ s ≤ t, where YB(t) = XB(t)−1∗ is the fundamental matrix of the perturbed system ẋ =

−[A(t) + B(t)]∗x. Going back to XB(t) we see that

|XB(t)Q̃XB(s)−1| ≤ Ke−δ̃(t−s)

|XB(s)(I− Q̃)XB(t)−1| ≤ Ke−δ(t−s)
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for 0 ≤ s ≤ t and a certain constant K (possibly different from the previous one, however we do not
introduce other notations for these constants since at the end we can take the larger of all). From the
first inequality it follows that, if ξ ∈ RQ̃ then |XB(t)ξ| ≤ Ke−δ̃t and henceRQ̃ ⊂ RQ. So

RQ̃ = RQ

since rankQ̃ = rankQ̃∗ = rankP∗ = rankP = rankQ. Next:

ξ ∈ N Q̃⇔ Q̃ξ = 0⇔ 〈Q̃ξ, η〉 = 0, ∀η

⇔ 〈ξ, Q̃∗η〉 = 0, ∀η ⇔ ξ ∈ [RQ̃∗]⊥ = [RP∗]⊥.

But in the same way we see that [RP∗]⊥ = N P and hence

N Q̃ = N P = NQ.

As a consequence Q = Q̃ and we have

|XB(t)QXB(s)−1| ≤ Ke−δ(t−s)

and
|XB(s)(I−Q)XB(t)−1| = |XB(s)(I− Q̃)XB(t)−1| ≤ Ke−δ(t−s)

for 0 ≤ s ≤ t.
Going back to the original system (that is before the shifting from A(t) to A(t) + νI) we see that

|XB(t)QXB(s)−1| ≤ 2Ke−α(t−s)

|XB(s)(I−Q)XB(t)−1| ≤ 2Ke−β(t−s).

for 0 ≤ s ≤ t. This completes the proof when the dichotomy is on R+.
When the dichotomy is on R−, we reduce to the case of R+ by changing t with −t, X(t) with

X(−t) and A(t) with −A(−t). When ẋ = A(t)x has an exponential dichotomy on R, we apply the
previous result to see that ẋ = [A(t) + B(t)]x has an exponential dichotomy on R+ with projection Q+

and on R− with projection Q−. ThenRQ+ ∩NQ− = {0} because both projections are close to P and
RP ∩N P = {0} since ẋ = A(t)x has an exponential dichotomy on R. The conclusion follows from [3]
[p. 19], (see also [2] (Proposition 2.1)).

4. Asymptotically Constant Matrices

Let A(t) be a piecewise continuous n× n matrix, t ∈ R+ and assume that a constant matrix A
exists such that

(A1) lim
t→∞

A(t) = A and
∫ ∞

0
|A(t)− A|dt < ∞;

(A2) A has two semi-simple eigenvalues −α < 0 and β > 0;
(A3) there exists µ > 0 such that all others eigenvalues λ of A satisfy either <λ ≤ −(α + µ) or

<λ ≥ β + µ.

Let X0(t) be the fundamental matrix of ẋ = Ax such that X0(0) = I. Since −α and β are
semi-simple eigenvalues, their generalized eigenspaces, that we denote with Vs and Vu, consist of
eigenvectors of −α and β, that is for any v ∈ Vs (resp. v ∈ Vu) we have X0(t)v = ve−αt (resp.
X0(t)v = veβt). Write

Rn = Vss ⊕Vs ⊕Vu ⊕Vuu

where Vss is the generalized eigenspace of the eigenvalues of A with real parts less than −α− µ and
Vuu is the generalized eigenspace of the eigenvalues of A with real parts greater than α + µ. Let dss, ds,
du duu be the dimensions of Vss, Vs Vu, Vuu respectively.
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Let Pss : Rn → Rn be the projection onto Vss with kernel Vs ⊕ Vu ⊕ Vuu, Ps : Rn → Rn be the
projection onto Vs with kernel Vss ⊕ Vu ⊕ Vuu, Pu : Rn → Rn be the projection onto Vu with kernel
Vss ⊕Vs ⊕Vuu, and Puu : Rn → Rn be the projection onto Vuu with kernel Vss ⊕Vs ⊕Vu.

Let {vss
1 , . . . , vss

dss
} be a orthonormal basis of Vss, {vs

1, . . . , vs
ds
} be a orthonormal basis of Vs,

{vu
1 , . . . , vu

du
} be a orthonormal basis of Vu and {vuu

1 , . . . , vuu
duu
} be a orthonormal basis of Vuu. For

any ξ ∈ Rn we have

Pssξ =
dss

∑
j=1

css
j vss

j Psξ = ∑ds
j=1 cs

j v
s
j

Puuξ =
duu

∑
j=1

cuu
j vuu

j Puξ = ∑du
j=1 cu

j vu
j

Hence {
dss

∑
j=1
|css

j |2
} 1

2

= |Pssξ| ≤ |Pss| |ξ|.

Similarly {
ds

∑
j=1
|cs

j |2
} 1

2

≤ |Ps| |ξ|{
du

∑
j=1
|cu

j |2
} 1

2

≤ |Pu| |ξ|{
duu

∑
j=1
|cuu

j |2
} 1

2

≤ |Puu| |ξ|.

Next, Vss, Vs, Vu and Vuu are all invariant under X0(s), that is

ξ ∈ V ⇒ X0(s)ξ ∈ V

for V = Vss, Vs, Vu, Vuu. So we have, for example

X0(t)Pssξ = PssX0(t)Pssξ

and
PssX0(t)(I− Pss) = 0

because X0(t)(I− Pss) = X0(t)Ps + X0(t)Pu + X0(t)Puu ∈ Vs + Vu + Vuu. So

X0(t)Pss = PssX0(t).

Similarly:
X0(t)Ps = PsX0(t)
X0(t)Pu = PuX0(t)
X0(t)Puu = PuuX0(t).

Now we observe that

X0(t)X0(s)−1Psξ = X0(t− s)Psξ = X0(t− s)
ds

∑
j=1

cs
j v

s
j =

ds

∑
j=1

cs
j X0(t− s)vs

j

= e−α(t−s)
ds

∑
j=1

cs
j v

s
j = e−α(t−s)Psξ
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then
|X0(t)X0(s)−1Ps| ≤ |Ps|e−α(t−s)

for any 0 ≤ s, t. Similarly,
|X0(t)X0(s)−1Pu| ≤ |Pu|eβ(t−s)

for any 0 ≤ s, t. A slightly different estimate occurs when considering Y0(t)Y0(s)−1Pss and
Y0(t)Y0(s)−1Puu. Indeed in this case the eigenvalues may not be simple so that, for example

X0(t)X0(s)−1vss
i = X0(t− s)vss

i =
dss

∑
j=1

qij(t− s)eλj(t−s)vss
j

where qij(t) is a polynomial that may have positive degree (but less than the multiplicity of λi as
an eigenvalue of A.) Since <λi ≤ −α− µ, for any i = 1, . . . , dss in this case we have then

|X0(t)X0(s)−1vss
i | = |X0(t− s)vss

i | ≤ cie
−(α+

µ
2 )(t−s)

for some ci > 0. As a consequence

|X0(t)X0(s)−1Pssξ| ≤
dss

∑
i=1
|css

i | |X0(t− s)vss
i | ≤ ci

dss

∑
i=1
|css

i |e
−(α+

µ
2 )(t−s)

≤ k1|Pss|e−(α+
µ
2 )(t−s)|ξ|

for any t ≥ s ≥ 0. Similarly:

|X0(t)X0(s)−1Puuξ| ≤ k2|Puu|e(β+
µ
2 )(t−s)|ξ|

for some k2 and any s ≥ t ≥ 0. Summarising we see that k ≥ 1 exists such that:

|X0(t)X0(s)−1Pss| ≤ k|Pss|e−(α+
µ
2 )(t−s) for any 0 ≤ s ≤ t

|X0(t)X0(s)−1Ps| ≤ |Ps|e−α(t−s) for any 0 ≤ s, t
|X0(t)X0(s)−1Pu| ≤ |Pu|eβ(t−s) for any 0 ≤ s, t
|X0(t)X0(s)−1Puu| ≤ k|Puu|e(β+ f racµ2)(t−s) for any 0 ≤ t ≤ s.

and hence, using the commutativity of X0(s) with the projections

|X0(t)PssX0(s)−1| ≤ k|Pss|e−(α+
µ
2 )(t−s) for any 0 ≤ s ≤ t

|X0(t)PsX0(s)−1| ≤ |Ps|e−α(t−s) for any 0 ≤ s, t
|X0(t)PuX0(s)−1| ≤ |Pu|eβ(t−s) for any 0 ≤ s, t
|X0(t)PuuX0(s)−1| ≤ k|Puu|e(β+

µ
2 )(t−s) for any 0 ≤ t ≤ s.

Setting
P = Pss + Ps

and then I − P = Puu + Pu we get

|X0(t)PX0(s)−1| ≤ (|Ps|+ k|Pss|)e−α(t−s) for any t ≥ s ≥ 0
|X0(s)(I− P)X0(t)−1| ≤ (|Pu|+ k|Puu|)eβ(t−s) for any s ≥ t ≥ 0

From Theorem 3 we obtain the following result.

Proposition 4. Suppose conditions (A1)–(A3) hold. Then the linear system ẋ = A(t)x has an exponential
dichotomy on both R+ and R− with exponents α and β.
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We conclude this Section with an application of Proposition 4 to nonlinear systems. Let f (x) be
a C1-function such that f ′(x) is Lipschitz with L f as Lipschitz constant. Suppose the system ẋ = f (x)
has two hyperbolic fixed points x = x− and x+ (that may coincide, i.e., x− = x+) together with
a heteroclinic orbit u(t), i.e., a bounded solution such that

lim
t→±∞

u(t) = x±.

The fixed points being hyperbolic means that the matrices f ′(x−) and f ′(x+) have no eigenvalues
with zero real part. Then both systems

ẋ = f ′(x±)x

have an exponential dichotomy on R with projections, say, P+ and P−. It is known that rankP± equals
the number of eigenvalues of f ′(x±) having negative real parts counted with multiplicities. Let α± and
β± be the exponents of the dichotomy of ẋ = f ′(x±)x respectively. First we observe that u̇(t) = f (u(t))
is bounded and it is also a solution of ẋ = f ′(u(t))x. From the roughness theorem we know that
this system has an exponential dichotomy on R+ with exponents α̃+ and β̃+ slightly less that α+ and
β+ respectively. Hence we get |u(t)− x+| ≤ Ke−α̃+t for t ≥ 0. Similarly we get |u(t)− x−| ≤ Keβ̃−t,
for t ≤ 0. So we see that f ′(u(t)) − f ′(x+) ∈ L1(R+) and f ′(u(t)) − f ′(x−) ∈ L1(R−). A simple
application of Theorem 3 gives then the following

Theorem 4. Let f (x) be a C1-function with Lipschitz continuous derivative. Suppose there exists x = x−
and x+ such that f (x−) = f (x+) = 0 and f ′(x−), f ′(x+) has no eigenvalues with zero real parts. Then both
linear systems ẋ = f ′(x−)x and ẋ = f ′(x+)x have an exponential dichotomy on R. Let α±, β± and P± be the
corresponding exponents and projections. Suppose further that the (nonlinear) equation ẋ = f (x) has a solution
u(t) such that

lim
t→±∞

u(t) = x±

Then the linear equation ẋ = f ′(u(t))x has an exponential dichotomy on both R− and R+ with exponents
α−, β− and α+, β+ respectively, and projections Q± such that

rank Q± = rank P±.

5. Conclusions

We have given a new proof of a roughness result for linear systems with an exponential dichotomy
different than the one in [8]. This new proof has the advantage that it is is more direct, can be
easily extended to system having an exponential dichotomy on the whole line and gives a precise
estimate on the norm of the difference of the projections of the dichotomies of the perturbed and the
unperturbed system. Moreover it extends also to more general situations. Indeed the assumptions that
supt∈I |B(t)| < ε is used just to prove that the map

x(t) 7→ X(t)Pξ +
∫ ∞

0
Γ(t, s)B(s)x(s)ds,

where

Γ(t, s) =

{
X(t)PX(s)−1 if 0 ≤ s ≤ t
−X(t)(I− P)X(s)−1 if 0 ≤ t < s,

is a contraction on C0
b . According to [7] this holds also under the weaker assumption that

inf
T>0

sup
t≥0

∫ t+T

t
|B(s)|ds

(
k

1− e−αT +
k

1− e−βT

)
< 1 (10)
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and the fixed point x(t, s) satisfies again ‖x‖ ≤ C|ξ|, for a suitable constant C. The remaining part of the
proof showing that this fixed point indeed belongs to C0

δ just depends on the fact that |B(t)| ∈ L1(R+).
Hence Theorem 3 holds also under the weaker condition (10) instead of supt≥0 |B(t)| < ε.

Author Contributions: Investigation, M.F.; Methodology, F.B. The contributions of all authors are equal.
All authors have read and agreed to the published version of the manuscript .

Funding: Partially supported by the Slovak Research and Development Agency under the contract No.
APVV-18-0308 and by the Slovak Grant Agency VEGA No. 1/0358/20 and No. 2/0127/20.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Perron, O. Die Stabilitätsfrage bei Differentialgleichungen. Math. Z. 1930, 32, 703–728. [CrossRef]
2. Palmer, K.J. Exponential dichotomies and transversal homoclinic points. J. Diff. Equ. 1984, 55, 225–256.

[CrossRef]
3. Coppel, W.A. Dichotomies in Stability Theory; Lecture Notes in Mathematics 629; Springer: Berlin/Heidelberg,

Germany, 1978.
4. Palmer, K.J. Exponential dichotomy, integral separation and diagonalizability of linear systems of ordinary

differential equations. J. Diff. Equ. 1982, 43, 184–203. [CrossRef]
5. Palmer, K.J. Exponential dichotomy, exponential separation and spectral theory for linear systems of ordinary

differential equations. J. Diff. Equ. 1982, 46, 324–345. [CrossRef]
6. Battelli, F.; Palmer, K.J. Strongly exponentially separated linear systems. J. Dyn. Diff. Equ. 2019, 31, 573–600.

[CrossRef]
7. Ju, N.; Wiggins, S. On roughness of exponential dichotomy. J. Math. Anal. Appl. 2001, 262, 39–49. [CrossRef]
8. Calamai, A.; Franca, M. Mel’nikov methods and homoclinic orbits in discontinuous systems. J. Dyn. Diff. Equ.

2013, 25, 733–764. [CrossRef]
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