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Abstract: In this paper, we first introduce the new notion of p-strongly quasi-nonexpansive maps
on p-uniformly convex metric spaces, and then we study the ∆(weak)-convergence of products of
p-strongly quasi-nonexpansive maps on p-uniformly convex metric spaces. Furthermore, using the
result, we prove the ∆-convergence of the weighted averaged method for projection operators.
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1. Introduction

The problem of finding common points of two subsets has been studied by many mathematicians,
e.g., [1–12]. It is called the convex feasibility problem which has several applications (see [4]).

A simple and famous algorithmic method to study the convex feasibility problem is to use iterative
methods for projection operators. Indeed, iterative methods in metric spaces have been studied several
authors, e.g., [13–16], etc. Specially, we introduce the (midpoint) averaged method for two projection
operators as follows: for two projections PA and PB, where A and B are closed convex subset of a
Hilbert space H, a iterative sequence

xn :=
PAxn−1 + PBxn−1

2
(1)

is called (midpoint) averaged projection method, where x0 is a point in H.
In [2], the author studied the weak convergence of {xn} given as in Equation (1). In [5], the authors

provided some example that is a sequence which is weakly convergent, but not convergent in
norm sense.

The averaged projection method in Hilbert spaces (linear space) can be extended to more general
spaces (non linear space), e.g., geodesic metric spaces. In [7], Choi defined the weighted averaged
projection method in CAT(κ) spaces with κ ≥ 0 by using the notion of geodesic and the author proved
that ∆(weak)-convergence for the weighted averaged projection sequence (see also [17] for the case of
CAT(0) spaces). Indeed, in CAT(κ) spaces with κ ≥ 0, we can define the weighted averaged projection
method by

xn+1 = PAxn#tPBxn, n ∈ N, t ∈ (0, 1), (2)

where x#ty is a geodesic connecting two point x and y. In particular, if in (2), we take tn = 1/2
for n = 0, 1, · · · , we have the averaged projection method. In fact, in [9], the authors studied the
∆-convergence of the weighted averaged sequence for general operators on p-uniformly convex metric
spaces. Note that every CAT(κ) space with κ ≥ 0 having some diameter condition, is a 2-uniformly
convex metric space, (see Example 1).
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The main purpose of this paper is to study the ∆-convergence (or weak convergence) of products
of p-strongly quasi-nonexpansive maps (see Section 3) on p-uniformly convex metric spaces. Indeed,
(2) can be rewritten as

xn = Tnx0,

where T = PA#tPB, t ∈ (0, 1), where (PA#tPB)x := PAx#tPBx. Thus, the convergence of (2) can be
proven by the convergence result of iterates of the products of T.

This paper is organized as follows. In Section 2, we firstly recall the notions of p-uniformly
convex metric spaces, and the notion of ∆-convergence of sequence in p-uniformly convex metric
spaces. In Section 3, we firstly introduce a new notion of p-strongly quasi-nonexpansive maps
on p-uniformly convex metric spaces, and then we study the ∆-convergence result of products of
p-strongly quasi-nonexpansive maps. Furthermore, using the result, we study the ∆-convergence of
the weighted averaged sequence for two projections defined by (2).

2. Geodesic Metric Spaces

2.1. p-Uniformly Convex Metric Spaces

Let (X, d) be a metric space and x and y be two element in X. A continuous map γ : [0, 1]→ X is
called a geodesic joining x and y if it satisfies the following property: d(γ(s), γ(t)) = |s− t|d(x, y) for
any s, t ∈ [0, 1] with γ(0) = x, γ(1) = y.

A metric space X is said to be a geodesic metric space if for any two points x and y in X, there exists
a geodesic γ joining them.

For 2 ≤ p < ∞, a geodesic metric space (X, d) is called p-uniformly convex with parameter cX > 0
if there exists a constant cX ∈ (0, 1] such that for any z ∈ X and any geodesic γ : [0, 1] → X with
γ(0) = x and γ(1) = y

d(z, γ(t))p ≤ (1− t)d(z, x)p + td(z, y)p − cXt(1− t)d(x, y)p, t ∈ [0, 1]. (3)

(see [18–20]). For the case of 1 < p < 2, since p-uniformly convex metric spaces can be considered as
2-uniformly convex metric spaces (see [18]), we only consider the case of 2 ≤ p < ∞ in this paper.

Now, we give some important examples for p-uniformly convex metric spaces.

Example 1. (1) Let (X, d) be a complete CAT(0)-space (or Hadamard space). Then (X, d) is a 2-uniformly
convex metric space with parameter cX = 1. (see [18]).
(2) Let (X, d) be a CAT(κ) space with diam(X)(= sup{d(x, y) ; x, y ∈ X}) < π

2
√

κ
. Then (X, d) is a

2-uniformly convex metric space with parameter cX ∈ (0, 1) (see [18,20]).

2.2. ∆-Convergence in Geodesic Metric Spaces

We now recall the notion of a weak type convergence in general metric spaces. In [21],
the author was firstly introduced the notion of ∆-convergence that is weak type convergence in
general metric spaces. Indeed the weak convergence and the ∆-convergence are equivalent in Hilbert
spaces. Many authors have been studied the ∆-convergence results in several geodesic metric spaces,
see [3,8,9,17,22–25] etc.

Let (X, d) be a geodesic metric space and let {xn} be a bounded sequence in X. Set

r(x, {xn}) := lim sup
n→+∞

d(x, xn), for x ∈ X.

The asymptotic center A({xn}) of {xn} is defined by

A({xn}) :=
{

x ∈ X | r(x, {xn}) = inf
y∈X

r(y, {xn})
}

.
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A sequence {xn} ⊆ X is said to ∆-converge (or weakly converge) to x ∈ X if for any {xnk} ⊆ {xn},
x is a unique asymptotic center of {xnk}. In this case, x is called the ∆-limit of {xn}. A point x ∈ X
is called a ∆-cluster point of {xn} if there exists a subsequence {xnk} of {xn} satisfying that {xnk}
∆-converges to x.

The following result is important to study the ∆-convergence in a complete p-uniformly convex
metric space.

Proposition 1 ([1]). Let X be a complete p-uniformly convex metric space with parameter cX > 0 and {xn} be
a bounded sequence in X. Then the following results hold

(i) The asymptotic center of {xn} has only one point.
(ii) {xn} has a ∆-cluster point.

For our study, we recall the notion of Fejér monotone sequence in metric spaces. Let {xn} be a
sequence in a metric space (X, d) and K be a non-empty subset of X. A sequence {xn} is called Fejér
monotone with respect to (w.r.t) K if for any k ∈ K

d(xn+1, k) ≤ d(xn, k), for any n ∈ N.

It is clear that {xn} is a bounded sequence whenever {xn} is Fejér monotone sequence w.r.t some K.

Lemma 1 ([9]). Let (X, d) be a complete p-uniformly convex metric space with parameter cX > 0 and let K be
a nonempty subset of X. Let {xn} ⊆ X be a Fejér monotone sequence w.r.t K. If any ∆-cluster point z of {xn}
belongs to K, then {xn} ∆-converges to a point in K.

3. ∆-Convergence Results

Let (X, d) be a p-uniformly convex metric space. An operator T : X → X with Fix(T) 6= ∅ is said
to be firmly quasi-nonexpansive if for all z ∈ Fix(T)

d(Tx, z) ≤ d(x#tTx, z),

where x#ty is a geodesic connecting two point x and y, and p-strongly quasi-nonexpansive if T is
quasi-nonexpansive and if whenever {xn} ⊆ X is bounded, z ∈ Fix(T) and limn→+∞[d(xn, z)p −
d(Txn, z)p] = 0, it follows that limn→+∞ d(xn, Txn) = 0. Note that 1-strongly quasi-nonexpansive is
called strongly quasi-nonexpansive (see [26]). Furthemore, 2n-strongly quasi-nonexpansive for n ∈ N
is n-strongly quasi-nonexpansive since

d(xn, z)2n − d(Txn, z)2n = (d(xn, z)n − d(Txn, z)n)(d(xn, z)n + d(Txn, z)n).

Example 2. Let (X, d) be a complete CAT(κ) space (κ ≥ 0) with diam(X) < π
2
√

κ
, and A be a non-empty

closed convex subset. Then the metric projection operator PA is firmly quasi-nonexpansive (see [1]).

Lemma 2. Let (X, d) be a p-uniformly convex metric space with parameter cX > 0. Every firmly
quasi-nonexpansive map T on X with with Fix(T) 6= ∅ is p-strongly quasi-nonexpansive.

Proof. Suppose that T : X → X is a firmly quasi-nonexpansive map with Fix(T) 6= ∅ and {xn} is a
bounded sequence. Put z ∈ Fix(T) is a point such that

lim
n→+∞

[d(xn, z)p − d(Txn, z)p] = 0. (4)

Then we only show that limn→+∞ d(xn, Txn) = 0 for our proof. To do this, we assume that there exists
ε > 0 and a subsequence {xnk} such that
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d(xnk , Txnk ) ≥ ε (5)

for all k ∈ N. Since the sequence {xn} is bounded, {d(xn, z)} is also bounded in R. So, we can
take a subsequence {d(xnk , z)} of {d(xn, z)} such that limk→+∞ d(xnk , z) = α. Therefore, by using (4),
we have

α = lim
k→+∞

d(xnk , z) = lim
k→+∞

d(Txnk , z). (6)

Since T is a firmly quasi-nonexpansive map, we have for all t ∈ [0, 1]

d(Txnk , z)p ≤ d(xnk #tTxnk , z)p

≤ (1− t)d(xnk , z)p + td(Txnk , z)p ≤ d(xnk , z)p,

which implies that for all t ∈ [0, 1] (using (6))

lim
k→+∞

d(xnk #tTxnk , z) = α.

However, we have by (3),

0 ≤ cX
2

t(1− t)d(xnk , Txnk )
p

≤ (1− t)d(xnk , z)p + td(Txnk , z)p − d(xnk #tTxnk , z)p,

which implies that
lim

k→+∞
d(xnk , Txnk ) = 0.

This is a contradict to (5). The proof is completed.

Lemma 3. Let (X, d) be a geodesic metric space. If {Ti : X → X}m
i=1 is a sequence of p-strongly

quasi-nonexpansive maps with
⋂m

i=1 Fix(Ti) 6= ∅, then

Fix(TmTm−1 · · · T1) =
m⋂

i=1

Fix(Ti).

Proof. Using the definition of a p-strongly quasi-nonexpansive map and the similar method in the
proof in [26] Lemma 3.3, the proof is clear.

Using above lemma and same method in [26], we can have the following results.

Lemma 4. Let (X, d) be a geodesic metric space. If {Ti : X → X}m
i=1 is a sequence of p-strongly

quasi-nonexpansive maps with
⋂m

i=1 Fix(Ti) 6= ∅, then T := TmTm−1 · · · T1 is also p-strongly
quasi-nonexpansive.

Let (X, d) be a geodesic metric space. Now we recall the notion of convex combinations of two
operators. Let T1 and T2 be two operators on X. The convex combination of T1 and T2 is the operator
T1#tT2 defined by

(T1#tT2)x := T1x#tT2x.

With above setting we have the following result.

Lemma 5. Let (X, d) be a p-uniformly convex metric space. If T1 and T2 are p-strongly quasi-nonexpansive
maps with Fix(T1) ∩ Fix(T2) 6= ∅ then T1#tT2 is p-strongly quasi-nonexpansive and Fix(T1#tT2) =

Fix(T1) ∩ Fix(T2) for all t ∈ (0, 1).
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Proof. It is clear that Fix(T1#tT2) ⊇ Fix(T1) ∩ Fix(T2). Assume that x ∈ Fix(T1#tT2) and fix a point
z ∈ Fix(T1) ∩ Fix(T2). Since T1 and T2 are quasi-nonexpansive maps, we have

d(x, z)p = d((T1#tT2)x, z)p ≤ (1− t)d(T1x, z)p + td(T2x, z)p ≤ d(x, z)p

which implies that

(1− t)d(T1x, z)p + td(T2x, z)p = d(x, z)p = (1− t)d(x, z)p + td(x, z)p.

Thus we obtain that for all t ∈ (0, 1)

(1− t)[d(x, z)p − d(T1x, z)p] + t[d(x, z)p − d(T2x, z)p] = 0.

Therefore, by p-strongly quasi-nonexpansivity of T1 and T2, we have T1x = T2x = x. So we have
Fix(T1#tT2) ⊆ Fix(T1) ∩ Fix(T2). Now we show that T1#tT2 is p-strongly quasi-nonexpansive. If {xn}
is a bounded sequence in X satisfying

lim
n→+∞

[d(xn, z)p − d((T1#tT2)xn, z)] = 0.

for z ∈ Fix(T1#tT2) = Fix(T1) ∩ Fix(T2), then by (3) we have

d((T1#tT2)xn, z)p ≤ (1− t)d(T1xn, z)p + td(T2xn, z)p ≤ d(xn, z)p.

Thus we have

0 ≤ (1− t)[d(xn, z)p − d(T1xn, z)p] + t[d(xn, z)p − d(T2xn, z)p] ≤ d(xn, z)p − d((T1#tT2)xn, z)p,

which implies that

lim
n→+∞

(1− t)[d(xn, z)p − d(T1xn, z)p] + t[d(xn, z)p − d(T2xn, z)p] = 0.

Since T1 and T2 are quasi-nonexpansive, we have that

lim
n→+∞

d(xn, z)p − d(T1xn, z)p = 0 and lim
n→+∞

d(xn, z)p − d(T2xn, z)p = 0.

Furthemore, by the fact that T1 and T2 are p-strongly quasi-nonexpansive, we conclude that

lim
n→+∞

d(xn, T1xn) = 0 and lim
n→+∞

d(xn, T2xn) = 0,

which implies that
lim

n→+∞
d(xn, (T1#tT2)xn) = 0.

since d((T1#tT2)xn, xn)p ≤ (1 − t)d(T1xn, xn)p + td(T2xn, xn)p. Hence T1#tT2 is p-strongly
quasi-nonexpansive.

A map T : X → X is called ∆-demiclosed if for any ∆-convergent sequence {xn} with
limn→+∞ d(Txn, xn) = 0, its ∆-limit of {xn} belong to Fix(T).

It is clear that the identity map I on X is ∆-demiclosed.

Example 3. (i) Every firmly nonexpansive map T on X, (that is,

d(Tx, Ty) ≤ d(x#tTx, y#tTy)
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for all x, y ∈ X and t ∈ [0, 1)) is ∆-demiclosed. (see [9]).
(ii) Let (X, d) be a complete CAT(κ) space (κ ≥ 0) (with diam(X) < π

2
√

κ
, for κ > 0) and A 6= ∅ be a closed

convex subset of X. Then PA is ∆-demiclosed (see [27]).

Now we prove the convergence of p-strongly quasi-nonexpansive maps on geodesic metric spaces
as following:

Theorem 1. Let (X, d) be a complete p-uniformly convex metric space and T : X → X be a ∆-demiclosed
p-strongly quasi-nonexpansive map with Fix(T) 6= ∅. Then {Tnx} ∆-converges to a point z ∈ Fix(T) as
n −→ +∞.

Proof. Let x ∈ X be given. Define the sequence {xn} by

x1 := x, xn+1 := Tnx = Txn

for all n ∈ N. Then {xn} is a Fejér monotone sequence w.r.t Fix(T) since T is quasi-nonexpansive.
Thus the sequence {d(xn, z)} is decreasing and bounded in R for z ∈ Fix(T). Therefore {d(xn, z)}
converges to a point in R. Thus, we obtain that

lim
n→+∞

d(xn, z) = lim
n→+∞

d(Txn, z),

which implies that

lim
n→+∞

d(xn, Txn) = 0. (7)

Since {xn} is bounded, by Proposition 1, there exists {xnk} ⊆ {xn} such that {xnk} ∆-converges to
z ∈ X. Since T is a ∆-demiclosed, by combining (7), we have that z ∈ Fix(T). By Lemma 1, we obtain
that {Tnx} ∆-converges to a point z ∈ Fix(T) as n −→ +∞.

Lemma 6. Let (X, d) be a CAT(κ) space with diam(X) < π
2
√

κ
. Let A1 and A2 be two closed convex subsets

of X with A1 ∩ A2 6= ∅ and PA1 and PA2 be corresponding projection operators, respectively. Then PA1#tPA2

is also ∆-demiclosed for all t ∈ [0, 1].

Proof. Put P = PA1#tPA2 for t ∈ (0, 1). Let {xn} be a (bounded) sequence in X and z ∈ X such that
d(Pxn, xn)→ 0 as n→ +∞ and {xn} ∆-converges to z. Note that since for any q ∈ A1 ∩ A2,

0 ≤ d(xn, q)− d(Pxn, q) ≤ d(Pxn, xn)

we have
d(xn, q)− d(Pxn, q)→ 0

as n→ +∞ which implies that

lim
n→+∞

d(xn, q)2 − d(Pxn, q)2 = 0.

Since for any q ∈ A1 ∩ A2,

d(Pxn, q)2 ≤ (1− t)d(PA1 xn, q)2 + td(PA2 xn, q)2 − cXt(1− t)d(PA1 xn, PA2 xn)
2

≤ d(xn, q)2 − cXt(1− t)d(PA1 xn, PA2 xn)
2,

we have that
lim

n→+∞
d(PA1 xn, PA2 xn) = 0.
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Thus we have
d(PA1 xn, Pxn) = td(PA1 xn, PA2 xn)→ 0

as n → +∞ which implies that PA1 z = z since PA1 is ∆-demiclosed. By similar method, we have
PA2 z = z. Since

lim sup
n→+∞

d(Pz, xn)
2 ≤ lim sup

n→+∞

[
(1− t)d(PA1 z, xn) + td(PA1 z, xn)

2
]

= lim sup
n→+∞

d(z, xn)
2,

by uniqueness of ∆-limit, we conclude that P(z) = z. The proof is completed.

Using Lemmas 5 and 6 and Theorem 1, we have the following result

Theorem 2. Let (X, d) be a CAT(κ) space with diam(X) < π
2
√

κ
. Let A1 and A2 be two closed convex subsets

of X with A1 ∩ A2 6= ∅ and PA1 and PA2 be corresponding (metric) projections, respectively. Then for all x ∈ X
and t ∈ (0, 1), there exists a point z ∈ A1 ∩ A2 such that

(
PA1#tPA2

)n x ∆-converges to z as n −→ +∞.
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