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Abstract: In this work we develop a study of positive periodic solutions for a mathematical model
of the dynamics of computer virus propagation. We propose a generalized compartment model
of SEIR-KS type, since we consider that the population is partitioned in five classes: susceptible
(S); exposed (E); infected (I); recovered (R); and kill signals (K), and assume that the rates of virus
propagation are time dependent functions. Then, we introduce a sufficient condition for the existence
of positive periodic solutions of the generalized SEIR-KS model. The proof of the main results are
based on a priori estimates of the SEIR-KS system solutions and the application of coincidence degree
theory. Moreover, we present an example of a generalized system satisfying the sufficient condition.
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1. Introduction

1.1. Scope

In the last decades, due to its theoretical and practical importance and significance,
the mathematical models for dynamics of propagation for epidemics have been extensively studied,
see for instance [1–10] and references in those works. In particular, mathematical models are powerful
tools since it permits to explain, estimate and simulate the spread of infectious disease propagation,
and consequently help to design and test control strategies like an optimal time of vaccination.

From the historical point of view, the earliest mathematical models in epidemiology were
introduced in 1927 [11]. Following the presentation given in [12], we have that the basic idea considered
in [11], in order to describe the dynamics of a virus, was the partition of the total population N in
three classes: the susceptible class S formed for those individuals capable of contracting the disease
and becoming themselves infectives; the infective class I formed for those individuals capable of
transmitting the disease to susceptibles; the removed or recovered class R formed for those individuals
which having contracted the disease, have died or, are permanently immune, or have been isolated,
thus being unable to further transmit the disease. Moreover, they consider the three assumptions:
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the period of the epidemic is too short such that N is constant, the transfer process from S to I is
modeled by the mass action law and the transfer process from I to R is of exponential decay type.
Then, the called SIR model is given by the following system

dS(t)
dt

= −kI(t)S(t),
dI(t)

dt
= kI(t)S(t)− λI(t),

dR(t)
dt

= λI(t),

where k and λ are some positive constants. A particular case of SIR model is the well known SIS
model, which is deduced by considering the partition of the population in two classes of individuals:
susceptible and infected. Afterwards, numerous generalizations are given by several authors, who have
improved the SIR mathematical model by incorporating for instance the vital dynamics, a generalized
transmission forces, other classes of individuals and vaccination.

It is well known that the outbreaks of parasite population, which generate the epidemics occur
around the same time of each year. Then becomes natural to study the periodicity or model these
diseases by incorporating periodic functions into the epidemic models. For instance, in the case of the
SIR model the periodic models are introduced by considering the facts that k and λ are time dependent
periodic functions.

On the other hand, the compartmental models were introduced for biological epidemics. However,
by the newest observation that the diffusion of biological virus is analogous to several processes in
other areas, the ideas have been widely adapted and used to describe other phenomenon. For instance,
the computer virus propagation in a network [13–18]. In particular, in this paper our aim is to study
the periodicity of the mathematical model for virus propagation introduced in [18].

1.2. The Generalized SEIR-KS Mathematical Model

In [18] the authors construct a compartmental model for computer virus propagation.
They consider that the population of individuals is given by computers or nodes in a network which
are in corresponding communications all the time. The population is partitioned in five classes:
the susceptible class S formed by the nodes which are virus-free uninfected; the exposed class E
formed by the nodes which are infected, but the virus is latent; the infected class I formed by the nodes
which are infected and the virus is breaking out; the recovered class R formed by the nodes which
have recovered from virus infection and acquired immunization; and the kill signals class K formed by
special nodes, which are a sort of anti-virus epidemic riding on the back of the virus propagation and
all of them constitute a new compartment, which is generated among the infectious nodes then they
can spontaneously transmit it to their neighboring nodes. The dynamic of computer virus transmission
is studied by considering the following list of assumptions:

(A1) The network at time t is formed by a total of N(t) nodes. Then, we have the following relation
N(t) = S(t) + E(t) + I(t) + R(t) + K(t) at each time t.

(A2) There is a behavior similar to vital dynamics of biological virus. More specifically, related with
births and deaths, there is two characteristics in the process: (i) the new nodes are connected to
the network at constant rate b and a fraction p are of susceptible type and the remaining fraction
q = 1− p are of exposed type; and (ii) each node, by system crash or network interruption,
are disconnected from the network at constant rate µ.

(A3) The dynamics of exposed nodes are characterized by three facts: (i) the susceptible nodes
are transformed in exposed nodes with probability per unit time βE(t) with β a constant;
(ii) the exposed nodes are converted into infected ones at constant rate α; and (iii) the exposed
nodes are converted into kill signals ones at constant rate χ.

(A4) The infected nodes are converted into kill signals nodes or recovered ones at constant rates γ

and ε, respectively.
(A5) The kill signal nodes satisfy two additional premises: (i) the susceptible nodes receive the kill

signal and converted into recovered ones with probability φK(t); and (ii) the infected nodes
receives and relays the kill signal nodes with probability δK(t). Here φ and δ are constants.
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Then, the following ordinary differential equation system

dS(t)
dt

= pb− βS(t)E(t)− φS(t)K(t)− µS(t), (1a)

dE(t)
dt

= qb + βS(t)E(t)− αE(t)− χE(t)− µE(t), (1b)

dI(t)
dt

= αE(t)− δI(t)K(t)− γI(t)− εI(t)− µI(t), (1c)

dK(t)
dt

= δI(t)K(t) + γI(t) + χE(t)− µK(t), (1d)

dR(t)
dt

= φS(t)K(t) + εI(t)− µR(t), (1e)

is introduced as the mathematical model for computer virus propagation.
In this work, with the purpose to study the existence of periodic solutions for systems

of Equation (1), we consider a more general model by assuming that constants on the
assumptions (A2)–(A5) are time dependent real functions, i.e., the parameters b, p, q, p, α, β, γ,
χ, φ, δ, µ and ε are time dependent real functions. More precisely, we are motivated by the analysis of
the following generalized model:

dS(t)
dt

= p(t)b(t)− β(t)S(t)E(t)− φ(t)S(t)K(t)− µ(t)S(t), (2a)

dE(t)
dt

= q(t)b(t) + β(t)S(t)E(t)− α(t)E(t)− χ(t)E(t)− µ(t)E(t), (2b)

dI(t)
dt

= α(t)E(t)− δ(t)I(t)K(t)− γ(t)I(t)− ε(t)I(t)− µ(t)I(t), (2c)

dK(t)
dt

= δ(t)I(t)K(t) + γ(t)I(t) + χ(t)E(t)− µ(t)K(t), (2d)

dR(t)
dt

= φ(t)S(t)K(t) + ε(t)I(t)− µ(t)R(t). (2e)

We observe that the system in Equation (2) can be uncoupled in the study of the system in
Equation (2)a–e. Indeed, it is the strategy considered in [18] to analyze the stability. However, to study
the existence of periodic solutions is more convenient to consider the full system, since it is not
straightforward the fact that the existence of positive periodic solutions for Equation (2)a–d implies
the existence of positive periodic solution for Equation (2)e.

1.3. Reformulation of System in Equation (2) as Operator Equation

Firstly, we introduce a change of variable such that the system in Equation (2) is replaced by
an equivalent system. Then, we reformulate the new system as seen in Equation (4) as an operator
equation which will be analyzed by the topological degree theory.

For S, E, I, K and R satisfying the system in Equation (2), we consider the new functions
S∗, E∗, I∗, K∗ and R∗ defined explicitly by the relation

(S, E, I, K, R)(t) =
(

exp(S∗(t)), exp(E∗(t)), exp(I∗(t)), exp(K∗(t)), exp(R∗(t))
)

. (3)

Then, by differentiation in Equation (3) and using the fact that (S, E, I, K, R) satisfy the
mathematical model in Equation (2), we deduce that (S∗, E∗, I∗, K∗, R∗) is a solution of the system



Mathematics 2020, 8, 761 4 of 20

dS∗(t)
dt

= p(t)b(t) exp(−S∗(t))− β(t) exp(E∗(t))− φ(t) exp((K∗ − S∗)(t))− µ(t), (4a)

dE∗(t)
dt

= q(t)b(t) exp(−E∗(t)) + β(t) exp(S∗(t))− α(t)− χ(t)− µ(t), (4b)

dI∗(t)
dt

= α(t) exp((E∗ − I∗)(t))− δ(t) exp(K∗(t))− γ(t)− ε(t)− µ(t), (4c)

dK∗(t)
dt

= δ(t) exp(I∗(t)) + γ(t) exp((I∗ − K∗)(t)) + χ(t) exp((E∗ − K∗)(t))− µ(t). (4d)

dR∗(t)
dt

= φ(t) exp((K∗ + S∗ − R∗)(t)) + ε(t) exp((I∗ − R∗)(t))− µ(t). (4e)

Thus, our aim is to study the positive periodic solutions of Equation (2) equivalently replaced by
the analysis of positive periodic solution of the new system (4).

Theorem 1. Consider the sets of functions {S, E, I, K, R} and {S∗, E∗, I∗, K∗, R∗} are related by Equation (3).
Then, the functions S, E, I, K and R are a solution of the system in Equation (2) if and only if the functions
S∗, E∗, I∗, K∗ and R∗ are a solution of the system in Equation (4). In particular, we have that the following two
assertions are valid: (a) If S∗, E∗, I∗, K∗ and R∗ satisfying the system in Equation (4) are ω-periodic functions,
then the functions S, E, I, K and R satisfying the system in Equation (2) are ω-periodic; and (b) The existence of
a solution for the system in Equation (4) imply the existence of a positive solution for the system in Equation (2).

Proof. The proof fact that {S, E, I, K, R} is a solution of the system in Equation (2) if and only if
{S∗, E∗, I∗, K∗, R∗} is straightforward by the change of variable (3), differentiation and algebraic
rearrangements. Now, we get the proof of item (a) by using the change of variable (3), for illustration,
we consider the case of function S and we have that S(t + ω) = exp(S∗(t + ω)) = exp(S∗(t)) = S(t).
The item (b) is a straightforward consequence of the definition of the functions S∗, E∗, I∗, K∗ and R∗

given in Equation (3).

In order to define the operator equation, we consider the normed vector spaces X and Y and
introduce the operators L : Dom L ⊂ X → Y and N : X → Y explicitly defined by the relations

L
(
(x1, x2, x3, x4, x5)

T
)

=

(
dx1

dt
,

dx2

dt
,

dx3

dt
,

dx4

dt
,

dx5

dt

)T
(5)

N
(
(x1, x2, x3, x4, x5)

T
)

= (N1,N2,N3,N4, ,N5)
T , (6)

where

N1(t) = p(t)b(t) exp(−x1(t))− β(t) exp(x2(t))− φ(t) exp((x4 − x1)(t))− µ(t), (7)

N2(t) = q(t)b(t) exp(−x2(t)) + β(t) exp(x1(t))− α(t)− χ(t)− µ(t), (8)

N3(t) = α(t) exp((x2 − x3)(t))− δ(t) exp(x4(t))− γ(t)− ε(t)− µ(t), (9)

N4(t) = δ(t) exp(x3(t)) + γ(t) exp((x3 − x4)(t)) + χ(t) exp((x2 − x4)(t))− µ(t), (10)

N5(t) = φ(t) exp((x1 + x4 − x5)(t)) + ε(t) exp((x3 − x5)(t))− µ(t). (11)

The operator notation implies that the system in Equation (4) can be rewritten as the following
operator equation

L
(
(S∗, E∗, I∗, K∗, R∗)T

)
= N

(
(S∗, E∗, I∗, K∗, R∗)T

)
, (S∗, E∗, I∗, K∗, R∗) ∈ Dom L ⊂ X, (12)
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where the appropriate Banach spaces X and Y are defined by

X = Y =
{

xT ∈ C(R,R5) : x(t + ω) = x(t),
∥∥∥x
∥∥∥ =

5

∑
i=1

max
t∈[0,ω]

|xi(t)| < ∞
}

. (13)

Hereinafter we use the bold notation xT := (x1, x2, x3, x4, x5)
T . We notice that the spaces in

Equation (13) are the more convenient, since we are concerned with the analysis of ω-periodic solutions.
However, if the interest is to analyze other properties we should be consider a suitable definition of
X and Y.

1.4. Main Results

By convenience of presentation, we introduce the notation

f =
1
ω

∫ ω

0
f (t)dt, f⊥ = min

x∈[0,ω]
f (x), and f> = max

x∈[0,ω]
f (x), (14)

for any positive real valued bounded function f defined on [0, ω].
Let us consider the following assumption

The initial condition (S(0), E(0), I(0), K(0), R(0)) ∈ R5
+; the coefficient functions b, p,

q, α, β, γ, χ, φ, δ, µ and ε are positive, continuous, ω-periodic on [0, ω]; and there are the
strictly positive constants κ1 and κ2 such that
(pb)⊥ − φ>(φ⊥)−1b exp(2ωµ) ≥ κ1 > 0

1− ε>α>b
µ>(γ + ε + µ)⊥(α + χ + µ)⊥

exp
(

ω
[
(γ + ε + µ)> + φ>(φ⊥)−1b + µ>

])
≥ κ2 > 0


(15)

Then, the main result of the paper are given by the following three theorems.

Theorem 2. Let X and Y the spaces defined on Equation (13); Q : Y → Y defined by
Q(xT) = ω−1

∫ ω
0 x(τ)Tdτ; and the operators L : X → Y and N : X → Y defined on Equations (5) and (6),

respectively. Moreover, assume that the hypothesis in Equation (15) is satisfied. Then, there are the positive
constants ρ1, ρ2, ρ3, d1, d2, d3, δ1, δ2 and δ3, such that the following two assertions are valid

(a) If λ ∈]0, 1[ and x ∈ Dom L are such that L(x) = λN(x), the following inequalities

xi(t) < ln(ρi/ω) + di, i = 1, . . . , 5 (16)

ln(δi) < xi(t), i = 1, . . . , 5, (17)

holds for all t ∈ [0, ω].
(b) If x ∈ Ker L are such that QNx = 0, the following inequalities

xi(t) < ln(ρi/ω), i = 1, . . . , 5, (18)

ln(δi) < xi(t), i = 1, . . . , 5, (19)

holds for all t ∈ [0, ω].

Theorem 3. If the hypothesis in Equation (15) is satisfied, there exists at least one ω-periodic solution of
Equation (4).

Theorem 4. Consider that the hypothesis in Equation (15) is satisfied. Then, the system in Equation (2) has at
least one positive ω-periodic solution.
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1.5. Related Works

There are several works where the study of positive periodic solutions is developed, for instance
in [13,19–33]. In particular, recently in [13] was proved the existence of at one positive periodic solution
of the following system modeling the dynamics of a computer virus

dS(t)
dt

= b(t)− µ1(t)S(t)− β1(t)S(t)L(t)− β2(t)S(t)A(t) + γ1(t)L(t) + γ2(t)A(t),

dL(t)
dt

= β1(t)S(t)L(t) + β2(t)S(t)A(t) + α2(t)A(t)− [µ2(t) + α1(t) + γ1(t)]L(t),

dA(t)
dt

= α1(t)L(t)− [µ3(t) + α1(t) + γ2(t)]A(t),

by assuming that S(0), L(0) and A(0) are strictly positive and the functions b, µ1, µ2, µ3, β1, β2, γ1, γ2, α1

and α2 are positive, continuous, ω-periodic on [0, ω] and(
α1

α1 + µ2

)>
(α2 + γ2)

> < (µ3 + α2 + γ2)
⊥

We observe that S, L and A denotes the susceptible computers, the latent computers and the
infectious computers, respectively.

1.6. Outline of the Paper

The paper is organized as follows. In Section 2, we introduce some terminology related to
the coincidence degree theory and some useful results. In Sections 3–5 we develop the proof of
Theorems 2–4, respectively. Finally, in Section 6, we present an examples of a system with coefficients
satisfying Equation (15).

2. Preliminaries

In this paper, we utilize the standard notation and terminology of topological degree theory.
However, for self-contained presentation, we recall some notation, concepts and results related to the
statement of of Mawhin’s theorem, [34]. Moreover, we prove some properties for the operators L and
N defining on the operator Equation (12).

2.1. The Mawhin’s Continuation Theorem

Definition 1. Let X and Y be normed vector spaces and L : Dom L ⊂ X → Y a linear operator. Then, L is
called a Fredholm operator of index zero, if the following assertions

dim(Ker L) = codim(Im L) < ∞ and Im L is closed in Y, (20)

are valid.

Proposition 1. Let X and Y be normed vector spaces and L : Dom L ⊂ X → Y a linear operator. If L is
a Fredholm mapping of index zero, then

(i) There are two continuous projectors P : X → X and Q : Y → Y such that Im P = Ker L and
Im L = Ker Q = Im (I −Q).

(ii) LP := L|Dom L∩Ker P : (I − P)X → Im L is invertible and its inverse is denoted by KP.
(iii) There is an isomorphism J : Im Q→ Ker L.

Definition 2. Let X and Y be normed vector spaces and L : Dom L ⊂ X → Y a Fredholm mapping of
index zero. Let P : X → X and Q : Y → Y be two continuous projectors such that Im P = Ker L and
Im L = Ker Q = Im (I − Q). Let us consider N : X → Y a continuous operator and Ω ⊂ X an open
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bounded set. Then, N is called L−compact on Ω if QN(Ω) is a bounded set and the operator KP(I −Q)N is
compact on Ω.

Definition 3. Let Ω ⊂ Rn be an open bounded set, f ∈ C1(Ω,Rn) ∩ C(Ω,Rn) and y ∈ Rn\ f (∂Ω ∪ N f ),
i.e., y is a regular value of f . Here, N f = {x ∈ Ω : J f (x) = 0} the critical set of f and J f the Jacobian of f
at x. Then, the degree deg{ f , Ω, y} is defined by deg{ f , Ω, y} = ∑x∈ f−1(y) sgnJ f (x), with the agreement
that ∑

∅
= 0.

Theorem 5. Assume that (X, ‖.‖X) and (Y, ‖.‖Y) are two Banach spaces and Ω is an open bounded set.
Consider that L : Dom L ⊂ X → Y be a Fredholm mapping of index zero and N : X → Y be L-compact on Ω.
If the following hypotheses

(C1) Lx 6= λNx for each (λ, x) ∈]0, 1[×(∂Ω ∩Dom L).
(C2) QNx 6= 0 for each x ∈ ∂Ω ∩Ker L.
(C3) deg(JQN, Ω ∩Ker L, 0) 6= 0.

are valid. Then the operator equation Lx = Nx has at least one solution in Dom L ∩Ω.

2.2. L Is a Fredholm Operator of Index Zero

Lemma 1. The operator L : Dom L ⊂ X → Y defined on Equation (5), with X and Y the Banach spaces given
on Equation (13), is a Fredholm operator of index zero. Moreover the sets Ker L and Im L are characterized by

Ker L ∼= R5 and Im L =
{

y ∈ Y :
∫ ω

0 y(τ)Tdτ = 0
}

, respectively.

Proof. In order to prove the Lemma we apply the Definition 1 or more precisely we prove that L
satisfy Equation (20).

The left condition in Equation (20) is proved as follows. Let (s0, l0, i0, k0, r0) ∈ R5 such that
x(t0) = (s0, l0, i0, k0, r0), we observe that xT ∈ Ker L is equivalent to x(t) = (s0, l0, i0, k0, r0) for all
t ≥ t0. Then, we have that Ker L ∼= R5. Now, if we select arbitrarily yT ∈ Im L, we have that
there is x ∈ Dom L such that LxT = yT . Then, from Equation (5) and ω-periodic behavior of x,

we deduce that
∫ t+ω

t y(τ)Tdτ = 0 for each t ≥ t0 or equivalently Im L =
{

y ∈ Y :
∫ ω

0 y(τ)Tdτ = 0
}

.

Now, by linear algebra results, we recall the existence of isomorphisms X ∼= Im L ⊕ (X/Im L),
X ∼= Ker L⊕ (X/Ker L), and Im L ∼= X/Ker L. Thus, we have that Ker L ∼= X/Im L and we get that
dim(Ker L) = codim(Im L) = 4.

To prove the left condition in Equation (20) we introduce the linear continuous mapping
F : Im L ⊂ Y → R5 defined by F(xT) =

∫ ω
0 xT(τ)dτ and observe that F−1(0) = Im L. Thus, clearly

Im L is a closed set of the space Y.

2.3. Construction of the Projectors P, Q and the Operator KP

We remark that the existence of three abstract projectors P, Q and KP associated to L, is guaranteed
by Proposition 1. However, by convenience of some calculus in the following sections we introduce
explicitly the definitions of P and Q given by

P : X → X, Q : Y → Y, P
(

xT
)
= Q

(
xT
)
=

1
ω

∫ ω

0
x(τ)Tdτ (21)

and notice that satisfy the relations in Proposition 1. More precisely, we have that

(a) Ker L = Im P. We prove that Ker L ⊂ Im P as follows: from the isomorphism Ker L ∼= R5

given on Lemma 1, we observe that xT ∈ Ker L is equivalent to the fact that x(t) is constant for
all t ≥ t0, which at the same time implies that x ∈ Im P, since for x(t) constant we have that
P
(
xT) = xT Conversely, the proof of the inclusion Im P ⊂ Ker L is deduced by the following



Mathematics 2020, 8, 761 8 of 20

facts: for yT ∈ Im P there is z ∈ X such that P(zT) = yT and from Equation (21) we obtain that
ω−1

∫ ω
0 z(τ)Tdτ = yT which implies by differentiation the fact that L(yT) = 0 or y ∈ Ker L.

(b) Ker Q = Im L. From the definition of Q given in Equation (21) we have that yT ∈ Ker Q is
equivalent to

∫ ω
0 y(τ)Tdτ = 0 and from the characterization of Im L given on Lemma 1 is at the

same time equivalent to yT ∈ Im L.
(c) Im (I −Q) = Im L. Let yT ∈ Im (I − Q), then there is z ∈ X such that (I − Q)

(
zT
)

= yT ,
which implies that

∫ ω

0
y(τ)Tdτ =

∫ ω

0

(
z(τ)T − 1

ω

∫ ω

0
z(m)Tdm

)
dτ = (0, 0, 0, 0)

and, from the characterization of Im L given on Lemma 1, we get that y(τ)T ∈ Im L.
Thus, we obtain that Im (I −Q) ⊂ Im L. By analogous arguments, we can prove the inclusion
Im L ⊂ Im (I −Q).

(d) Operators KP and LP. The notation LP is is introduced for the restriction of L to Dom L ∩Ker P,
i.e., LP is the operator defined from Dom L ∩ Ker P to Im L and LP = L on Dom L ∩ Ker P.
The symbol KP is used to denote the inverse of LP, and is precisely defined as the operator
such that

KP

(
xT
)
(t) =

∫ t

0
x(τ)Tdτ − 1

ω

∫ ω

0

∫ η

0
x(m)Tdmdη. (22)

We notice that, we can prove that the operator KP is the inverse of the operator LP by application
of the following identity

∫ t

0

d
ds

x(s)ds− 1
ω

∫ ω

0

∫ t

0

d
dm

x(m)dmdt = x(t),

which is valid only for all xT ∈ Dom L ∩Ker P.

Thus, the projectors P and Q defined on Equation (21) satisfy the Proposition 1, since we can
follow (i) and (ii) are satisfied from (a)–(c) and (d), respectively.

2.4. N Defined on Equation (6) Is a Continuous Operator

Lemma 2. The operator N : X → Y defined on Equation (5), with X and Y the Banach spaces given on
Equation (13), is a continuous operator.

Proof. Let us choose arbitrarily the sequence {xn} ⊂ X which converges to x in the norm induced
topology of X. By the definition of N given on Equation (6) and applying componentwise the inequality

| exp(z2)− exp(z1)| =
∣∣∣∣∫ z1

z2

exp(s)ds
∣∣∣∣ ≤ max

{
exp(z1), exp(z2)

}
|z2 − z1|, ∀z1, z2 ∈ R,

we get the existence of C > 0 depending only on b, µ1, β1, β2, γ1, γ2, α1 and α2 such that
‖N(xn)− N(x)‖ ≤ C‖xn − x‖. Thus, the sequence {N(xn)} ⊂ X converges to N(x) in the topology of
X induced by the norm. Hence, we can deduce that N is a continuous operator.

2.5. N Defined on Equation (6) Is L-Compact on any Ball of X Centered at (0, 0, 0, 0, 0).

Lemma 3. Assuming that h ∈ R+ is an arbitrary and fix number defining the radius h of an open ball of X
centered at (0, 0, 0, 0, 0), denoted by Ω ⊂ X, i.e.,

Ω =
{
(x1, x2, x3, x4, x5) ∈ X : ‖(x1, x2, x3, x4, x5)‖ < h

}
. (23)
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Moreover, consider L and N defined on Eqautions (5) and (6), respectively. If the assumption in Equation (15) is
satisfied, the operator N is L-compact on Ω.

Proof. The proof is focused in the verification of the fact that L satisfy the two requirements of
Definition 2: QN(Ω) is a bounded set and KP(I −Q)N is a compact operator on Ω, since Ω is an open
bounded set by the its definition given on Equation (23) and L is a Fredholm operator of index zero by
application of Lemma 1.

To prove that QN(Ω) is bounded we proceed as follows. We observe that

QN(xT) =
1
ω

∫ ω

0
N(τ)Tdτ. (24)

Then, for x ∈ Ω we have that ‖QN(xT)‖ ≤ 1
ω

∫ ω
0 ‖N‖dτ = ‖N‖, which implies that QN(Ω)

is bounded.
In order to prove that KP(I − Q)N is a compact operator on Ω, we observe that from

Equations (6), (21) and (22) we get

(KP(I −Q)N)(xT)(t) =
∫ t

0
N(τ)Tdτ +

(
1
2
− t

ω

) ∫ ω

0
N(τ)Tdτ − 1

ω

∫ ω

0

∫ η

0
N(m)Tdmdη.

Then, we deduce that ‖KP(I − Q)N‖ ≤ 2ω‖N‖, as a result we have that (KP(I − Q)N)(Ω) is
a bounded, since the operator N is bounded on Ω. Moreover, we can prove the bound

|(KP(I −Q)N)(xT)(t)− (KP(I −Q)N)(xT)(s)| ≤ 2‖N‖ |t− s|, ∀t, s ∈ [t0, ∞[,

i.e., KP(I − Q)N is an equicontinuous operator. Hence, by Arzela Ascoli’s theorem we get that
KP(I −Q)N is a compact operator on Ω.

2.6. A Useful Auxiliary Result

Proposition 2. [13] Let ψ : [0, ω] ⊂ R+ → R be an absolutely continuous function satisfying the
differential inequality

d
dt

ψ(t) + m(t)ψ(t) ≥ 0, ∀t ∈ [0, ω], (25)

with m ∈ L1([0, ω]) such that 0 < m1 ≤ m(t) ≤ m2 for all t ∈ [0, ω] and for some positive constants m1

and m2. Then, if ψ(0) > 0 we have that ψ(t) ≥ ψ(0) exp(−m2ω) > 0 for all t ∈ [0, ω].

3. Proof of Theorem 2

3.1. Four Useful Lemmata

We introduce four Lemmmata related with some estimates for the operator equation Lx = λNx,
which is equivalent to the following system
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dx1

dt
= λ [pb exp(−x1)− β exp(x2)− φ exp(x4 − x1)− µ] , (26a)

dx2

dt
= λ [qb exp(−x2) + β exp(x1)− α− χ− µ] , (26b)

dx3

dt
= λ [α exp(x2 − x3)− δ exp(x4)− γ− ε− µ] , (26c)

dx4

dt
= λ [δ exp(x3) + γ exp(x3 − x4) + χ exp(x2 − x4)− µ] , (26d)

dx5

dt
= λ [φ exp(x1 + x4 − x5) + ε exp(x3 − x4)− µ] , (26e)

and also can be rewritten as the system

d
dt

exp(x1) + λµ exp(x1) = λ [pb− β exp(x1 + x2)− φ exp(x4)] , (27a)

d
dt

exp(x2) + λ(α + χ + µ) exp(x2) = λ [qb + β exp(x1 + x2)] , (27b)

d
dt

exp(x3) + λ(γ + ε + µ) exp(x3) = λ [α exp(x2)− δ exp(x3 + x4)] , (27c)

d
dt

exp(x4) + λµ exp(x4) = λ [δ exp(x3 + x4) + γ exp(x3) + χ exp(x2)] , (27d)

d
dt

exp(x5) + λµ exp(x5) = λ [φ exp(x1 + x4) + ε exp(x3 − x4 + x5)] . (27e)

We notice that to deduce Equation (27) we multiply the i-th equation of the system in Equation (26)
by exp(xi). Thus, the proof of estimates for Lx = λNx is focused in to get the estimates of the solutions
of Equation (26) (or equivalently of Equation (27)).

Lemma 4. Assume that (S(0), E(0), I(0), K(0), R(0)) ∈ R5
+; the coefficient functions b, p, q, α, β, γ, χ, φ, δ, µ

and ε are positive, continuous and ω-periodic on [0, ω]; and the operators L : Dom L ⊂ X → Y and defined
on Equations (5) and (6), with X and Y the Banach spaces given on Equation (13). Then, the solution of the
operator equation Lx = λNx with λ ∈]0, 1[ satisfy the following inequalities

exp(x2(t)) ≥ exp
(

E(0)− (α + χ + µ)>ω
)

, (28)

exp(x4(t)) ≥ exp
(

K(0)− µ>ω
)

, (29)

exp(x5(t)) ≥ exp
(

R(0)− µ>ω
)

, (30)

(pb)⊥ ≤
[
µ> + β> max

t∈[0,ω]
exp(x2(t))

]
exp(x1(t)) + φ> max

t∈[0,ω]
exp(x4(t)), (31)

α⊥ exp
(

E(0)− (α + χ + µ)>ω
)
≤
[
(γ + ε + µ)> + δ> max

t∈[0,ω]
exp(x4(t))

]
exp(x3(t)), (32)

for any t ∈ [0, ω].

Proof. By the continuity of the coefficient functions and the fact that λ ∈]0, 1[, we have that
λ(α + χ + µ)(t) ∈ [λ(α + χ + µ)⊥, (α + χ + µ)>] ⊂ R+ and λµ(t) ∈ [λµ⊥, µ>] ⊂ R+, for any
t ∈ [0, ω]. Then, we can prove Equations (28)–(30), by straightforward application of Proposition 2 to
Equations (27)b,d,e, respectively, since we have that
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exp(x2(t)) ≥ exp(x2(0)) exp(−(α + χ + µ)>ω) = exp
(

E(0)− (α + χ + µ)>ω
)

,

exp(x4(t)) ≥ exp(x4(0)) exp(−µ>ω) = exp
(

K(0)− µ>ω
)

,

exp(x5(t)) ≥ exp(x5(0)) exp(−µ>ω) = exp
(

R(0)− µ>ω
)

,

for any t ∈ [0, ω]. Now, to prove Equations (31) and (32), for i = 1, 3, we introduce the notation
τi ∈ [0, ω] for the points where xi has a minimum. Then, using the notation in Equation (14),
from Equations (27)a,c, and (28) we get

(pb)⊥ ≤ (pb)(τ1)

= µ(τ1) exp(x1(τ1)) + β(τ1) exp((x1 + x2)(τ1)) + φ(τ1) exp(x4(τ1))

=
[
µ(τ1) + β(τ1) exp(x2(τ1))

]
exp(x1(τ1)) + φ(τ1) exp(x4(τ1))

≤
[
µ> + β> max

t∈[0,ω]
exp(x2(t))

]
exp(x1(t)) + φ> max

t∈[0,ω]
exp(x4(t)),

α⊥ exp
(

E(0)− (α + χ + µ)>ω
)
≤ α(τ3) exp(x2(τ3))

= (γ + ε + µ)(τ3) exp(x3(τ3)) + δ(τ3) exp((x3 + x4)(τ3))

≤
[
(γ + ε + µ)> + δ> max

t∈[0,ω]
exp(x4(t))

]
exp(x3(t)),

for any t ∈ [0, ω].

Lemma 5. Assume that hypotheses of Lemma 4. Then, the solution of the operator equation Lx = λNx with
λ ∈]0, 1[ satisfy the integral inequalities

∫ ω

0
exp(x1(t))dt ≤ ωb

µ⊥
, (33)

∫ ω

0
exp(x2(t))dt ≤ ωb

(α + χ + µ)⊥
, (34)

∫ ω

0
exp(x3(t))dt ≤ ωα>b

(α + χ + µ)⊥(γ + ε + µ)⊥
, (35)

∫ ω

0
exp(x4(t))dt ≤ ωb

φ⊥
, (36)

∫ ω

0
exp(x5(t))dt ≤ ωbφ>

µ⊥φ⊥
max

t∈[0,ω]
exp(x1(t)) +

ε>maxt∈[0,ω] exp(x3(t))

µ⊥ exp(K(0)− µ>ω)

∫ ω

0
exp(x5(t))dt. (37)
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Proof. We integrate the equations of the system in Equation (27) on [0, ω] and using the ω-periodicity
of x we deduce the following identities∫ ω

0
p(t)b(t)dt =

∫ ω

0
[β(t) exp((x1 + x2)(t)) + φ(t) exp(x4(t)) + µ(t) exp(x1(t))] dt, (38a)∫ ω

0
q(t)b(t)dt =

∫ ω

0
[−β(t) exp((x1 + x2)(t)) + (α + χ + µ)(t) exp(x2(t))] dt, (38b)∫ ω

0
α(t) exp(x2(t))dt =

∫ ω

0
[δ(t) exp((x3 + x4)(t)) + (γ + ε + µ)(t) exp(x3(t))] dt, (38c)∫ ω

0
µ(t) exp(x4(t))dt =

∫ ω

0
[δ(t) exp((x3 + x4)(t)) + γ(t) exp(x3(t)) + χ(t) exp(x2(t))] dt, (38d)∫ ω

0
µ(t) exp(x5(t))dt =

∫ ω

0
[φ(t) exp((x1 + x4)(t)) + ε(t) exp((x3 − x4 + x5)(t))] dt. (38e)

Then, adding Equation (38)a,b, using the ω-periodicity of x1 and x2, and the fact that
p(t) + q(t) = 1, we deduce that∫ ω

0
b(t)dt =

∫ ω

0
[µ(t) exp(x1(t)) + {α(t) + χ(t) + µ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt,

which implies Equations (33), (34) and (36), since, by the positivity of α, χ, µ and φ and the notation in
Equation (14), we get the inequalities∫ ω

0
exp(x1(t))dt ≤ 1

min
t∈[0,ω]

µ(t)

∫ ω

0
µ(t) exp(x1(t))dt

≤ 1
µ⊥

∫ ω

0
[µ(t) exp(x1(t)) + {α(t) + χ(t) + µ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt

=
1

µ⊥

∫ ω

0
b(t)dt =

ωb
µ⊥

,∫ ω

0
exp(x2(t))dt ≤ 1

min
t∈[0,ω]

(α + χ + µ)(t)(t)

∫ ω

0
(α + χ + µ)(t) exp(x2(t))dt

≤ 1
(α + χ + µ)⊥

∫ ω

0
[µ(t) exp(x1(t)) + {α(t) + χ(t) + µ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt

=
1

(α + χ + µ)⊥

∫ ω

0
b(t)dt =

ωb
(α + χ + µ)⊥

,∫ ω

0
exp(x4(t))dt ≤ 1

min
t∈[0,ω]

φ(t)

∫ ω

0
φ(t) exp(x4(t))dt

≤ 1
φ⊥

∫ ω

0
[µ(t) exp(x1(t)) + {α(t) + χ(t) + µ(t)} exp(x2(t)) + φ(t) exp(x4(t))] dt

=
1

φ⊥

∫ ω

0
b(t)dt =

ωb
φ⊥

.
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The inequality in Equation (35) is a consequence of Equations (38)c and (34), since∫ ω

0
exp(x3(t))dt ≤ 1

min
t∈[0,ω]

(γ + ε + µ)(t)

∫ ω

0
(γ + ε + µ)(t) exp(x3(t))dt

≤ 1
(γ + ε + µ)⊥

∫ ω

0
[δ(t) exp((x3 + x4)(t)) + (γ + ε + µ)(t) exp(x3(t))] dt

=
1

(γ + ε + µ)⊥

∫ ω

0
α(t) exp(x2(t))dt

≤ ωα>b
(γ + ε + µ)⊥(α + χ + µ)⊥

·

Now, from Equations (38)e, (36) and (32), we deduce the following estimate

µ⊥
∫ ω

0
exp(x5(t))dt ≤

∫ ω

0
µ(t) exp(x5(t))dt

=
∫ ω

0

[
φ(t) exp((x1 + x4)(t)) + ε(t) exp((x3 − x4 + x5)(t))

]
dt

≤ ωbφ>

φ⊥
max

t∈[0,ω]
exp(x1(t)) + ε>

maxt∈[0,ω] exp(x3(t))
mint∈[0,ω] exp(x4(t))

∫ ω

0
exp(x5(t))dt

≤ ωbφ>

φ⊥
max

t∈[0,ω]
exp(x1(t)) + ε>

maxt∈[0,ω] exp(x3(t))

exp(K(0)− µ>ω)

∫ ω

0
exp(x5(t))dt,

which implies Equation (37).

Lemma 6. Assume that hypotheses of Lemma 4. Then, the solution of the operator equation Lx = λNx with
λ ∈]0, 1[ satisfy the integral inequalities

∫ ω

0

∣∣∣∣dx1

dt
(t)
∣∣∣∣ dt ≤ 2ωb max

t∈[0,ω]
exp(−x1(t)), (39)∫ ω

0

∣∣∣∣dx2

dt
(t)
∣∣∣∣ dt < 2ω(α + χ + µ)>, (40)∫ ω

0

∣∣∣∣dx3

dt
(t)
∣∣∣∣ dt < 2ω

(
(γ + ε + µ)> + δ>b(φ>)−1

)
, (41)∫ ω

0

∣∣∣∣dx4

dt
(t)
∣∣∣∣ dt < 2ωµ, (42)∫ ω

0

∣∣∣∣dx5

dt
(t)
∣∣∣∣ dt < 2ωµ max

t∈[0,ω]
exp(x4(t)− x5(t)). (43)

Proof. We integrate the system in Equation (26) on [0, ω] and by using the ω-periodicity behavior of x,
we have that∫ ω

0
p(t)b(t) exp(−x1(t))dt =

∫ ω

0
[β(t) exp(x2(t))− φ(t) exp(x4(t)− x1(t))− µ(t)] dt, (44a)∫ ω

0
[q(t)b(t) exp(−x2(t)) + β(t) exp(x1(t))] dt =

∫ ω

0
[α(t) + χ(t) + µ(t)] dt, (44b)∫ ω

0
[α(t) exp (x2(t)− x3(t))− δ(t) exp(x4(t))] dt =

∫ ω

0
[γ(t) + ε(t) + µ(t)] dt, (44c)∫ ω

0
[δ(t) exp(x3(t)) + γ(t) exp(x3(t)− x4(t)) + χ(t) exp(x2(t)− x4(t))] dt =

∫ ω

0
µ(t)dt, (44d)∫ ω

0
φ(t) exp(x1(t) + x4(t)− x5(t)) + ε(t) exp(x3(t)− x4(t))− µ(t) exp(x4(t)− x5(t))dt = 0. (44e)
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Then, taking the modulus of the each equations defining the system in Equation (26); integrating
each resulting equations on [0, ω]; using the information that λ ∈]0, 1[; employing the relations of
Equation (44); and applying the inequalities on Lemmas 4 and 5, we obtain the following estimates

∫ ω

0

∣∣∣∣dx1

dt
(t)
∣∣∣∣ dt < 2

∫ ω

0
p(t)b(t) exp(−x1(t))dt ≤ 2ωb max

t∈[0,ω]
exp(−x1(t)),∫ ω

0

∣∣∣∣dx2

dt
(t)
∣∣∣∣ dt < 2

∫ ω

0
(α + χ + µ)(t)dt ≤ 2ω(α + χ + µ)>,∫ ω

0

∣∣∣∣dx3

dt
(t)
∣∣∣∣ dt < 2

∫ ω

0
[(γ + ε + µ)(t) + δ(t) exp(x4(t))] dt

≤ 2ω
(
(γ + ε + µ)> + δ>b(φ>)−1

)
,∫ ω

0

∣∣∣∣dx4

dt
(t)
∣∣∣∣ dt < 2

∫ ω

0
µ(t)dt = 2ωµ,∫ ω

0

∣∣∣∣dx5

dt
(t)
∣∣∣∣ dt < 2

∫ ω

0
µ(t) exp(x4(t)− x5(t))dt

≤ 2ωµ max
t∈[0,ω]

exp(x4(t)− x5(t)),

which conclude the proof of lemma.

Lemma 7. Assume that hypotheses of Lemma 4. Moreover consider that the hypotheses (15) and x is the
solution of the operator equation Lx = λNx with λ ∈]0, 1[ the following estimates

there exists δi > 0 such that exp(xi(t)) > δi, t ∈ [0, ω], i = 1, . . . , 5, (45)

there exists ρi > 0 such that
∫ ω

0
exp(xi(t))dt < ρi, i = 1, . . . , 5, (46)

there exists di > 0 such that
∫ ω

0

∣∣∣∣dxi
dt

(t)
∣∣∣∣ dt < di, i = 1, . . . , 5, (47)

are satisfied. In particular, maxt∈[0,ω] exp(xi(t)) ≤ ρi(ω)−1 exp(di) and xi(t) < ln(ρi/ω) + di for
t ∈ [0, ω] and i = 1, . . . , 5.

Proof. We get the proof by application of Lemmas 4, 5 and 6, and the hypotheses in Equation (15).
We notice that we can prove some relations in Equations (45)–(47) by a straightforward consequence of
Lemmas 4, 5 and 6. More precisely, we can deduce

(45) for i = 2, 4, 5, with δ2 = exp
(
− (α + χ + µ)>ω

)
, δ4 = exp

(
− µ>ω

)
, δ5 = δ4; (48)

(46) for i = 1, 2, 3, 4, with ρ1 =
ωb
µ⊥

, ρ2 =
ωb

(α + χ + µ)⊥
, ρ3 =

α>ρ2

(γ + ε + µ)⊥
, ρ4 =

ωb
φ⊥

; (49)

(47) for i = 2, 3, 4, with d2 = 2ω(α + χ + µ)>, d3 = 2
(

ω(γ + ε + µ)> + δ>ρ4

)
, d4 = 2ωµ; (50)

from Equations (28)–(30); (33)–(36); and (40)–(42); respectively. Meanwhile, to prove the remaining
inequalities we proceed as follows:

(i) we prove that maxt∈[0,ω] exp(xi(t)) ≤ ρi(ω)−1 exp(di) for i = 2, 3, 4;
(ii) we prove Equation (45) for i = 1, 3;

(iii) we prove Equation (47) for i = 1;
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(iv) we prove Equation (46) for i = 5;
(v) we prove Equation (47) for i = 5.

Proof of (i). From Equation (49) and the intermediate value for integrals we can deduce that there exist
ξi ∈ [0, ω] satisfying the inequality xi(ξi) < ln(ρi/ω) for i = 2, 3, 4. Then, by the fundamental theorem
of calculus and Equation (50), we deduce that

xi(t) = xi(ξi) +
∫ t

ξi

dxi
dt

(t)dt < ln(ρi/ω) +
∫ t

ξi

dxi
dt

(t)dt < ln(ρi/ω) + di, i = 2, 3, 4,

for any t ∈ [0, ω], which clearly implies (i).

Proof of (ii). We notice that the assertion proved in (i) for i = 2, 4 and Equation (31) imply that

(pb)⊥ ≤
[
µ> + β>ρ2(ω)−1 exp(d2)

]
exp(x1(t)) + φ>ρ4(ω)−1 exp(d4), (51)

for any t ∈ [0, ω]. By hypotheses in Equation (15) we have that (pb)⊥ − φ>ρ4(ω)−1 exp(d4) ≥ κ1,
then Equation (51) implies Equation (45) for i = 1 with δ1 = κ1[µ

> + β>ρ2(ω)−1 exp(d2)]
−1.

Now, from the assertion proved in (i) for i = 4 and Equation (32) we can deduce Equation (45)

for i = 3 with δ3 = α⊥
[
(γ + ε + µ)> + δ>ρ4(ω)−1 exp(d4)

]−1
.

Proof of (iii). From Equation (48) and Lemma 6, we can follow that Equation (47) for i = 1 is satisfied
with d1 = 2ωb/δ1.

Proof of (iv). Form similar arguments and notation to the proof of step (i), Equation (47) and
Equation (47) for i = 1, we can deduce that

x1(t) = x1(ξ1) +
∫ t

ξ1

dx1

dt
(t)dt < ln(ρ1/ω) +

∫ t

ξ1

dx1

dt
(t)dt < ln(ρ1/ω) + d1,

for some ξ1 ∈ [0, ω] and any t ∈ [0, ω]. Then, maxt∈[0,ω] exp(x1(t)) ≤ ρ1(ω)−1 exp(d1).
Now, from Equation (37) and the assertion proved in (i) for i = 3 we deduce that

∫ ω

0
exp(x5(t))dt ≤ ωbφ>

µ⊥φ⊥
max

t∈[0,ω]
exp(x1(t)) +

ε>maxt∈[0,ω] exp(x3(t))

µ⊥ exp(K(0)− µ>ω)

∫ ω

0
exp(x5(t))dt

≤ ωbφ>ρ1

µ⊥φ⊥ω
exp(d1) +

ε>ρ3 exp(d3)

µ⊥ω exp(−µ>ω)

∫ ω

0
exp(x5(t))dt. (52)

Thus, the hypotheses in Equation (15) implies

κ2

∫ ω

0
exp(x5(t))dt ≤

(
1− ε>ρ3 exp(d3)

µ⊥ω exp(−µ>ω)

) ∫ ω

0
exp(x5(t))dt (53)

≤ ωbφ>ρ1

µ⊥φ⊥ω
exp(d1), (54)

which implies Equation (46) for i = 5 with ρ5 = ωbφ>ρ1 exp(d1)
[
µ⊥φ⊥ωκ2

]−1.
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Proof of (iv). From (i) with i = 4 and Equation (48)

∫ ω

0

∣∣∣∣dx5

dt
(t)
∣∣∣∣ dt < 2ωµ max

t∈[0,ω]
exp(x4(t)− x5(t))

≤ 2µρ exp(d4)

d5
:= d5.

Then, Equation (47) for i = 5 is satisfied.
Summarizing we have that Equation (45) is followed by Equation (48) and (ii); Equation (46) is a

consequence of Equation (49) and (iv); and Equation (47) is proved from Equation (50), and (iii) and
(v). Moreover, we observe that a sequence of similar arguments and notation to the proof of step (i),
Equations (47) and (47) for i = 5, implies that

x5(t) = x5(ξ5) +
∫ t

ξ5

dx5

dt
(t)dt < ln(ρ5/ω) +

∫ t

ξ5

dx5

dt
(t)dt < ln(ρ5/ω) + d5,

for some ξ5 ∈ [0, ω] and any t ∈ [0, ω]. Then, maxt∈[0,ω] exp(x5(t)) ≤ ρ5(ω)−1 exp(d5). Then, we get
the additional and particular inequalities are followed from (i) and (iv).

3.2. Proof of (a)

We can prove the estimate in Equation (17) by application of Lemma (7).

3.3. Proof of (b)

If x ∈ Ker L, then by the results of Section 2.3, we have that x(t) ∈ R5 is constant for any t ∈ [0, ω].
By notational convenience we consider that x(t) = (S0, E0, I0, K0, R0). Then, from Equation (24) the
condition QN(xT) = QN((S0, E0, I0, K0, R0)

T) = 0 implies that

0 = pb exp(−S0)− β exp(E0)− φ exp(K0 − S0)− µ, (55a)

0 = qb exp(−E0) + β exp(S0)− α− χ− µ, (55b)

0 = α exp(E0 − I0)− δ exp(K0)− γ− ε− µ, (55c)

0 = δ exp(I0) + γ exp(I0 − K0) + χ exp(E0 − K0)− µ, (55d)

0 = φ exp(S0 + K0 − R0) + ε exp(I0 − R0)− µ. (55e)

Then, from Equation (55) and following similar arguments to the proof of Lemma 7, we can
deduce that in this case an inequality of the type in Equation (46) is also valid, i.e.,

exp(S0) <
ρ1

ω
, exp(E0) <

ρ2

ω
exp(I0) <

ρ3

ω
, exp(K0) <

ρ4

ω
and exp(R0) <

ρ5

ω
·

which implies Equation (18). Moreover, from Lemma 7 and the fact that Ker L ⊂ Dom L, we can
deduce that

exp(S0) > δ1, exp(E0) > δ2, exp(I0) > δ3, exp(K0) > δ4, and exp(R0) > δ5·

Thus, the inequality in Equation (19) is also satisfied.
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4. Proof of Theorem 3

4.1. A Previous Lemma

Lemma 8. Let X and Y be the spaces defined on Equation (13); Ω ⊂ X the open ball centered at (0, 0, 0, 0, 0)
with radius

h =
3

∑
i=1

max
{∣∣∣ ln(δi)

∣∣∣, ∣∣∣∣ln( ρi
ωi

)∣∣∣∣+ di

}
, (56)

where δi, ρi and di are defined in the proof of Lemma 7; and L, N and Q the operators defined on Equations (5),
(6) and (21), respectively. If Equation (15) is satisfied, the operators L and N satisfy the properties (C1)–(C3) of
Theorem 5.

Proof. We prove (C1) and (C2) by contradiction argument and we prove (C3) by application of
invariance property of the topological degree. Indeed, we have that

(C1) Let us assume that there are δ ∈]0, 1[ and x ∈ ∂Ω ∩ Dom L such that Lx = δNx. Then, by
application of Theorem 2-(a) we deduce that x ∈ Int Ω which is a contradiction to the assumption
that x ∈ ∂Ω.

(C2) Let us assume that there is x ∈ ∂Ω ∩ Ker L such that QNx = 0. Then, by application of
Theorem 2-(b) we deduce that x ∈ Int Ω which is a contradiction to the assumption that x ∈ ∂Ω.

(C3) Let us define the mapping Φ : Dom L× [0, 1]→ X by the following relation

Φ(x, υ) =


pb exp(−x1)− β exp(x2)− φ exp(x4 − x1)− µ

qb exp(−x2)− α + χ + µ

α exp(x2 − x3)− δ exp(x4)− γ + ε + µ

δ exp(x3) + χ exp(x2 − x4)− µ

exp(x1 + x4 − x5)− µ

+ υ


0
β exp(x1)

0
γ exp(x3 − x4)

ε exp(x3 − x5)

 .

We prove that Φ(x, υ) 6= 0 when xT ∈ ∂Ω ∩ Ker L and υ ∈ [0, 1]. From Lemma 1 we
recall that xT(t) = (S0, E0, I0, K0, R0) ∈ R5 is a constant. Let us consider that the conclusion
is false, then the constant vector (S0, E0, I0, K0, R0)

T with ‖(S0, E0, I0, K0, R0)‖ = h satisfies
Φ(S0, E0, I0, K0, R0, υ) = 0, that is,

0 = pb exp(−S0)− β exp(E0)− φ exp(K0 − S0)− µ,

0 = qb exp(−E0)− α + χ + µ + υβ exp(S0),

0 = α exp(E0 − I0)− δ exp(K0)− γ + ε + µ,

0 = δ exp(I0) + χ exp(E0 − K0)− µ + υγ exp(I0 − K0),

0 = φ exp(S0 + K0 − R0)− µ + υε exp(I0 − R0).

Then, by following similar reasoning steps to the proof of Theorem 2-(a) we get that
‖(S0, E0, I0, K0, R0)

T‖ < h, which contradicts to the assumption that ‖(S0, E0, I0, K0, R0)
T‖ = h.

Let us consider J = I : Im Q → Ker L such that xT 7→ xT , then by applying the Homotopy
Invariance Theorem of Topology Degree, using the fact that the system

0 = pb exp(−x1(t))− β exp(x2(t))− φ exp(x4(t)− x1(t))− µ,

0 = qb exp(−x2(t)) + β exp(x1(t))− α + χ + µ,

0 = α exp(x2(t)− x3(t))− δ exp(x4(t))− γ + ε + µ,

0 = δ exp(x3(t)) + χ exp(x2(t)− x4(t)) + γ exp(x3(t)− x4(t))− µ,

0 = φ exp(x1(t) + x4(t)− x5(t)) + ε exp(x3(t)− x5(t))− µ.
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has a unique solution x?T ∈ ∂Ω ∩Ker L, noticing that the determinant of the Jacobian of Φ at
x?T is given by∣∣∣JΦ(x?

T)
∣∣∣ = −[φ exp(x?1 + x?4 − x?5) + ε exp(x?3 − x?5)

](
Π1 + Π2),

with Π1 and Π2 the positive functions

Π1 =
[
− β exp(x?2)− µ

][
− qb exp(x?2)

][
α exp(x?2 − x?3)

(
χ exp(x?2 − x?4) + γ exp(x?3 − x?4)

)
+ δ exp(x?4)

(
δ exp(x?3) + γ exp(x?3 − x?4)

)]
Π2 =− β exp(x?1)

{[
− β exp(x?2)

][
α exp(x?2 − x?3)

(
χ exp(x?2 − x?4) + γ exp(x?3 − x?4)

)
+ δ exp(x?4)

(
δ exp(x?3) + γ exp(x?3 − x?4)

)]
+
[
− φ exp(x?2 − x?1)

]
[
α exp(x?2 − x?3)

(
δ exp(x?3) + γ exp(x?3 − x?4)

)
+ χα exp(2x?2 − x?3 − x?4)

]]}
,

and by Definition 3, we have that

deg
(

JQN(xT , Ω ∩Ker L, 0T
)
= deg

(
Φ(x, 1), Ω ∩Ker L, 0T

)
= sgn

∣∣∣JΦ(x?
T)
∣∣∣ = −1.

Hence, we get that deg(JQN, Ω ∩Ker L, 0) 6= 0 and prove that (C3) is valid.

Therefore, the assertions on items (C1)-(C3) of the Theorem 5 are valid for the given operators.

4.2. Proof of Theorem 3

By Lemmata 7 and 8, we notice that the assumptions of the Theorem 5 are satisfied.
Thus, there exist at least one solution of operator equation in Equation (12) belong Dom L ∩Ω ⊂ X,
which implies the existence of at least one ω−periodic solution of the system in Equation (4).

5. Proof of Theorem 4

The proof of Theorem 4 is a consequence of Theorems 3 and 1. Indeed, from Theorem 3 we deduce
that there exists at least one ω−periodic solution of Equation (4). Then, we get the proof of Theorem 4
by application of Theorem 1.

6. An Example

Let us consider that

b(t) = 100 + cos(πt), p(t) =
2
3

(
1 +

1
2

sin(πt)
)

,

q(t) = 1− p(t), α(t) = 1.1960e− 90 sin2
(π

2
t
)

,

β(t) = cos2
(π

2
t
)

, φ(t) = 1.1 + 1.0e− 10 sin(πt), (57)

µ(t) = 1.0e− 15(1 + sin(πt)), γ(t) =
1
2
(1.1 + 1.0e− 10 sin(πt)),

χ(t) =
1
4
(1.1 + 1.0e− 10 sin(πt)), δ(t) =

3
4
(1.1 + 1.0e− 10 sin(πt)),

ε(t) =
1.0e− 15

4
(1 + sin(πt)),
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which are 2-periodic functions. We notice that

(pb)⊥ − φ>(φ⊥)−1b exp(2ωµ) ≈ 0.15,

1− ε>α>b
µ>(γ + ε + µ)⊥(α + χ + µ)⊥

exp
(

ω
[
(γ + ε + µ)> + φ>(φ⊥)−1b + µ>

])
≈ 0.857,

and we have that the hypothesis in Equation (15) is satisfied by selecting κ1 ∈]0, 0.15[ and κ2 ∈]0, 0.857[.
Thus, by application of Theorem 4, we deduce that the system in Equation (2) with coefficients defined
by Equation (57) has at least one positive 2-periodic solution.
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