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Abstract: The hybrid nanofluid under the influence of magnetohydrodynamics (MHD) is a new
interest in the industrial sector due to its applications, such as in solar water heating and scraped surface
heat exchangers. Thus, the present study accentuates the analysis of an unsteady three-dimensional
MHD non-axisymmetric Homann stagnation point flow of a hybrid Al2O3-Cu/H2O nanofluid with
stability analysis. By employing suitable similarity transformations, the governing mathematical
model in the form of the partial differential equations are simplified into a system of ordinary
differential equations. The simplified mathematical model is then solved numerically by the Matlab
solver bvp4c function. This solving approach was proficient in generating more than one solution
when good initial guesses were provided. The numerical results presented significant influences on the
rate of heat transfer and fluid flow characteristics of a hybrid nanofluid. The rate of heat transfer and
the trend of the skin friction coefficient improve with the increment of the nanoparticles’ concentration
and the magnetic parameter; however, they deteriorate when the unsteadiness parameter increases.
In contrast, the ratio of the escalation of the ambient fluid strain rate to the plate was able to adjourn
the boundary layer separation. The dual solutions (first and second solutions) are obtainable when
the surface of the sheet shrunk. A stability analysis is carried out to justify the stability of the dual
solutions, and hence the first solution is seen as physically reliable and stable, while the second
solution is unstable.

Keywords: unsteady flow; non-axisymmetric flow; MHD; hybrid nanofluid; stagnation-point flow

1. Introduction

The stagnation point flow has attracted vast attention from many researchers because of its
broad applications in both industrial and scientific applications. Some of the real-world applications
of the stagnation point flow lie in the polymer industry, extrusion processes, plane counter-jets,
and numerous forms of hydrodynamic modelling in engineering uses ([1–3]). An exact solution of
the steady two-dimensional stagnation-point flow towards a solid surface in moving fluid was first
discovered by Hiemenz [4] in 1911. In his particular study, the Navier–Stokes equations are reduced to
non-linear ordinary differential equations by using a similarity transformation. The remarkable work
done by Hiemenz [4] was extended by Homann [5], who started the classical work of three-dimensional
stagnation point flow for the axisymmetric case. Meanwhile, the flow in the neighbourhood of a
particular stagnation point on a surface was explored by Howarth [6], focusing on the non-axisymmetric
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three-dimensional flow near the stagnation region. Fast forward to 1961, the work of Howarth [6] was
criticized by Davey [7], who indicated a mistake in Howarth’s paper exposing that the results in the
region −1 ≤ c ≤ 0 are unable to be achieved from those discovered for 0 ≤ c ≤ 1 as reported in the study.
In conjunction with these findings, Davey and Schofield [8] initiated the study of these saddle point
solutions and justified the existence of the non-uniqueness solution. In another study, Weidman [9]
modified the Homann’s axisymmetric outer potential stagnation-point flow for non-axisymmetric
stagnation flow of the strain rate. The study revealed a new clan of asymmetric viscous stagnation
point flows liable on the shear rate ratio, γ = b/a where −∞ ≤ γ ≤ ∞, a is the strain rate and b is the
shear rate. An analysis of unsteady heat transmission in non-axisymmetric Homann stagnation-point
flows of a viscous fluid over a rigid plate was investigated by Mahapatra and Sidui [10], and recently,
an investigation on the non-axisymmetric Homann stagnation-point flows of a viscoelastic fluid
towards a fixed plate was conducted by Mahapatra and Sidui [11].

Ever since the evolution study of the stagnation point flow with the presence of dual solutions
by Davey [7], various works concerning the stagnation point flow towards a shrinking sheet were
introduced. Wang [12] considered two-dimensional stagnation point flow on a two-dimensional
shrinking sheet and axisymmetric stagnation point flow on an axisymmetric shrinking sheet,
while Mahapatra and Sidui [13] assessed unsteady heat transfer in non-axisymmetric Homann
stagnation-point flow towards a stretching/shrinking sheet with stability analysis. The continuous
effort was carried out by Khashi’ie et al. [14] who examined the three-dimensional non-axisymmetric
Homann stagnation point flow and heat transfer past a stretching/shrinking sheet using hybrid
nanofluid. Meanwhile, Zaimi and Ishak [15] scrutinized the slip effects on the stagnation point flow
towards a stretching vertical sheet. Nevertheless, explorations on the stagnation point flow keep
evolving in various ways and have been working still because of its importance in massive engineering
applications and also in the magnetohydrodynamics (MHD) flow field. A comprehensive study of the
literature on the related works was reviewed by [16–19].

A fluid that is heated by electric energy in the occurrence of a vigorous magnetic field, such as
crystal growth in melting, is essential in the industrial sector. The interaction of electrical currents and
magnetic fields generates the divergence of Lorentz forces during the movement of fluid. In accordance
with this phenomenon, MHD describes the hydrodynamics of a conducting fluid in the presence of a
magnetic field. The examinations of MHD flow are very significant due to its massive number of uses
implicating the magnetic effect in industrial and engineering areas, such as MHD electricity generators,
sterilization tools, magnetic resonance graphs, MHD flow meters, and also in granular insulation
(see [20,21]). The goods of the end product depend immensely on the rate of cooling involved in
these processes, managed by the application of the magnetic field and electrically conducting fluids.
The study of MHD flow in the Newtonian fluid was first carried out by Pavlov [22], who investigated
the magnetohydrodynamic flow of an impressible viscous fluid caused by deformation of a surface.
Chakrabarti and Gupta [23] broadened the study of hydromagnetic flow and heat transfer over a
stretching sheet, followed by Vajravelu [24] who widened the hydromagnetic flow study over a
continuous, moving, porous flat surface. Andersson, in 1995, introduced an exact solution of the
Navier-Stokes equations for magnetohydrodynamic flow [25], and Lok et al. [26] analyzed the MHD
stagnation-point flow towards a shrinking sheet using the Keller-box method and proved the existence
of multiple (dual) solutions for small values of the magnetic field parameter for the shrinking case.
Recently, Almutairi et al. [27] studied the influence of second-order velocity slip on the MHD flow of
a nanofluid in a porous medium by considering the homogeneous-heterogeneous reactions. On the
other hand, the impact of nonlinear and temperature jump on non-Newtonian MHD nanofluid flow
and heat transfer past a stretched thin sheet was examined by Zhu et al. [28]

Over the last few decades, the researcher has experienced tremendous scholarly devotion to
the study of heat transfer fluid. Recent demand for a high-efficiency refrigeration system and the
ineffectiveness of traditional thermal conduction fluids encouraged analysts to discover another heat
transfer fluid. Choi and Eastman [29] launched the exploration of nanofluids and illustrated the
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presence of suspended nanoparticles in a carrier fluid. This pioneering study led to the verdict of
the colloidal suspension of intensely small-sized particles, for instance, carbon nanotubes, metals,
oxides, and carbides, into the based fluid, which may ensure access to an advanced course of
nanotechnology-based heat transfer media (see [30,31]). The eccentric features of nanofluids have
gained great acknowledgement in various engineering, medical, and industrial applications like
engine cooling, diesel generator efficiency, micro-manufacturing, solar water heating, cancer treatment,
nuclear reactors, and diverse types of heat exchangers ([32–34]). Due to the massive potential
for the applications of nanofluids, Choi and Eastmen [29] developed a mathematical model of
nanofluids, which allowed Buongiorno [31] to contribute to heat transfer analysis in nanofluids by
introducing the non-homogeneous model for transport and heat transfer phenomena in nanofluids
with turbulence applications.

Recently, an expansion of new engineered nanofluids was achieved by dispersing composite
nanopowder or dissimilar nanoparticles with sizes between 1 and 10nm in the base fluid [29]; it is known
as a hybrid nanofluid. The hybrid nanofluid is a modern technology fluid that may offer better heat
transfer performance and thermal physical properties. The progress related to the preparation methods
of hybrid nanofluids, thermo-physical properties of hybrid nanofluids, and current applications of
hybrid nanofluids was published by Sarkar et al. [35] and Sidik et al. [36]. In another study, Huminic
and Huminic [37] highlighted the essential applications of hybrid nanofluids, such as in heat pipes,
mini-channel heat sinks, plate heat exchangers, air conditioning systems, tubular heat exchangers, shell
and tube heat exchangers, tube in a tube heat exchangers, and coiled heat exchangers. Turcu et al. [38],
for the first time testified the hybrid nanocomposite particle synthesis, which consisted of two different
hybrids, polypyrrole-carbon nanotube (PPY-CNT) nanocomposite and multi-walled carbon nanotube
(MWCNT) on magnetic Fe3O4 nanoparticles. In the following year, Yen et al. [39] inspected the
effect of hybrid nanofluids in channel flow numerically. Devi and Devi [40] analysed the problem
of hydromagnetic hybrid nanofluid (Cu-Al2O3/water) flow on a permeable stretching sheet subject
to Newtonian heating, and they continued the investigation to improve the heat transfer in hybrid
nanofluid flow past a stretching sheet [41]. Subsequently, Yousefi et al. [42] reviewed on the stagnation
point flow of an aqueous titania-copper hybrid nanofluid toward a wavy cylinder. At the same time,
Khashi’ie et al. [43] performed a numerical study on the heat transfer and boundary layer flow of
axisymmetric hybrid nanofluids driven by a stretching/shrinking disc. A detailed documentary on the
numerical study of hybrid nanofluid flow and heat transfer is reviewed by [44–48].

Many practical situations, such as a sudden stretching of the plate or temperature change of the
plate, involved unsteady conditions of the heat transfer flow. Cai et al. [49] explained that the flow
in the viscous boundary layer near the plate would slowly be enlarged if the surface was extended
unexpectedly, and hence converted into a steady flow after a certain interval. Technically, we believe
that the consideration of physical quantities related to time is crucial in mathematical modeling and
analysis, which is acknowledged in the formulation of this research problem.

Motivated by the work by Mahapatra and Sidui [13], this study aims to inspect the unsteady
MHD non-axisymmetric Homann stagnation point of a hybrid nanofluid in three-dimensional flow.
The proposed hybrid nanofluid model is adapted from Devi and Devi [40] and Hayat and Nadeem [50],
recognized by suspending varied nanoparticles, namely alumina (Al2O3) and copper (Cu), in the base
fluid (water). To the best of the authors’ knowledge, no attempt has been made to examine the heat
transfer and fluid flow of the hybrid nanofluid (Al2O3-Cu/H2O) considering the unsteady parameter in
non-axisymmetric Homann stagnation point flow. This possibly will benefit future works on choosing
a significant parameter to enhance the heat transfer performance in the modern industry. The novelty
of this study can also be seen in the discovery of dual solutions and the execution of stability analysis.
Ultimately, this research is highly claimed to be authentic and original.
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2. Mathematical Model

Consider the unsteady three-dimensional MHD non-axisymmetric Homann stagnation point
flow of a hybrid Al2O3-Cu/water nanofluid with a stretching/shrinking sheet on the x, y− plane where
x, y and z are Cartesian coordinates with the z− axis measured in the horizontal direction and the axes x
and y are in the plane z = 0 as illustrated in Figure 1, respectively. We assume that the constant surface
temperature Tw is stretched and shrunk in the x and y directions by the velocities uw = εcx

1+αt and
vw =

εcy
1+αt The uniform temperature is given by T∞ and B0 is introduced to the stretching/shrinking

sheet in an orthogonal direction as a transverse uniform magnetic field. Meanwhile, the modified
non-asymmetrically free streamflow along the x, y and z axes is described by ([9]):

ue(x) = (a + b)x, ve(y) = (a− b)y, we(z) = −2az. (1)
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Here, a is the strain rate and b is the shear rate of stagnation point flow, correspondingly.
By adapting the Tiwari and Das [30] nanofluid model, the continuity, momentum, and the energy
equations of the hybrid nanofluid can be written as follows:

∂u
∂x

+
∂v
∂y

+
∂w
∂z

= 0, (2)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

=
∂ue

∂t
+ ue

∂ue

dx
+
µhn f

ρhn f

∂2u
∂z2 −

σhn f

ρhn f
B2(u− ue), (3)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

=
∂ve

∂t
+ ve

∂ve

dx
+
µhn f

ρhn f

∂2v
∂z2 −

σhn f

ρhn f
B2(v− ve), (4)

∂T
∂t

+ u
∂T
∂x

+ v
∂T
∂y

+ w
∂T
∂z

=
khn f

(ρCp)hn f

∂2T
∂z2 . (5)

The velocity component in x− direction is given by u, while v is in y− direction. Next, the boundary
conditions are:

t < 0 : u = v = w = 0 for any x, y, z,
t ≥ 0 : u = uw, v = vw, w = 0, T = Tw at z = 0,

u→ ue =
(a+b)x
1+αt , v→ ve =

(a−b)x
1+αt , we →

−2az
1+αt , T→ T∞ as z→∞.

(6)

Note that T is the hybrid nanofluid temperature, µhn f is the dynamic viscosity of the hybrid
nanofluid, ρhn f is the density of the hybrid nanofluid, khn f is the thermal conductivity of the hybrid
nanofluid, (ρCp)hn f is the heat capacity of the hybrid nanofluid, σhn f is the electrical conductivity of the

hybrid nanofluid, and the time-dependent of a transverse magnetic field is given by B2 = B2
0/(1 + αt)

in detail.
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The hybrid nanofluids thermophysical properties are specified in Table 1, as demonstrated by
Devi and Devi [41,51]. At this point, φ is the volume fraction of nanoparticles, ρ f and ρs are the base
fluid density and hybrid nanoparticles, Cp is the heat capacity, (ρCp) f and (ρCp)s represent capacitance
heating of the base fluid and hybrid nanoparticles, and finally k f and ks are the thermal conductivities
of the base fluid and hybrid nanoparticles, respectively. Meanwhile, the thermophysical properties of
the fluid and nanoparticles for aluminum oxide, copper, and the base fluid (water) are given in Table 2.

Table 1. Thermophysical properties of hybrid nanofluids (Devi and Devi [41,51]).

Properties Hybrid Nanofluid

Density ρhn f = (1−φ2)[(1−φ1)ρ f + φ1ρs1] + φ2ρs2

Heat capacity

(
ρCp

)
hn f

=

(1−φ2)
[
(1−φ1)

(
ρCp

)
f
+ φ1

(
ρCp

)
s1

]
+ φ2

(
ρCp

)
s2

Dynamic viscosity µhn f =
µ f

(1−φ1)
2.5(1−φ2)

2.5

Thermal conductivity

khn f

kn f
=

ks2+2kn f−2φ2(kn f−ks2)

ks2+2kn f +φ2(kn f−ks2)
,

where,
kn f

k f
=

ks1+2k f−2φ1(k f−ks1)

ks1+2k f +φ1(k f−ks1)

Table 2. Thermophysical properties of nanoparticles and base fluid (Oztop and Abu-Nada [52]).

Properties Al2O3 Cu H2O

ρ (kg/m3) 3970 8933 997.1
Cp (J/kgK) 765 385 4179
k (W/mK) 40 400 0.613

β× 10−5(mK) 0.85 1.67 21

Now, pursuing Mahapatra and Sidui [10], the resulting similarity transformation is proposed to
achieve the similarity solutions:

u =
cx f ′(η)
1+αt , v =

cyg′(η)
1+αt , w = −

√
νc

1+αt ( f + g),θ(η) = (T−T∞)
(Tw−T∞)

,

η =
√

c
ν(1+αt)z,

(7)

where the prime denotes differentiation with respect to η. By substituting (7) into the steady-state
Equations (2)–(5), the following ordinary differential equations are obtained:

µhn f /µ f
ρhn f /ρ f

f ′′′ + A
(

1
2η+ f + g

)
f ′′ + A f ′ − f ′2 −A(λ+ γ) + (λ+ γ)2

−M( f ′ − λ− γ) = 0,
(8)

µhn f /µ f
ρhn f /ρ f

g′′′ + A
(

1
2η+ f + g

)
g′′ + Ag′ − g′2 −A(λ− γ) + (λ− γ)2

−M(g′ − λ+ γ) = 0,
(9)

1
Pr

khn f /k f

ρCphn f /ρCp f
θ′′ +

(
A

1
2
η+ f + g

)
θ′ = 0, (10)

with the boundary conditions (6) which are converted to:

f (0) = g(0) = 0, f ′(0) = g′(0) = ε, θ(0) = 1,
f ′(η)→ λ+ γ, g′(η)→ λ− γ,θ(η)→ 0, as η→∞.

(11)
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In the equations mentioned above, A = α/c represents the unsteadiness parameter, λ = a/c is a
ratio of the surrounding fluid strain rate to the surface strain rate, γ = b/c is the surrounding fluid

shear rate ratio to the strain rate of the sheet, M =
σhn f /σ f
ρhn f /ρ f

B2
0

c denotes the magnetic parameter and

Pr = ν f /α f indicates the Prandtl number. The parameter of stretching/shrinking is meant by ε where
ε > 0 determines the stretching sheet, while ε < 0 reflects the shrinking sheet. The related quantities of
interest in this study are the skin friction coefficient, C f x and C f y along the x− and y− directions and
the local Nusselt number Nux, which is specified as

C f x =
τwx

ρ f ue2 , C f y =
τwy

ρ f ve2 , Nux =
xqw

k f (Tw − T∞)
, (12)

where τwx, τwy are the shear stresses along the x−, y− axes and qw represents the heat flux,
correspondingly. Such terms can be defined by

τwx = µhn f

(
∂u
∂z

)
z=0

, τwy = µhn f

(
∂v
∂z

)
z=0

, qw = −khn f

(
∂T
∂z

)
z=0

. (13)

By prompting Equations (7), (12) and (13), we get:

(λ+ γ)3/2Re1/2
x C fx =

µhn f
µ f

f ′′ (0), (λ− γ)3/2Re1/2
y C fy =

µhn f
µ f

g′′ (0),

(λ+ γ)1/2Rex
−1/2Nux = −

khn f
k f
θ′(0),

(14)

where Rex =
(a+b)x2

(1+αt)ν f
and Rey =

(a+b)y2

(1+αt)ν f
are the local Reynolds number along the x− and y−

directions, respectively.

3. Stability Analysis

The system of Equations (8)–(10) along with the boundary conditions (11), is capable of generating
more than one solution and ultimately permits the requirement analysis of the flow to identify
the reliable and feasible solution. Going through the outstanding work done by Merkin [53] and
Merrill et al. [54] in the stability analysis, the application of an unstable form of the boundary layer
problem is analyzed by using the time variable and a dimensionless time variable denoted by τ [55].
Next, we consider the following new similarity variables:

u = cx
1+αt

∂ f
∂η (η, τ), v =

cy
1+αt

∂g
∂η (η, τ), w = −

√
νc

1+αt [ f (η, τ) + g(η, τ)],

θ(η) =
(T−T∞)
(Tw−T∞)

, η =
√

c
ν(1+αt)z, τ = ct

1+αt .
(15)

Using the similarity variables of Equation (15) into Equations (8)–(10), the altered differential
equations and the boundary conditions are as follows:

µhn f /µ f
ρhn f /ρ f

∂3 f
∂η3 +

(
A 1

2η+ f + g
)∂2 f
∂η2 + A∂ f

∂η −

(
∂ f
∂η

)2
−A(λ+ γ) + (λ+ γ)2

−M
(
∂ f
∂η − λ− γ

)
− (1−Aτ) ∂

2 f
∂η∂τ = 0,

(16)

µhn f /µ f
ρhn f /ρ f

∂3 g
∂η3 +

(
A 1

2η+ f + g
)∂2 g
∂η2 + A∂g

∂η −

(
∂g
∂η

)2
−A(λ− γ) + (λ− γ)2

−M
(
∂g
∂η − λ+ γ

)
− (1−Aτ) ∂

2 g
∂η∂τ = 0,

(17)

1
Pr

khn f /k f

ρCphn f /ρCp f

∂2θ

∂η2 +
(
A
(1

2
η− τ

)
+ f + g + 1

)
∂θ
∂η
− (1−Aτ)

∂θ
∂τ

= 0, (18)
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f (0, τ) = g(0, τ) = 0, ∂ f
∂η (0, τ) = ∂g

∂η (0, τ) = ε, θ(0, τ) = 1,
∂ f
∂η (η, τ)→ λ+ γ, ∂g

∂η (η, τ)→ λ− γ,θ(η, τ)→ 0, as η→∞.
(19)

Weidman et al. [55] highlighted that the stability of solutions is introduced by determining the
system’s decay or initial growth. This can be achieved via considering the following perturbation
expressions of the primary flow f = f0(η), g = g0(η) and θ = θ0(η) with the resulting equation:

f (η, τ) = f0(η) + e−ωτF(η), g(η, τ) = g0(η) + e−ωτG(η),
θ(η, τ) = θ0(η) + e−ωτH(η),

(20)

where ω is an unknown parameter of the eigenvalue, F(η), G(η) and H(η) are comparatively slight to
f0(η), g0(η) and θ0(η). Substituting (20) into Equations (16)–(18) we attained the following system
of equations:

µhn f /µ f
ρhn f /ρ f

∂3F
∂η3 +

(
A 1

2η+ f0 + g0
)
∂2F
∂η2 +

(
A−M + (1−Aτ)ω− 2∂ f0

∂η

)
∂F
∂η

+(F + G)
∂2 f0
∂η2 = 0,

(21)

µhn f /µ f
ρhn f /ρ f

∂3G
∂η3 +

(
A 1

2η+ f0 + g0
)
∂2G
∂η2 +

(
A−M + (1−Aτ)ω− 2∂g0

∂η

)
∂G
∂η

+(F + G)
∂2 g0
∂η2 = 0,

(22)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f

∂2H
∂η2 + (F + G)

∂θ0

∂η
+

(
A

1
2
η+ f0 + g0

)
∂H
∂η

+ωH = 0, (23)

subject to the boundary conditions:

F(0) = G(0) = 0, ∂F
∂η (0) =

∂G
∂η (0) = 0, H(0) = 0,

∂F
∂η (∞)→ 0, ∂G

∂η (∞)→ 0, H(∞)→ 0.
(24)

The stability of the steady-state flow and heat transfer solutions f0(η), g0(η) and θ0(η) was
implemented by setting τ = 0 with F = f0(η), G = g0(η) and H = θ0(η) in (21)–(24). Finally, the initial
development or the solution decay of the solution (20) is identified. The value of ω is obtained by
solving the following eigenvalue problem:

µhn f /µ f

ρhn f /ρ f
F′′′0 +

(
A

1
2
η+ f0 + g0

)
F′′0 +

(
A−M +ω− 2 f ′0

)
F′ + (F + G) f ′′0 = 0, (25)

µhn f /µ f

ρhn f /ρ f
G′′′0 +

(
A

1
2
η+ f0 + g0

)
G′′0 +

(
A−M +ω− 2g′0

)
G′ + (F + G)g′′0 = 0, (26)

1
Pr

khn f /k f

(ρCp)hn f /(ρCp) f
H′′ + (F + G)θ0

′ +
(
A

1
2
η+ f0 + g0

)
H′ +ωH = 0, (27)

along with the conditions:

F0(0) = G0(0) = 0, F′0(0) = G′0(0) = 0, H0(0) = 0,
F′0(∞)→ 0, G′0(∞)→ 0, H0(∞)→ 0.

(28)
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The range of possible eigenvalues can be determined by relaxing a boundary condition on F′0(η)
according to the previous research by Harris et al. [56]. In this study, the condition F′0(∞)→ 0
is relaxed, and the linear eigenvalue problem (25)–(28) is solved together with the new boundary
condition F′′0 (0) = 1 for a fixed value of ω1. The flow is considered unstable if the smallest eigenvalue
ω1. is negative, which indicates an initial growth of disturbances occurred, while a positive value of
the smallest eigenvalue signifies that the flow is physically achievable and stable.

4. Results and Discussion

The bvp4c function in Matlab is adopted to produce the results of the nonlinear system of ordinary
differential Equations (8)–(10) together with the boundary conditions (11). The relative error tolerance
is set as 10−10 to gain the results of the numerical outcomes and stability analysis. Table 3 presents
that the average central processing unit (CPU) time required for computing each result in Table 4
is approximately 1.4 s, and the dual solutions were obtained by indicating different initial guesses
which must satisfy the far-field boundary conditions (11) asymptotically. The numerical results are
validated with the numerical results produced by Mahapatra and Sidui [10] and Nawaz and Hayat [57]
by collating the values of the shear stress f ′′ (0) of an axisymmetric (γ = 0) stagnation point flow of
a viscous fluid with the exclusion of magnetic field and the unsteady parameter, which is depicted
in Table 4. It demonstrates excellent agreement with the previous literature; hence, the practicality
and effectiveness of the bvp4c method are verified. The estimated relative error, εr is also measured,
and it shows that the calculated values of εr are relatively small between the present and previous
results. Figure 2 exhibits the variation of the wall shear stress parameter f ′′ (0) and g′′ (0) towards
the difference value of γ when φ1 = φ2 = M = A = 0,λ = 0.1, ε = 1.0 and Pr = 1.0 where the dotted
lines correspond to the asymptotic behaviour of f ′′ (0) and g′′ (0) which is in excellent agreement with
Mahapatra and Sidui [10] who pursued a standard fourth-order Runge-Kutta integration technique in
their study. This justifies the role of the bvp4c numerical technique as a dependable practice, and the
present results are valid and correct.

Table 3. Computational time to generate the values of f ′′ (0) as λ varies when φ1 = φ2 = 0,
γ= 0, ε= 1, M = 0, A = 0, and Pr = 6.2.

λ f”(0) Time, t (s)

0.1 −1.12460540 0.851
0.2 −1.05562203 0.960
0.5 −0.75344581 0.877
1.0 0 1.474
2.0 2.20708771 1.419

The dimensionless velocity profiles f ′(η) and g′(η) for different values of λ are illustrated in
Figures 3 and 4. The figures prove that the profiles of the velocity comply with the far-field boundary
conditions of Equation (11) asymptotically. The maximum value of the velocity gradient with the
lowest thickness of the momentum boundary layer is preserved for the largest value of λ. Notably,
the distance of two adjacent profiles increases remarkably with the increased amount of λ in both the
first and second solutions. Figures 5 and 6 portray the variations of f ′′ (0) and g′′ (0) towards ε for
different values of λ in hybrid nanofluids with the existence of the magnetic field and the influences
of the unsteadiness parameter. An enrichment in the amounts of λ embarking on the augmentation
of both λ+ γ and λ − γ provide a significant effect to the surface shear stresses. The variations of
f ′′ (0) are expected to be higher by the increasing value of λ+ γ yet decrease when λ+ γ is decreased,
and the same trend is expected in g′′ (0) with λ− γ. On the other hand, the effect of the nanoparticles
volume fraction is observed in Figures 7–9, respectively. Surprisingly, the critical values of the various
usage of the nanoparticles’ volume fraction give no significant effect to the trend of the nanofluid
(φ1 = 0.02,φ2 = 0.00) and hybrid nanofluid flow (φ1 = 0.02,φ2 = 0.002, 0.04). It is observed that the
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reduced skin friction coefficient in x and y directions, as presented in Figures 7 and 8, and the reduced
local Nusselt number in Figure 9 upsurges with the rising in the nanoparticles’ volume fraction. This is
due to the fact that more kinetic energy is produced with a higher concentration of nanoparticles
and thus, enhances the heat transfer of the fluid particles. This finding also corresponds with several
present particle-laden direct numerical studies (DNS), which reveal that the roughness components
appear to redistribute the energy and, therefore, decrease the overall large-scale near-wall anisotropy
of the flow pattern (see Yuan and Piomelli [58] and Ghodke and Apte [59]).

Table 4. Results of f ′′ (0) for specific values of λ when φ1 = 0.0, φ2 = 0.0, γ= 0, ε= 1, M = 0, A = 0,
and Pr = 6.2.

λ Present Result Mahapatra
and Sidui [10] εr=|

r−s
s |×100%

Nawaz and
Hayat [57] εr=|

r−s
s |×100%

0.1 −1.12460540 −1.124000 0.053832% −1.124600 0.000480%
0.2 −1.05562203 −1.054400 0.115764% −1.055610 0.001139%
0.5 −0.75344581 −0.753400 0.006080% −0.753100 0.045897%
1.0 0.00000000 0.000000 0.000000% 0.000000 0.000000%
2.0 2.20708771 2.190200 0.765158% − −

∗εr is the estimate percentage relative error between the present result, r and previous result, s.
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Figures 10–12 exhibit the influence of the magnetic parameter on f ′′ (0), g′′ (0) and −θ′(0) which
shows a prominent effect on the fluid flow of the shrinking sheet. The reduced skin friction coefficient
in both the x− and y− directions rise and eventually increase the value of −θ′(0) with the escalation
of M due to the occurrence of the Lorentz force, which acts to retard the fluid flow. The Lorentz
force creates resistance to the motion of the fluid particles and then consequently reduces the fluid
velocity. The synchronism of the magnetic and electric field that occurred from the formation of the
Lorentz force tends to slow down the fluid movement. The boundary layer becomes thinner in both
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directions as proven in Figures 13 and 14 as M increases due to the delayed flow, hence contributing
to the increment of f ′′ (0) and g′′ (0). On the other hand, Figure 15 advertises the variations of the
non-dimensional temperature profiles for different values of M which tend to decrease in the first
solution but show a reverse trend in the second solution. The figures clearly reveal that the thicknesses
of the thermal boundary layers decrease with the increase of M Practically, by restricting the magnetic
field intensity, the progression of the thermal boundary layers’ thicknesses can be managed and, thus,
be able to reduce the temperature profile distributions.
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The effect of the unsteadiness parameter A on f ′′ (0), g′′ (0) and −θ′(0) is depicted in Figures 16–18,
respectively. Increasing the values of A results in a reduction of the skin friction coefficients in both
directions, as illustrated in Figures 16 and 17, which consequently decreases the reduced local Nusselt
number. The fact that the unsteadiness parameter affects the velocity and temperature profile is
proven in Figures 19–21. The velocity of the fluid is in decline along the surface of the sheet due to
the increasing value of the shear stress and subsequently shrinks the thickness of the momentum
boundary layer nearby the wall, as displayed in Figures 19 and 20, accordingly. The increasing value
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of A decreases in the temperature profile of the hybrid nanofluid, as shown in Figure 21, which
is understandable because the spaces between the molecules become higher in unsteady flow and
proportionately decrease the temperature profile and improve the cooling rates of the fluid. Therefore,
the unsteadiness parameter should be highlighted and well considered for practical purposes.
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Since the dual solutions noticeably exist, as illustrated in Figures 3–21, a stability analysis is
performed to discover a significant solution between the first and second solutions. This process is
achievable by clarifying the eigenvalue problems in Equations (25)–(27) using bvp4c in Matlab, which
produce an infinite set of ω1 < ω2 < ω3 . . . . . .. The stability of the flow is reliant on the smallest positive
eigenvalue ω1 since there exists an initial decay of disturbances. In contrast, there is an initial growth
of perturbations if the smallest eigenvalue ω1 is negative, which signifies that the solution is unstable.
As depicted in Table 5, the lowest eigenvalues for the first solution are positive, while the second
solution is negative. In conclusion, the first solution is stable and physically reliable, while the second
solution is unstable and unreal.

Table 5. Smallest eigenvalues ω1 when φ1 = φ2 = 0.02,λ = 1.5,γ = 0.5,M = 0.5, A = 0.5 and Pr = 6.2.

ε First Solution, ω1 Second Solution, ω1

−1.4 0.9181 −0.3952
−1.452 0.1712 −0.1469
−1.4532 0.1158 −0.0979
−1.4534 0.1040 −0.0869
−1.4536 0.0902 −0.0744
−1.4538 0.0741 −0.0593
−1.45388 0.0665 −0.0521

5. Conclusions

The current analysis is devoted to examining the unsteady three-dimensional non-axisymmetric
Homann stagnation point flow of alumina (Al2O3) and copper (Cu) hybrid nanofluids in the presence of
MHD. The governing partial differential equations are transformed into a system of ordinary differential
equations by using a similarity transformation and appropriately solved by a bvp4c function in Matlab.
An increment in λ may upsurge the velocity gradient and thus decline the momentum boundary layer
thickness. A high concentration of the nanoparticle volume fraction speeds up the molecules’ kinetic
energy and then enhances the heat transfer process of the fluid particles. The increment in the intensity
of the magnetic parameter M increases the local Nusselt number and the skin friction coefficient.
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Further, the increasing value of A decreases the hybrid nanofluid temperature and eventually improves
the cooling rates of the fluid. Dual solutions were disclosed in this study, and the analysis of solution
stability confirmed that the first solutions are stable and physically reliable.
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Nomenclature

Roman letters
a, b, c positive constants

(
s−1

)
A unsteadiness parameter (−)
B0 transverse magnetic field

(
kgA−1s−2

)
C f x skin friction coefficient along the x− direction (−)

C f y skin friction coefficient along the y− direction (−)

Cp specific heat at constant pressure
(
Jkg−1K−1

)(
ρCp

)
heat capacitance of the fluid

(
JK−1m−3

)
f (η) dimensionless stream function in the x− direction
g(η) dimensionless stream function in the y− direction
k thermal conductivity of the fluid

(
Wm−1K−1

)
M magnetic parameter (−)
Nux local Nusselt number (−)
Pr Prandtl number (−)
Rex, Rey local Reynolds number in the x− and y− directions, respectively (−)

t time (s)
T fluid temperature (K)

Tw surface temperature (K)

T∞ ambient temperature (K)

u, v, w
velocities component in the x−, y− and z− directions, respectively(
ms−1

)
ue, ve velocities of the free stream in the y− and y− directions

(
ms−1

)
uw, vw

velocities of the stretching/shrinking surface in the y− and y− directions(
ms−1

)
x, y, w Cartesian coordinates (m)

Greek symbols
α positive constant

(
s−1

)
α f fluid thermal diffusivity

(
m2s−1

)
β thermal expansion coefficient

(
K−1

)
γ ratio of the ambient fluid shear rate to the plate strain rate (−)

ε stretching/shrinking parameter (−)
εr estimated relative error (−)
η similarity variable (−)
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θ dimensionless temperature (−)

λ ratio of the ambient fluid strain rate to the plate strain rate (−)

µ dynamic viscosity
(
N s m−2

)
ν kinematic viscosity

(
m2s−1

)
ρ density

(
kgm−3

)
σ electrical conductivity

(
Sm−1

)
τ dimensionless time variable (−)

τwx, τwy wall shear stress along the x− and y− directions
(
kgm−1s−2

)
φ1 nanoparticle volume fractions for Al2O3 (alumina) (−)
φ2 nanoparticle volume fractions for Cu (copper) (−)
ω eigenvalue (−)

ω1 smallest eigenvalue (−)

Subscripts
f base fluid
n f nanofluid
hn f hybrid nanofluid
s1 solid component for Al2O3 (alumina)
s2 solid component for Cu (copper)
Superscript
′ differentiation with respect to η
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