
mathematics

Article

Oscillation Theorems for Advanced Differential
Equations with p-Laplacian Like Operators

Omar Bazighifan 1,2,∗,† and Poom Kumam 3,4,∗,†

1 Department of Mathematics, Faculty of Science, Hadhramout University, Hadhramout 50512, Yemen
2 Department of Mathematics, Faculty of Education, Seiyun University, Hadhramout 50512, Yemen
3 Center of Excellence in Theoretical and Computational Science (TaCS-CoE) and Department of Mathematics,

Faculty of Science, King Mongkuts University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd.,
Bang Mod, Thung Khru, Bangkok 10140, Thailand

4 Department of Medical Research, China Medical University Hospital, China Medical University,
Taichung 40402, Taiwan

* Correspondence: o.bazighifan@gmail.com (O.B.); poom.kumam@mail.kmutt.ac.th (P.K.)
† These authors contributed equally to this work.

Received: 7 April 2020; Accepted: 29 April 2020; Published: 19 May 2020
����������
�������

Abstract: The main objective of this paper is to establish new oscillation results of solutions to a
class of even-order advanced differential equations with a p-Laplacian like operator. The key idea
of our approach is to use the Riccati transformation and the theory of comparison with first and
second-order delay equations. Some examples are provided to illustrate the main results.
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1. Introduction

We provide oscillation properties of even order advanced differential equation with a p-Laplacian
like operator

(
a (υ)

∣∣∣y(κ−1) (υ)
∣∣∣p−2

y(κ−1) (υ)

)′
+

j

∑
i=1

qi (υ) g (y (ηi (υ))) = 0, υ ≥ υ0, (1)

where j ≥ 1, κ is even and p > 1 is a real number. Throughout the paper, we assume that (1) satisfy
the following assumptions.

L1: a ∈ C1 ([υ0, ∞),R) , a (υ) > 0, a′ (υ) ≥ 0,
L2: qi, ηi ∈ C ([υ0, ∞),R) , qi (υ) ≥ 0, ηi (υ) ≥ υ, lim

υ→∞
ηi (υ) = ∞, i = 1, 2, .., j,

L3: g ∈ C (R,R) such that g (x) / |x|p−2 x ≥ k > 0, for x 6= 0, k is a constant, and under the
condition ∫ ∞

υ0

1
a1/(p−1) (s)

ds = ∞. (2)

Definition 1. The function y ∈ Cκ−1[υy, ∞), υy ≥ υ0, is called a solution of (1), if∣∣∣y(κ−1) (υ)
∣∣∣p−2

y(κ−1) (υ) ∈ C1[υy, ∞), for a ∈ C1 ([υ0, ∞),R) , a (υ) > 0 and y (υ) satisfies (1) on [υy, ∞).

The p-Laplace equations have some applications in continuum mechanics, see [1–3]. Advanced
differential equations naturally appear in models concerning physical, biological, and chemical
phenomena, mechanical, see [4], and in the mathematical modeling of engineering problems, such as
electrical power systems, see [5], materials, see [6], and energy, see [7].
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During this decade, Several works have been accomplished in the development of the oscillation
theory of higher order advanced equations by using the Riccati transformation and the theory of
comparison between first and second-order delay equations, see [8–19]. Further, the oscillation theory
of fourth and second order equations has been studied and developed by using integral averaging
technique and the Riccati transformation, see [20–27].

Our aim of this paper is complement and improve the results contained in [28–30]. For this
purpose we discuss first these results.

Moaaz et al. [31] considered the fourth-order differential equation(
a (υ)

(
y′′′ (υ)

)β
)′

+ q (υ) yα (η (υ)) = 0,

where β, α are quotients of odd positive integers.
Grace et al. [32] considered the equation(

a (υ)
(
y′′ (υ)

)β
)′′

+ q (υ) g (y (η (υ))) = 0, (3)

where η (υ) ≤ υ, β is a quotient of odd positive integers.
Zhang et al. in [3] studied the qualitative behavior of the fourth-order differential equation(

a (υ)
(
w′′′ (υ)

)β
)′

+ q (υ)w (η (υ)) = 0,

where η (υ) ≤ υ, β is a quotient of odd positive integers and they used the Riccati transformation.
Agarwal and Grace [28] considered the equation((

y(κ−1) (υ)
)β
)′

+ q (υ) yβ (η (υ)) = 0, (4)

where κ is an even and they established some new oscillation criteria by using the comparison
technique. Among others, they proved it oscillatory if

lim inf
υ→∞

∫ η(υ)

υ
(η (s)− s)κ−2

(∫ ∞

η(υ)
q (υ) dυ

)1/β

ds >
(κ − 2)!

e
. (5)

Agarwal et al. in [29] extended the Riccati transformation to obtain new oscillatory criteria for
ODE (4) under the condition

lim sup
υ→∞

υβ(κ−1)
∫ ∞

υ
q (s) ds > ((κ − 1)!)β . (6)

The authors in [30] studied oscillatory behavior of (4) where β = 1 and if there exists a function
τ ∈ C1 ([υ0, ∞) , (0, ∞)) , also, they proved it oscillatory by using the Riccati transformation if

∫ ∞

υ

(
τ (s) q (s)− (κ − 2)! (τ′ (s))2

23−2κsκ−2τ (s)

)
ds = ∞. (7)

The main aim of this paper is to establish new oscillation results of solutions to a class of even-order
differential equations and they essentially complement and improve the results contained in [28–30].

The rest of the paper is organized as follows. In Section 2, three lemmas are given to prove the
main results. In Section 3, we establish new oscillation results for (1), comparisons are carried out with
oscillations of first and second-order delay differential equations and two examples are presented to
illustrate the main results. Some conclusions are discussed in the last Section 4.



Mathematics 2020, 8, 821 3 of 10

2. Some Auxiliary Lemmas

We shall employ the following lemmas which are found in the references [8,15,20,27] respectively:

Lemma 1. If y(i) (υ) > 0, i = 0, 1, ..., κ, and y(κ+1) (υ) < 0, then

y (υ)
υκ/κ!

≥ y′ (υ)
υκ−1/ (κ − 1)!

.

Lemma 2. Suppose that y ∈ Cκ ([υ0, ∞) , (0, ∞)) , y(κ) is of a fixed sign on [υ0, ∞) , y(κ) not identically zero
and there exists a υ1 ≥ υ0 such that

y(κ−1) (υ) y(κ) (υ) ≤ 0,

for all υ ≥ υ1. If we have limυ→∞ y (υ) 6= 0, then there exists υθ ≥ υ1 such that

y (υ) ≥ θ

(κ − 1)!
υκ−1

∣∣∣y(κ−1) (υ)
∣∣∣ ,

for every θ ∈ (0, 1) and υ ≥ υθ .

Lemma 3. Suppose that y is an eventually positive solution of (1). Then, there exist two possible cases:

(S1) y (υ) > 0, y′ (υ) > 0, y′′ (υ) > 0, y(κ−1) (υ) > 0, y(κ) (υ) < 0,
(S2) y (υ) > 0, y(r)(υ) > 0, y(r+1)(υ) < 0 for all odd integer

r ∈ {1, 3, ..., κ − 3}, y(κ−1)(υ) > 0, y(κ)(υ) < 0,

for υ ≥ υ1, where υ1 ≥ υ0 is sufficiently large.

Remark 1. Let the differential equation[
a (υ)

(
y′ (υ)

)β
]′
+ q (υ) yβ (g (υ)) = 0‚ υ ≥ υ0, (8)

where β > 0 is the ratio of odd positive integers, a , q ∈ C ([υ0, ∞),R+), is nonoscillatory if and only if there
exist a number υ ≥ υ0, and a function ς ∈ C1 ([υ, ∞),R) , satisfying the inequality

ς′ (υ) + γa−1/β (υ) (ς (υ))(1+β)/β + q (υ) ≤ 0‚ on [υ, ∞).

3. Comparison Theorems with Second/First-Order Equations

Theorem 1. Assume that (2) holds. If the differential equations (κ − 2)!a
1

(p−1) (υ)

(θυκ−2)
p−1

(
y′ (υ)

)p−1

′ + k
j

∑
i=1

qi (υ) yp−1 (υ) = 0 (9)

for every θ ∈ (0, 1), and

y′′ (υ) + y (υ)
1

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dς = 0 (10)

are oscillatory. Then, every solution of (1) is oscillatory.

Proof. On the contrary, assume that y is a positive solution of (1). Then, we can suppose that y (υ) and
y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 3, we have two possible cases (S1)

and (S2).
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Let case (S1) holds. Using Lemma 2, we find

y′ (υ) ≥ θ

2
υκ−2y(κ−1) (υ) , (11)

for every θ ∈ (0, 1) and for all large υ.
Define

ϕ (υ) := τ (υ)

 a (υ)
(

y(κ−1) (υ)
)p−1

yp−1 (υ)

 , (12)

we see that ϕ (υ) > 0 for υ ≥ υ1, where τ ∈ C1 ([υ0, ∞) , (0, ∞)) and

ϕ′ (υ) = τ′ (υ)
a (υ)

(
y(κ−1) (υ)

)p−1

yp−1 (υ)
+ τ (υ)

(
a
(

y(κ−1)
)p−1

)′
(υ)

yp−1 (υ)

−βτ (υ)
yp−2 (υ) y′ (υ) a (υ)

(
y(κ−1) (υ)

)p−1

y2(p−1) (υ)
.

Using (11) and (12), we obtain

ϕ′ (υ) ≤
τ′+ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ)

(
y(κ−1) (υ)

)p−1
)′

yp−1 (υ)

− (p− 1) τ (υ)
θ

(κ − 2)!
υκ−2

a (υ)
(

y(κ−1) (υ)
)p

yp (υ)

≤ τ′ (υ)

τ (υ)
ϕ (υ) + τ (υ)

(
a (υ)

(
y(κ−1) (υ)

)p−1
)′

yp−1 (υ)

− (p− 1) θυκ−2

(κ − 2)! (τ (υ) a (υ))
1

p−1
ϕ (υ)

p
p−1 . (13)

From (1) and (13), we obtain

ϕ′ (υ) ≤ τ′ (υ)

τ (υ)
ϕ (υ)− kτ (υ)

∑
j
i=1 qi (υ) yp−1 (ηi (υ))

yp−1 (υ)
− (p− 1) θυκ−2

(κ − 2)! (τ (υ) a (υ))
1

p−1
ϕ (υ)

p
p−1 .

Note that y′ (υ) > 0 and ηi (υ) ≥ υ, thus, we find

ϕ′ (υ) ≤ τ′ (υ)

τ (υ)
ϕ (υ)− kτ (υ)

j

∑
i=1

qi (υ)−
(p− 1) θυκ−2

(κ − 2)! (τ (υ) a (υ))
1

p−1
ϕ (υ)

p
p−1 . (14)

If we set τ (υ) = k = 1 in (14), then we find

ϕ′ (υ) +
(p− 1) θυκ−2

(κ − 2)! (τ (υ) a (υ))
1

p−1
ϕ (υ)

p
p−1 +

j

∑
i=1

qi (υ) ≤ 0.

Therefore, we note that the Equation (9) is nonoscillatory, which is a contradiction.
Let case (S2) holds. Define

ψ (υ) := ϑ (υ)
y′ (υ)
y (υ)

,
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we see that ψ (υ) > 0 for υ ≥ υ1, where ϑ ∈ C1 ([υ0, ∞) , (0, ∞)). By differentiating of ψ (υ), we find

ψ′ (υ) =
ϑ′ (υ)

ϑ (υ)
ψ (υ) + ϑ (υ)

y′′ (υ)
y (υ)

− 1
ϑ (υ)

ψ (υ)2 . (15)

Now, we integrating (1) from υ to m and using y′ (υ) > 0, we find

a (m)
(

y(κ−1) (m)
)p−1

− a (υ)
(

y(κ−1) (υ)
)p−1

= −
∫ m

υ

j

∑
i=1

qi (s) g (y (ηi (s))) ds.

By virtue of y′ (υ) > 0 and ηi (υ) ≥ υ, we get

a (m)
(

y(κ−1) (m)
)p−1

− a (υ)
(

y(κ−1) (υ)
)p−1

≤ −kyp−1 (υ)
∫ u

υ

j

∑
i=1

qi (s) ds.

Letting m→ ∞ , we see that

a (υ)
(

y(κ−1) (υ)
)p−1

≥ kyp−1 (υ)
∫ ∞

υ

j

∑
i=1

qi (s)ds

and so

y(κ−1) (υ) ≥ y (υ)

(
k

a (υ)

∫ ∞

υ

j

∑
i=1

qi (s)ds

)1/(p−1)

.

Integrating again from υ to ∞ for a total of (κ − 4) times, we get

y′′ (υ) +
y (υ)

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dς ≤ 0. (16)

From (15) and (16), we obtain

ψ′ (υ) ≤ ϑ′(υ)
ϑ(υ)

ψ (υ)− ϑ(υ)
(κ−4)!

∫ ∞
υ (ς− υ)κ−4

(
k

a(ς)

∫ ∞
ς ∑

j
i=1 qi (s)ds

)1/(p−1)
dς− 1

ϑ(υ)
ψ (υ)2 . (17)

If we now set ϑ (υ) = k = 1 in (17), then we obtain

ψ′ (υ) + ψ2 (υ) +
1

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dς ≤ 0.

Hence, we see that the Equation (10) is nonoscillatory, which is a contradiction. Theorem 1
is proved.

Remark 2. It is well known (see [23]) that if

∫ ∞

υ0

1
a (υ)

dυ = ∞, and lim inf
υ→∞

(∫ υ

υ0

1
a (s)

ds
) ∫ ∞

υ
q (s)ds >

1
4

,

then Equation (8) with p = 2 is oscillatory.

Based on the above results and Theorem 1, we can easily obtain the following Hille and Nehari
type oscillation criteria for (1) with β = 1.
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Theorem 2. Let p = 2, k = 1. Assume that (2) holds. If

∫ ∞

υ0

θυκ−2

(κ − 2)!a (υ)
dυ = ∞

and

lim inf
υ→∞

(∫ υ

υ0

θsκ−2

(κ − 2)!a (s)
ds
) ∫ ∞

υ

j

∑
i=1

qi (s)ds >
1
4

, (18)

also, if

lim inf
υ→∞

υ
∫ υ

υ0

1
(κ − 4)!

∫ ∞

v
(ς− υ)κ−4

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)
dςdv >

1
4

, (19)

for all constant θ ∈ (0, 1). Then all solutions of (1) are oscillatory.

In the theorem, we compare the oscillatory behavior of (1) with the first-order differential
equations:

Theorem 3. Assume that (2) holds. If the differential equations

x′ (υ) + k
j

∑
i=1

qi (υ)

(
θυκ−2

(κ − 2)!a1/β (υ)

)p−1

x (η (υ)) = 0 (20)

and

z′ (υ) + z (υ)
υ

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dς = 0 (21)

are oscillatory for all constant θ ∈ (0, 1). Then all solutions of (1) are oscillatory.

Proof. On the contrary, assume that y is a positive solution of (1). Then, we can suppose that y (υ) and
y (ηi (υ)) are positive for all υ ≥ υ1 sufficiently large. From Lemma 3, we have two possible cases (S1)

and (S2).
In the case where (S1) holds, from Lemma 2, we see

y (υ) ≥ θυκ−2

(κ − 2)!a1/(p−1) (υ)

(
a1/(p−1) (υ) y(κ−1) (υ)

)
,

for every θ ∈ (0, 1) and for all large υ. Thus, if we set

x (υ) = a (υ)
(

y(κ−1) (υ)
)p−1

> 0,

then we see that ψ is a positive solution of the inequality

x′ (υ) + k
j

∑
i=1

qi (υ)

(
θυκ−2

(κ − 2)!a1/(p−1) (υ)

)p−1

x (η (υ)) ≤ 0. (22)

From [24] (Theorem 1), we see that the Equation (20) also has a positive solution and it is
a contradiction.

In the case where (S2) holds. From Lemma 1, we get

y (υ) ≥ υy′ (υ) , (23)
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From (16) and (23), we get

y′′ (υ) + y′ (υ)
υ

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dς ≤ 0.

Now, we set
z (υ) = y′ (υ) .

Thus, we find ψ is a positive solution of the inequality

z′ (υ) + z (υ)
υ

(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dς ≤ 0. (24)

It is well known (see [24] (Theorem 1)) that the Equation (21) also has a positive solution and it is
a contradiction.

The proof is complete.

Corollary 1. Let (2) holds. If

lim inf
υ→∞

∫ υ

ηi(υ)

j

∑
i=1

qi (s)
(

θυκ−2

(κ − 2)!a1/(p−1) (υ)

)p−1

ds >
((κ − 1)!)p−1

e
(25)

and

lim inf
υ→∞

∫ υ

ηi(υ)

s
(κ − 4)!

∫ ∞

υ
(ς− υ)κ−4

(
k

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dςds >
1
e

, (26)

for all constant θ ∈ (0, 1). Then all solutions of (1) are oscillatory.

Let us consider the differential equation

Example 1. Let the equation
y(4) (υ) +

q0

υ4 y (3υ) = 0, υ ≥ 1, (27)

where q0 > 0 is a constant. Note that p = 2, κ = 4, a (υ) = 1, q (υ) = q0/υ4 and η (υ) = 3υ. If we set
k = 1, then condition (18) becomes

lim inf
υ→∞

(∫ υ

υ0

θsκ−2

(κ − 2)!a (s)
ds
) ∫ ∞

υ

j

∑
i=1

qi (s)ds = lim inf
υ→∞

(
υ3

3

) ∫ ∞

υ

q0

s4 ds

=
q0

9
>

1
4

and condition (19) becomes

lim inf
υ→∞

υ
∫ υ

υ0

1
(κ − 4)!

∫ ∞

v
(ς− υ)κ−4

(
1

a (ς)

∫ ∞

ς

j

∑
i=1

qi (s)ds

)1/(p−1)

dςdv = lim inf
υ→∞

υ
( q0

6υ

)
=

q0

6
>

1
4

.

Therefore, from Theorem 2, all the solutions of the equation (27) is oscillatory if q0 > 2.25.
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Remark 3. We compare our result with the known related criteria for oscillation of this equation as follows:

The condition (5) (6)
The criterion q0 > 13.6 q0 > 18

(7)
q0 > 576

our condition
q0 > 2.25

Therefore, our result improve the results contained in [28–30].

Example 2. Consider the differential equation

y(4) (υ) +
q0

υ4 y (2υ) = 0, υ ≥ 1, (28)

where q0 > 0 is a constant. Note that p = 2, κ = 4, a (υ) = 1, q (υ) = q0/υ4 and η (υ) = 2υ. If we set
k = 1, then condition (18) becomes

q0

9
>

1
4

.

Therefore, from Theorem 2, all solution equation (28) is oscillatory if q0 > 2.25.

Remark 4. We compare our result with the known related criteria for oscillation of this equation as follows:

The condition (5) (6)
The criterion q0 > 25.5 q0 > 18

(7)
q0 > 1728

our condition
q0 > 2.25

Therefore, our result improve the results contained in [28–30].

4. Conclusions

In this article, we study the oscillatory behavior of a class of non-linear even-order differential
equations with a p-Laplacian like operator and establish sufficient conditions for oscillation of a
even-order differential equation by using the theory of comparison with first and second-order delay
equations and Riccati substitution technique.

For researchers interested in this field, and as part of our future research, there is a nice open
problem which is finding new results in the following case:∫ ∞

υ0

1
a1/(p−1) (s)

ds < ∞. (29)

For all this there is some research in progress.
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