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Abstract: Visual cryptography scheme (VCS) shares a binary secret image into multiple shadows
printed on transparencies. Stacking shadows can visually decode the secret image without
computational resources. Specifically, a (k, n) threshold VCS ((k, n)-VCS) shares a secret image
into n shadows, stacking any k shadows can reveal the secret image by human visual system, while
any less than k shadows cannot decode any information regarding the secret image. In practice,
some participants (essentials) play more important roles than others (non-essentials). In this paper,
we propose a (t, s, k, n) VCS with essential participants (so called (t, s, k, n)-EVCS). The secret image is
shared into n shadows with s essentials and n-s non-essentials. Any k shadows, including at least t
essentials, can reveal the secret image. The proposed scheme is constructed from a monotonic (K,
N)-VCS. The condition and optimal choice of (K, N)-VCS to construct (t, s, k, n)-EVCS are given by
solving integer programming model. The experimental results are conducted to verify the feasibility
of our scheme.

Keywords: visual secret sharing; secret image sharing; visual cryptography; integer programming;
essential shadows

1. Introduction

Visual cryptography scheme (VCS) is a technique for sharing a secret image among the participants.
The revealing process of the secret image can be implemented by stacking operation without
computation. The first VCS was proposed by Naor and Shamir [1] in 1994. A (k, n) threshold
VCS ((k, n)-VCS) shares a binary secret image into n shadows printed on transparencies, which are
assigned to n participants, respectively. Stacking any k shadows can reveal the secret image by human
visual system without computation. The advantage of VCS is its easy revealing. Stacking shadows
without computational resources can reveal the secret image. However, the disadvantages are the large
shadow size expansion and the degraded visual quality of the revealed image. Many researchers were
dedicated on improving performance of VCS [2–4], and proposed VCS with different properties, like
VCS for color images [5–7], VCS for multiple secret images [8,9], VCS with meaningful shadows [10,11],
and random grid-based VCS (RGVCS) [12–15], et.al.

A (k, n)-VCS is called the monotonic VCS if it can reveal the secret image by stacking more than k
shadows. Otherwise, it is called the non-monotonic VCS. Jin et al. proposed progressive VCS [16].
Stacking more shadows can decode secret image with better visual quality. Most of existing VCSs do
not distinguish the roles of each shadow. However, in practice, some shadows are more important
than others according to the status of the participants. Arumugam et al. [17] proposed (k, n)-VCS
with one essential participant and n-1 non-essential participants. In the revealing process, any k
participants, including the essential one, can reveal the secret image. Without the essential one, the
secret image cannot be revealed, even with all other non-essentials. Guo et al. [18] extended the scheme
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of Arumugam et al. [17] and proposed a (t, k, n)-VCS with t essential participants, namely (t, k, n)-EVCS
that is constructed from a known (k-t, n-t)-VCS and a known optimal (t, t)-VCS. A qualified set of
shadows should contain k shadows, including t essential ones.

Another category of secret image sharing scheme is based on polynomial. Thien and Lin [19]
proposed a (k, n) threshold secret image sharing (SIS) scheme. The secret pixels are embedded into
the coefficients of a (k−1)-degree polynomial to generate shadow pixels. With any k shadows, the
secret image can be decoded by Lagrange interpolation. When compared with VCS, polynomial based
SIS can reveal the original grayscale secret image by computation. Many researchers proposed many
polynomial based SIS [20–23]. Li et al. [24] first presented the concept of secret image sharing scheme
with essential participants (ESIS), and proposed (t, s, k, n)-ESIS. For a (t, s, k, n)-ESIS, the secret image
is shared into n shadows with s essentials and n-s non-essentials. A qualified set of shadows should
contain k shadows, including at least t essentials. Many researchers proposed different (t, s, k, n)-ESIS
schemes to achieve smaller shadow size and equal shadow size [25–28]. Liu et al. [29] combined the
scalable secret image sharing scheme with ESIS, so that k or more shadows, including at least t essential
shadows, can gradually restore the secret image, while restoring the whole secret image requires the
participation of all s essential shadows.

In this paper, we propose general (t, s, k, n) visual cryptography scheme with essential participants
(EVCS). For a (t, s, k, n)-EVCS, the secret image is shared into n shadows with s essentials and n-s
non-essentials. Stacking any k shadows, including at least t essentials, can reveal the secret image. The
proposed (t, s, k, n)-EVCS is constructed from a monotonic (K, N)-VCS based on integer programming.
When compared with ESIS, the revealing process of the proposed EVCS does not need complicated
mathematical operation. EVCS has potential application when some participants are accorded special
privileges due to their status or importance, e.g., heads of government, managers of company, high-level
corporate officers, major employers, etc. For example, in a nuclear-powered submarine under the ocean,
the missile launch code is shared by (2, 2, 4, 6)-EVCS into two essential shadows for the commander
and the executive commander and four non-essentials for four other decision members. The missile
launch code can be decoded if and only if at least four participants, including the commander and the
executive commander, have the agreement on the launch of the missile, and stacking their shadows.
EVCS can also be applied in key exchange or key distribution when exchanging message in a public
secure network [30,31].

The layout of this paper is as follows. In next section, we present some preliminaries of VCS.
In Section 3, we propose our (t, s, k, n)-EVCS based on integer programming. Section 4 provides
experimental results and comparisons and Section 5 concludes the paper.

2. Related Works

In this section, we briefly introduce relevant concepts of (k, n)-VCS and Yan et al.’s random grid
based VCS (RGVCS) [32].

2.1. Access Structure of (k, n)-VCS

Let P = {1, 2, · · · , n} be the set of all participants and 2P is the power set of P. Let qualified sets
ΓQual be the collection of the set of participants that can recover the secret, forbidden sets ΓForb be the
collection of the set of participants that cannot recover the secret. (ΓQual, ΓForb) constitutes an access
structure, where ΓQual ⊆ 2P, ΓForb ⊆ 2P, and ΓQual ∩ ΓForb = ∅.

Definition 1 ([33]). A (k, n)-VCS with access structure (ΓQual, ΓForb) is monotonic if the following conditions
are satisfied.

(1) ΓQual is monotonic increasing, i.e. if a subset of Q can reveal the secret, then the participants in Q can
reveal the secret as well.

(2) ΓForb is monotonic decreasing, i.e. if F ∈ ΓForb cannot reveal the secret, then any subset of F cannot reveal
the secret as well.
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(3) ΓQual ∪ ΓForb = 2p

For a (k, n)-VCS, a qualified set should contain at least k participants. Stacking any k shadows can
reveal the secret image. If stacking more than k shadows can still reveal the secret, the (k, n)-VCS is also
called monotonic (k, n)-VCS.

Usually, a (k, n)-VCS is constructed by a pair of matrices, called basis matrices M0 and M1. Let
S ⊆ P, M|S is a submatrix generated by restricting matrix M on the rows of S. Let OR(M) denote the
vector generated by performing OR operation on the rows of matrix M. Let w(a) denote the Hamming
weight of vector a. Formally, we have the definition of monotonic (k, n)-VCS, as follows.

Definition 2. Two binary matrices M0 and M1 with the size n×m can be used as basis matrices of a monotonic
(k, n)-VCS if and only if the following conditions satisfied.

(Contrast condition). For any S ⊆ P and |S| ≥ k, we have w(OR(M0|S))< w(OR(M1|S)).
(Security condition). For any S ⊆ P and 1≤|S|<k, we have w(OR(M0|S))= w(OR(M1|S)).

For a (k, n)-VCS with basis matrices M0 and M1, if the secret pixel is white (resp. black), permute the
columns of M0 (resp. M1), and then assign its n rows to n shadows, respectively. Since each shadow
receives m pixels for sharing each secret pixel, the shadows size is m times of the secret image. m is also
called size expansion. The visual quality of the revealed image is usually degraded, and it is evaluated
by the contrast defined, as follows.

α = (w(OR(M1
∣∣∣S)) −w(OR(M0

∣∣∣S)))/m

where S ⊆ P and |S|≥k. By contrast condition of the definition of VCS, we know that α is larger than 0
and no more than 1. When the contrast is 1, the revealed image has the perfect visual quality. The
larger value of the contrast, the better visual quality of the revealed image.

Example 1. The example of (3, 4)-VCS.

Here we show a (3, 4)-VCS while using the following basis matrices presented in [33].

M0 =


0 0 0 1 1 1
0 0 1 0 1 1
0 0 1 1 0 1
0 0 1 1 1 0

 and M1 =


1 1 1 0 0 0
1 1 0 1 0 0
1 1 0 0 1 0
1 1 0 0 0 1


The size expansion m is 6, which means the generated shadows have the size six times of the

secret image, as we can see from the basis matrices. The contrast value α when stacking three shadows
is 1/6. When stacking four shadows, the contrast value α is increased to 1/3. Therefore, the (3, 4)-VCS
with above basis matrices is monotonic. Figure 1 shows the experimental results of (3, 4)-VCS. Stacking
any three or four shadows can reveal the secret image.
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Figure 1. The experimental results of (3, 4)-VCS. (a) the secret image; (b–e) four generated shadows; (f)
revealed image by shadow 1, 2 and 3; (g) revealed image by shadow 1, 2, and 4; (h) revealed image by
shadow 1, 3, and 4; (i) revealed image by shadow 2, 3, and 4; and, (j) revealed image by shadow 1, 2, 3,
and 4.

2.2. Yan et al.’s RGVCS

Kafri and Keren first presented RG-based VCS [34]. Each shadow is noise-like and it has the same
size as the secret image. The revealing operation is also stacking shadows. First, we briefly introduce
the generation of (2, 2)-RGVCS, as described below.

Step 1: Randomly generate the first shadow SC1 with the same size as secret image S.
Step 2: Calculate the corresponding SC2(i, j) according to S(i, j)(the value of pixels in the secret

image), as described in Equation (1).

SC2(i, j) =
 SC1(i, j) i f S(i, j) = 0

SC1(i, j) i f S(i, j) = 1
(1)

Step 3: Repeat Step2 until all pixels in S are processed.
Finally, the revealed image obtained by stacking shadows (S′ = SC1 ⊗ SC2 as in Equation (2),

where ⊗ denotes the Boolean OR operation) SC1 and SC2 can be directly recognized by the human
visual system.

S′(i, j) = SC1(i, j) ⊗ SC2(i, j) =
 SC1(i, j) ⊗ SC1(i, j) i f S(i, j) = 0

SC1(i, j) ⊗ SC1(i, j) = 1 i f S(i, j) = 1
(2)

Many (k, n)-RGVCS schemes have been proposed based on (2, 2)-RGVCS. Their similarity is
to repeat the above process for the first k bits, but the difference is the disposal of the last n-k bits.
Yan et al. [32] proposed a novel (k, n)-RGVCS, which makes full use of n-k random bits to improve
the visual quality of the recovered image. Their (k, n)-RGVCS is also a progressive VCS. Better visual
quality of the revealed secret image will be gained by stacking more shadows. The algorithm of Yan et
al.’s (k, n)-RGVCS is given, as follows (Algorithm 1).
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Algorithm 1. Yan et al.’s RGVCS.

Input: secret image S, the threshold parameters (k, n)
Output: n shadows SC1, SC2, . . . , SCn

A1-1:For each pixel S(i, j) in the secret image S, repeat Steps 2–4.
A1-2:Apply the above conventional (2, 2)-RGVCS to encrypt the pixelS(i, j), then b1 and b′2 are obtained. b′2 is

encrypted in the same way. Repeat the above operation until b1, b2, . . . , b′k(= bk) are obtained.
A1-3:For bl(k + 1 ≤ l ≤ n), if lmodk = x, (0 ≤ x ≤ k− 1), then bl = bk.
A1-4:Redistribute b1, b2, . . . , bn to SC1(i, j), SC2(i, j), . . . , SCn(i, j) randomly.
A1-5:Output n shadows SC1, SC2, . . . , SCn.

Example 2. The experiment of Yan et al.’s (3, 6)-RGVCS
An experiment of (3, 6) threshold of scheme with secret image “VCS” is conducted in order to demonstrate

the Yan et al.’s algorithm. Figure 2a shows the secret image. Figure 2b–g show six shadows. Figure 2h shows the
revealed image by 2 shadows. Figure 2i–l show the revealed image by stacking 3, 4, 5, and 6 shadows, respectively.
Apparently, better visual quality of the recovered secret will be gained by stacking more shadow images. The
results show that Yan et al.’s scheme satisfies monotonicity, as described in Definition 1.
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Figure 2. An experiment of Yan et al.’s (3, 6)-VCS. (a) secret image; (b–g) six shadows; (h) revealed
image by two shadows; (i) revealed image by three shadows; (j) revealed image by four shadows;
(k) revealed image by five shadows; and, (l) revealed image by six shadows.

3. The Proposed (t, s, k, n)-EVCS Based on Integer Programming

3.1. The Definition of (t, s, k, n)-EVCS

In traditional (k, n)-VCS, a qualified subset of participants should have any k or more participants.
The roles of each participant are the same. However, there are many examples in practical situations
where some participants are given privileges because of their status or importance, such as heads
of government, company managers, etc. Therefore, it is reasonable for us to consider giving special
powers to some participants in VCS. The proposed (t, s, k, n)-EVCS shares the secret image into n
shadows with s essentials and n-s non-essentials. Stacking any k shadows, including at least t essential
one, can reveal the secret image. A qualified subset of participants should have at least k shadows,
including t essentials. Let EP = {1, 2, . . . , s} and NEP = {s + 1, s + 2, . . . , n} denote the set of essential
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participants and non-essential participants, respectively. Subsequently, we can derive all qualified sets
ΓQual of (t, s, k, n)-EVCS, as follows.

ΓQual = {Q|Q ⊆ P, |Q|≥ k and |Q\NEP|≥ t} (3)

If a subset of participant does not belong to the qualified sets ΓQual, it belongs to forbidden sets.
Hence, we have forbidden sets ΓForb of (t, s, k, n)-EVCS.

ΓForb =
{
S
∣∣∣S ⊆ P and S < ΓQual

}
(4)

Subsequently, (t, s, k, n)-EVCS can be defined if and only if the access structure satisfies Equations
(3) and (4).

We only consider non-trivial EVCS, which cannot be reduced to a threshold VCS. For the
relationships among t, s, k, and n of (t, s, k, n)-EVCS, we have the following facts.

(1) t, s, k and n are all integers no less than 1, and t ≤ s ≤ n, t ≤ k ≤ n.
(2) k > t. Otherwise, (t, s, k, n)-EVCS is reduced to (t, s)-VCS.
(3) k < n. Otherwise, (t, s, k, n)-EVCS is reduced to (n, n)-VCS.
(4) If s = n, (t, s, k, n)-EVCS is reduced to (t, n)-VCS. Hence, s < n. If s = n − 1, then there is only one

non-essential participant. A qualified set of participants contains k members, including at least
t essentials and k - t non-essentials. We have k – t ≤ 1. Since k > t, then k = t + 1. If s = t, then
k = s + 1 = n, and (t, s, k, n)-EVCS is reduced to (n, n)-VCS. Otherwise, s ≥ t + 1, which means
that there are more than t essentials. Since there is only one non-essential participant, any t + 1
participants must contain at least t essentials and they can reveal the secret image. Afterwards, (t,
s, k, n)-EVCS is reduced to (t + 1, n)-VCS. Overall, we have s ≤ n-2.

(5) k− t < n− s. The number of non-essentials is n− s, and the largest number of non-essentials in a
qualified set is k− t. Obviously, k− t ≤ n− s. If k− t = n− s, then any k participants will contain at
least k− (n− s) = k− (k− t) = t essentials. Subsequently, (t, s, k, n)-EVCS is reduced to (k, n)-VCS.
Therefore, we have k− t < n− s.

Finally, we have the relationships among t, s, k and n of (t, s, k, n)-EVCS are shown, as follows:
t ≤ s ≤ n− 2

t < k < n
k− t < n− s

t, s, k and n are integers no less than 1

(5)

3.2. Constructing (t, s, k, n)-EVCS Based on Integer Programming

The idea for constructing (t, s, k, n)-EVCS is that we generate the shadows by a monotonic (K,
N)-VCS. The secret image is first shared into N shadows by (K, N)-VCS. Subsequently, each essential
(non-essential) shadow of EVCS is obtained by the superposition ofω1 (ω2) shadows of VCS. Obviously,
we have

N = sω1 + (n− s)ω2 (6)

Since essential shadow is more important than the non-essential shadow of EVCS, ω1 must be
larger than ω2.

Figure 3 shows the diagram of generating shadows of EVCS by the shadows of a monotonic VCS.
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For (K, N)-VCS, a qualified subset of shadows should have at least K shadows. Each essential
(non-essential) shadow of EVCS represents the stacking result of ω1 (ω2) shadows of (K, N)-VCS.
A qualified subset of shadows of EVCS should contribute no less than K shadows of (K, N)-VCS
to satisfy the contrast condition of (K, N)-VCS. Any forbidden subset of shadows of EVCS should
contribute less than K shadows of (K, N)-VCS to satisfy the security condition of (K, N)-VCS. Therefore,
our task is determining the proper values ofω1,ω2, K, and N to be used for constructing (t, s, k, n)-EVCS.
In this paper, we get the values of ω1, ω2, K, and N by solving an integer programming model.

For (t, s, k, n)-EVCS, we first need to build the relationship among the values of ω1, ω2, K, and N.
These parameters should satisfy the following conditions.

(1) For all parameters ω1, ω2, K, and N to make sense, we need to restrict that ω1 ≥ 1, ω2 ≥ 1, K ≥ 1,
and N ≥ K.

(2) Essential shadows are more important than non-essential shadows. In another word, an essential
shadow can contribute more shadows of VCS than a non-essential shadow. Hence, ω1 must be
larger than ω2. That is

ω1 −ω2 ≥ 1 (7)

(3) By Equation (3), we have that a qualified set should contain any k shadows, including at least t
essentials. In another word, k shadows of EVCS, including t essential ones, can contribute at least
K shadows of VCS. Subsequently, we have

tω1 + (k− t)ω2 ≥ K (8)

Obviously, Equation (8) guarantees that any k shadows of EVCS, including more than t essential
ones, can also contribute at least K shadows of VCS.

(4) By Equations (3) and (4), the secret image cannot be recovered with less than t essential
shadows. In another word, the threshold value K of (K, N)-VCS is still not satisfied, even if t−1
essential shadows and all n-s non-essential shadows are gathered. Subsequently, we have the
following inequality.

(t− 1)ω1 + (n− s)ω2 ≤ K − 1 (9)
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(5) By Equations (3) and (4), the secret image cannot be recovered with less than k shadows.

If s ≥ k, then any k−1 essential shadows cannot contribute enough shadows of VCS. In order to
satisfy the security condition of VCS, we have

(k− 1)ω1 ≤ K − 1 (10)

If s < k, then any s essential shadows and k-s − 1 non-essential shadows cannot contribute enough
shadows of VCS. To satisfy the security condition of VCS, we have

sω1 + (k− 1− s)ω2 ≤ K − 1 (11)

For (K, N)-VCS, the larger values of K and N may reduce the visual quality of the revealed image,
and complicate the sharing process. Therefore, we want to obtain as small values of K and N as possible.
In general, the objective function is:

min K + N (12)

We generate the following integer programming models (IPM) by combining the constraint
conditions and objective function.

(IPM I): When s < k, the corresponding integer programming model is:

min K + sω1 + (n− s)ω2

tω1 + (k− t)ω2 −K ≥ 0
(t− 1)ω1 + (n− s)ω2 −K ≤ −1
sω1 + (k− 1− s)ω2 −K ≤ −1

ω1 −ω2 ≥ 1
ω1 ≥ 1
ω2 ≥ 1
K ≥ 1

(13)

(IPM II): When s ≥ k, the corresponding integer programming model is:

min K + sω1 + (n− s)ω2

tω1 + (k− t)ω2 −K ≥ 0
(t− 1)ω1 + (n− s)ω2 −K ≤ −1

(k− 1)ω1 −K ≤ −1
ω1 −ω2 ≥ 1
ω1 ≥ 1
ω2 ≥ 1
K ≥ 1

(14)

3.3. Determine the Parameters by Solving IPMs

We need to solve IPM I or IPM II to determine the values of ω1, ω2, K and N. Before we solve
IPM, we divide the relationship among t, s and k into six cases: (Case 1) t = s, s < k; (Case 2) t , s,
s < k; (Case 3) s− t = 1, s = k; (Case 4) s− t , 1, s = k; (Case 5) k− t = 1, s > k; (Case 6) k− t = 1, s > k.
Figure 4 shows the diagram of the division for different cases. For Case 1 and Case 2, we need to solve
IPM I. For the other cases, we need to solve IPM II.
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Now we solve IPM according to the six cases, respectively.
(Case 1) t = s, s < k.
For this case, we need to solve IPM I. First, we convert IPM I into standard form by generalizing

the sighs of ω1, ω2 and K to x1, x2, and x3. Subsequently, we have new IPM as follows.

max− tx1 + (t− n)x2 − x3

tx1 + (k− t)x2 − x3 − x4 = 0
(1− t)x1 + (t− n)x2 + x3 − x5 = 1
−tx1 + (t + 1− k)x2 + x3 − x6 = 1

x1 − x2 − x7 = 1
x1 − x8 = 1
x2 − x9 = 1
x3 − x10 = 1

x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 ≥ 0

(15)

where x4, x5, x6, x7, x8, x9, and x10 are non-negative residual variables (slack variables). We use the
dual simplex method to solve above IPM. Equation (15) is converted to the following form to obtain
the initial feasible basis of the dual problem.

max− tx1 + (t− n)x2 − x3

−tx1 + (t− k)x2 + x3 + x4 = 0
(t− 1)x1 + (n− t)x2 − x3 + x5 = −1
tx1 + (k− t− 1)x2 − x3 + x6 = −1

−x1 + x2 + x7 = −1
−x1 + x8 = −1
−x2 + x9 = −1
−x3 + x10 = −1

x1, x2, x3, x4, x5, x6, x7, x8, x9x10 ≥ 0

(16)

Establish the initial simplex table for IPM, as shown in Table 1.
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Table 1. The initial simplex table of integer programming models (IPM) I for Case 1.

c j→ -t t−n −1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 x4 0 −t t−k 1 1 0 0 0 0 0 0
0 x5 −1 t −1 n−t [[−1] 0 1 0 0 0 0 0
0 x6 −1 t k−t−1 −1 0 0 1 0 0 0 0
0 x7 −1 −1 1 0 0 0 0 1 0 0 0
0 x8 −1 −1 0 0 0 0 0 0 1 0 0
0 x9 −1 0 −1 0 0 0 0 0 0 1 0
0 x10 −1 0 0 −1 0 0 0 0 0 0 1

c j − z j −t t−n −1 0 0 0 0 0 0 0

From Table 1 it can be seen that the solution of the dual problem corresponding to the row of
checking number is feasible. Since some numbers in column b is negative, iterative operation is required.
Since the values of bi are equal, the non-basic variable with the smallest subscript in XB is selected as
the leaving variable, i.e. x5. Check the coefficients al j( j = 1, 2, . . . , 10) of the row of al in the simplex
table, if all al j ≥ 0, there is no feasible solution, and the calculation is terminated. If al j < 0, calculate

θ = min
j

(
c j−z j

al j

∣∣∣∣al j < 0
)
=

ck−zk
alk

, and the non-basic variable xk of the column corresponding to rule of θ is

the entering variable. Calculating according to the above steps, we obtain θ = min
{
−,−, −1

−1

}
= 1, so x3

is the entering variable. “−1” is the pivot element at the intersection of the column and row where the
variables are entering and leaving. The iteration is performed according to the calculation steps of
dual simplex method, and Table 2 shows the results.

Table 2. Simplex table of IPM I for Case 1 after one iteration.

c j→ −t t−n −1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

0 x4 −1 [−1] n − k 0 1 1 0 0 0 0 0
−1 x3 1 1 − t t−n 1 0 −1 0 0 0 0 0
0 x6 0 1 k − n−1 0 0 −1 1 0 0 0 0
0 x7 −1 −1 1 0 0 0 0 1 0 0 0
0 x8 −1 −1 0 0 0 0 0 0 1 0 0
0 x9 −1 0 −1 0 0 0 0 0 0 1 0
0 x10 0 1 − t t−n 0 0 −1 0 0 0 0 1

c j − z j 1 − 2t 2(t − n) 0 0 −1 0 0 0 0 0

From Table 2 it can be seen that the dual problem is still a feasible solution, and there are still
negative components in column b. Repeat the above iterative steps until the numbers in column b are
all non-negative and the test numbers are all non-positive, as shown in Table 3.

Table 3. The final simplex table of IPM I for Case 1.

c j→ −t T − n −1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−t x1
n − k
+ 1 1 0 0 k – n − 1 −1 k − n 0 0 0 0

−1 x3
t(n −
k) + k 0 0 1 t(k − n) − k + 1 −t t(k − n + 1) − k 0 0 0 0

t − n x2 1 0 1 0 −1 0 −1 0 0 0 0

0 x7
n – k
− 1 0 0 0 k − n −1 k − n + 1 1 0 0 0

0 x8 n − k 0 0 0 k − n−1 −1 k − n 0 1 0 0
0 x9 0 0 0 0 −1 0 −1 0 0 1 0

0 x10

k +
t(n −
k) − 1

0 0 0 t(k − n) − k + 1 −t t(k − n + 1) − k 0 0 0 1

c j − z j 0 0 0 2t(k − n) + 1−k − n −2t 2t(k − n + 1) − n −
k 0 0 0 0

The numbers in column b are all non-negative and the test numbers are all non-positive, as shown
in Table 3. Therefore, the optimal solution of the problem is X* = (n− k + 1, 1, t(n− k) + k,0,0,0, n− k− 1,



Mathematics 2020, 8, 838 11 of 19

n − k,0,k + t(n − k) − 1). Additionally, since tx1 + (n − t)x2 = N, then t(n − k + 1) + n − t = N. From
what has been discussed above, any (t, t, k, n)-EVCS can be constructed by a monotonic (K, N)-VCS =

(t(n− k) + k, t(n− k + 1)+n− t)-VCS with ω1 = n− k + 1 and ω2 = 1.
(Case 2) t , s, s < k.
For this case, we need to solve IPM I with the same method. Table 4 shows the simplex table

obtained after two iterations.

Table 4. Simplex table after two iterations for Case 2.

c j→ −s s − n −1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−s x1 1 1 k + s – t − n 0 −1 −1 0 0 0 0 0
−1 x3 t 0 t−k−t(t + n – k − s) 1 1−t −t 0 0 0 0 0

0 x6
t − s
− 1 0 [(t + n – k − s)(s − t) + t − s − 1] 0 S − t

+ 1 s−t 1 0 0 0 0

0 x7 0 0 1 − t−n + k + s 0 −1 −1 0 1 0 0 0
0 x8 0 0 k + s−t−n 0 −1 −1 0 0 1 0 0
0 x9 −1 0 −1 0 0 0 0 0 0 1 0
0 x10 t−1 0 t−k−t(t + n − k − s) 0 1−t −t 0 0 0 0 1

c j − z j 0 2(s − n) + (s – t − 1)(k + s – t − n) 0 1−s−t −s−t 0 0 0 0 0

Since t , s, with the relationship between s and t, we have t− s− 1 < −1. Subsequently, the linear
programming has a solution if and only if (t + n − k − s)(s − t) + t − s − 1 < 0. Continue to iterate.

It is calculated that the elements in column b are 1 − (t−s−1)(k+s−t−n)
(t+n−k−s)(s−t)+t−s−1 , t − (t−s−1)[t−k−t(t+n−k−s)]

(t+n−k−s)(s−t)+t−s−1 ,
t−s−1

(t+n−k−s)(s−t)+t−s−1 , − (t−s−1)(1−t−n+k+s)
(t+n−k−s)(s−t)+t−s−1 , − (t−s−1)(k+s−t−n)

(t+n−k−s)(s−t)+t−s−1 , t−s−1
(t+n−k−s)(s−t)+t−s−1 − 1, t − 1 −

(t−s−1)[t−k−t(t+n−k−s)]
(t+n−k−s)(s−t)+t−s−1 , respectively. They are obviously all non-negative, except − (t−s−1)(1−t−n+k+s)

(t+n−k−s)(s−t)+t−s−1 ,

which needs further discussion. If 1 − t − n + k + s ≤ 0, i.e. − (t−s−1)(1−t−n+k+s)
(t+n−k−s)(s−t)+t−s−1 ≥ 0, then the

calculation is terminated. It can be known from conditions (t + n − k − s)(s − t) + t − s − 1 < 0 and
1− t− n + k + s ≤ 0 that 1 ≤ t + n− k− s < 2, namely, t + n− k− s = 1. Thus, the above simplex table
can be simplified into the following table.

The elements in column b are all non-negative and the checking numbers are all non-positive,
as shown in Table 5. Therefore, the optimal solution of the problem is X* = (s − t + 2, s − t + 1,
t− k(t− s− 1),0,0,0,0, s− t + 1, and t− k(t− s− 1) − 1, s− t). From what has been discussed above, (t, s,
k, n)-EVCS of Case 2 can be constructed by a monotonic (K, N)-VCS = (t − k(t − s − 1), s(s − t + 2) +
(n− s)(s− t + 1))-VCS with ω1=s− t + 2 and ω2=s− t + 1. If 1− t− n + k + s > 0, we have known that
k + s < n + t, then 0 < t + n− k− s < 1, the absence of t, s, k, and n makes this condition satisfy.

Table 5. The final simplex table of IPM I for Case 2.

c j→ −t t−n −1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−s x1 S − t + 2 1 0 0 t − s − 2 t − s − 1 −1 0 0 0 0
−1 x3 T − k(t − s − 1) 0 0 1 1− t − k(s − t + 1) −t − k(s − t) −k 0 0 0 0

s − n x2 1 + s − t 0 1 0 t − s − 1 t−s −1 0 0 0 0
0 x7 0 0 0 0 −1 −1 0 1 0 0 0
0 x8 1 + s − t 0 0 0 t − s − 2 t − s − 1 −1 0 1 0 0
0 x9 t − k(t − s − 1) − 1 0 0 0 t − s − 1 t−s −1 0 0 1 0
0 x10 s − t 0 0 0 1− t − k(s−t + 1) −t − k(s − t) −k 0 0 0 1

c j − z j 0 0 0 (t − s − 1)(k + n) – s − t
+ 1 (t−s)(k + n) – s − t −k −

n 0 0 0 0

(Case 3) s – t = 1, s = k.

For this case, we need to solve IPM II with the same method. Table 6 shows the simplex table
obtained after three iterations.
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Table 6. Simplex table of IPM II for Case 3 after three iterations.

c j→ −s s − n −1 0 0 0 0 0 0 0
CB XB b x1 x2 x3 x4 x5 x6 x7 x8 x9 x10

−s x1 n − s 1 0 0 s − n −1 s − n
+ 1 0 0 0 0

−1 x3
t(n −
s) + 1 0 0 1 t(s −

n) −t
−1−t(n
− s −

1)
0 0 0 0

s − n x2 1 0 1 0 −1 0 −1 0 0 0 0

0 x7 n−s−2 0 0 0 s − n
+ 1 [−1] s − n

+ 2 1 0 0 0

0 x8 n−s−1 0 0 0 s − n −1 s − n
+ 1 0 1 0 0

0 x9 0 0 0 0 −1 0 −1 0 0 1 0

0 x10
t(n −

s) 0 0 0 t(s −
n) −t

−1 −
t(n −
s − 1)

0 0 0 1

c j − z j 0 0 0
(s + t
+ 1)(s
− n)

−s − t

s(s −
n + 2)
− t(n
− s −
1)−1−n

0 0 0 0

If n − s ≥ 2, i.e. n − s − 2 ≥ 0, then the calculation is terminated and we have (K, N)-VCS =

(t(n− s) + 1, s(n− s) + n− s)-VCS with ω1 = n−s and ω2 = 1. Otherwise, n− s− 2 < 0 does not satisfy
the conditions that are given in Equation (5).

Similarly, for Case 4, Case 5, and Case 6, the same analysis method is used to solve the corresponding
IPM. Finally, we have the solutions of the corresponding IPM with different conditions. as shown in
Table 7.

Table 7. The solutions of IPM for all cases.

Conditions Solution (ω1, ω2,K) Case

s < k
t = s (n− k + 1, 1, t(n− k) + k) Case1

t , s
V′ ≥ 0 * –

Case2V′ < 0 (s− t + 2, s− t + 1, t− k(t− s− 1))

s = k
s− t = 1 (n− s, 1, t(n− s) + 1) Case3

s− t , 1
V′′ ≥ 0 * –

Case4V′′ < 0 (s− t + 1, s− t, t− s(t− s))

s > k
k− t = 1 (n− s, 1, t(n− s) + 1) Case5

k− t , 1
V′′′ ≥ 0 * –

Case6V′′′ < 0 (k− t + 1, k− t, t− k(t− k))

* Where V′ = (t + n− k− s)(s− t) + t− s− 1, V′′ = (t + n− k− s)(s− t) + s− n, V′′′ = (t + n− k− s)(k− t) + s− n.

From Table 7, for the most cases, we can find the solutions (ω1, ω2, K) of the corresponding IPM.
Since N can be calculated by Equation (6), we can construct (t, s, k, n)-EVCS by the corresponding
monotonic (K, N)-VCS. For some common cases of (t, s, k, n)-EVCS, we list the solutions of the
corresponding IPM, the values of ω1, ω2, K, and N in Table 8.
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Table 8. The solutions of IPM for some specific essential participants (EVCSs).

(t, s, k, n)-EVCS (K, N)-VCS ω1 ω2 Case

(1, 1, 2, 3)-EVCS (3, 4)-VCS 2 1 1
(1, 1, 2, 4)-EVCS (4, 6)-VCS 3 1 1
(1, 1, 2, 5)-EVCS (5, 8)-VCS 4 1 1
(1, 1, 3, 5)-EVCS (5, 7)-VCS 3 1 1
(1, 1, 3, 6)-EVCS (6, 9)-VCS 4 1 1
(1, 2, 2, 4)-EVCS (3, 6)-VCS 2 1 3
(1, 2, 2, 5)-EVCS (4, 9)-VCS 3 1 3
(1, 2, 2, 6)-EVCS (5, 12)-VCS 4 1 3
(1, 2, 3, 5)-EVCS (7, 12)-VCS 3 2 2
(1, 2, 3, 6)-EVCS – – – 2
(1, 3, 2, 5)-EVCS (3, 8)-VCS 2 1 5
(1, 3, 2, 6)-EVCS (4, 12)-VCS 3 1 5
(1, 3, 3, 6)-EVCS (7, 15)-VCS 3 2 4
(1, 3, 3, 7)-EVCS – – – 4
(1, 4, 3, 7)-EVCS (7, 18)-VCS 3 2 6
(1, 4, 3, 8)-EVCS – – – 6
(2, 2, 3, 4)-EVCS (5, 6)-VCS 2 1 1
(2, 2, 3, 5)-EVCS (7, 9)-VCS 3 1 1
(2, 2, 3, 6)-EVCS (9, 12)-VCS 4 1 1
(2, 2, 4, 5)-EVCS (6, 7)-VCS 2 1 1
(2, 2, 4, 6)-EVCS (8, 10)-VCS 3 1 1
(2, 3, 3, 5)-EVCS (5, 8)-VCS 2 1 3
(2, 3, 3, 6)-EVCS (7, 12)-VCS 3 1 3
(2, 3, 4, 6)-EVCS (10, 15)-VCS 3 2 2
(2, 4, 3, 6)-EVCS (5, 10)-VCS 2 1 5

4. Experimental results and Comparison

4.1. Experimental Results

In this subsection, we conduct two experiments to verify the feasibility of the proposed scheme.

Example 3. The experiment of the proposed (1, 1, 2, 3)-EVCS.
By Table 8, we can generate our (1, 1, 2, 3)-EVCS by a monotonic (3, 4)-VCS with ω1 = 2, and ω2 =

1. First, we share the secret image into four shadows by a monotonic (3, 4)-VCS. Subsequently, the first two
shadows are used to generate the essential shadow of (1, 1, 2, 3)-EVCS by OR operation. Additionally, the left
two shadows are treated as two non-essential shadows of (1, 1, 2, 3)-EVCS, respectively. Finally, we have three
shadows of (1, 1, 2, 3)-EVCS with one essential and two non-essentials.

The chosen (3, 4)-VCS used to construct (1, 1, 2, 3)-EVCS can be any monotonic (3, 4)-VCS proposed by
researchers. In this example, we choose two monotonic (3, 4)-VCS separately to implement (1, 1, 2, 3)-EVCS.
First, we use monotone (3, 4)-VCS in Example 1 to implement (1, 1, 2, 3)-EVCS. We already show the experiment
of (3, 4)-VCS in Example 1. Figure 1 shows the four generated shadows of (3, 4)-VCS. Now, we can generate the
essential shadow of (1, 1, 2, 3)-EVCS, as shown in Figure 1a, by performing OR operation on the Figure 1b,c.
The rest two shadows Figure 1d,e are treated as two non-essential shadows of (1, 1, 2, 3)-EVCS as shown in
Figure 5b,c. For (1, 1, 2, 3)-EVCS, the qualified sets are {1,2}, {1,3}, and {1,2,3}. We show the revealed image by
different qualified sets of shadows in Figure 5d,e and g. As we can see, the secret image can only be revealed with
at least two shadows, including the essential one. Without the essential shadow, stacking two non-essentials
cannot reveal the secret image, as shown in Figure 5f. Since the (3, 4)-VCS has the size expansion 6 and contrast
loss of the revealed image. Each shadow of (1, 1, 2, 3)-EVCS has the size six times of the secret image. The visual
quality of the revealed image is also degraded.
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other, i.e. the same shadow of VCS can only participate in OR operation for one time in generating shadow of 
EVCS and cannot participate in the formation of two shadows of EVCS at the same time. Figure 2 shows the 
experimental results of Yan et al.’s (3, 6)-RGVCS. Here, we generate the first essential shadow by performing 
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Figure 5. The experimental results of proposed scheme for (1, 1, 2, 3)-EVCS. (a) essential shadow; (b,c)
two non-essential shadows; (d) revealed image by shadow 1 and 2; (e) revealed image by shadow 1
and 3; (f) revealed image by shadow 2 and 3; and, (g) revealed image by all shadows.

Second, we choose Yan et al.’s (3, 4)-RGVCS to implement (1, 1, 2, 3)-EVCS. First, a secret image
(Figure 1a) is shared into four shadows by Yan et al.’s (3, 4)-RGVCS. With the same method, performing OR
operation on the first two shadows can obtain the essential shadow of (1, 1, 2, 3)-EVCS. The other two shadows
of (3, 4)-RGVCS are treated as two non-essentials, respectively. Since (3, 4)-RGVCS generates shadows without
size expansion, all of the shadows of (1, 1, 2, 3)-EVCS have the same size as the secret image. Figure 6a–c show
the three generated shadows of (1, 1, 2, 3)-EVCS. In the revealing process, stacking qualified set of shadows can
reveal the secret image. Figure 6d–g show the revealed images with different shadows. As we can see, without the
essential shadow, we cannot reveal the secret image by the shadows. EVCS based on RGVCS can achieve better
performance over that based on traditional VCS since RGVCS has the advantage of no size expansion.
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(1, 2, 2, 4)-EVCS can be implemented by (3, 6)-VCS according to the solution of the aforementioned IPM.
We still adopt Yan et al. ’s (3, 6) -RGVCS to implement (1, 2, 2, 4)-EVCS in order to achieve better performance.
Since s = 2 and ω1 = 2, we can get two essential shadows by performing the OR operation twice on any two
shadows. It should be noted that the operands of twice OR operations are non-overlapping from each other, i.e.
the same shadow of VCS can only participate in OR operation for one time in generating shadow of EVCS and
cannot participate in the formation of two shadows of EVCS at the same time. Figure 2 shows the experimental
results of Yan et al.’s (3, 6)-RGVCS. Here, we generate the first essential shadow by performing OR operation
on Figure 2b,c, and the second essential shadow is generated by performing OR operation on Figure 2d,e. The
remaining two shadows of RGVCS are considered as two non-essential shadows of (1, 2, 2, 4)-EVCS.

Figure 7 shows the experimental results. Figure 7a,b are two essential shadows and Figure 7c,d show two
non-essential shadows, which have the same size of the secret image. Figure 7e–j illustrate the recovered image by
stacking any two shadows. Since none of the essential shadows are included in {3, 4}, Figure 7j is as cluttered as
random noise and does not show any information about the secret image. Figure 7k–n show the revealed image
recovered by any three shadows and the last one is revealed by all shadows. Stacking two or more shadows that
include any one or two essential shadows can reveal the secret image. Reconstruction without the essential
shadow cannot get obtain information regarding the secret.
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Figure 7. An experiment of the proposed (1,2,2,4)-EVCS. (a,b) two essential shadows; (c,d) two
non-essential shadows; (e) revealed image by shadow 1 and 2; (f) revealed image by shadow 1 and 3;
(g) revealed image by shadow 1 and 4; (h) revealed image by shadow 2 and 3; (i) revealed image by
shadow 2 and 4; (j) revealed image by shadow 3 and 4; (k) revealed image by shadow 1, 2, and 3; (l)
revealed image by shadow 1, 2 and 4; (m) revealed image by shadow 1, 3, and 4; (n) revealed image by
shadow 2, 3, and 4; and, (o) revealed image by four shadows.

4.2. Comparison and Discussion

This subsection compares the proposed scheme with some literature schemes in terms of
functionalities, as shown in Table 9. Both [24] and [25] are polynomial-based ESIS schemes that
can reveal secret image perfectly, while they suffers from the disadvantage of heavy computation
that secret information cannot be obtained by superimposing shadow images. In addition, these two
schemes have the problem of unequal sizes of essential shadow and non-essential shadow, and the
concatenation of sub-shadows. However, scheme [17,18,28] and the proposed scheme do not have
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these two problems. Among them, scheme [17,18] and [28] are only applicable to (t, k, n), while the
proposed scheme is applicable to a wider range. When compared with the polynomial-based ESIS
scheme, the proposed scheme does not require complicated mathematical calculations in the secret
reconstruction process. Most importantly, our scheme can select the appropriate (k, n)-VCS according
to the actual needs. With the improvement of the (k, n)-VCS scheme, our scheme will also achieve
better visual effects. The threshold condition refers to that the number of shadows in a qualified set
should be no less than a threshold number. The essentiality condition refers to that a qualified set
of shadows should contain at least a certain number of essentials. All of the mentioned schemes in
Table 9 satisfy the threshold condition. When compared with the general VCS [32,35], our scheme not
only satisfies the threshold condition, but it also satisfies the essentiality condition.

Table 9. The comparison of functionality among the literature schemes and proposed EVCS.

Schemes Construction
Method

Size
Expansion

Concatenation of
Sub-shadows Essentiality Decoding Operation Stacking-to-see

Scheme [17] VCS Large No Yes OR Yes
Scheme [18] VCS Large No Yes OR Yes

Scheme [24] PSIS Small Yes Yes Lagrange’s
interpolation No

Scheme [25] PSIS Small Yes Yes Lagrange’s
interpolation No

Scheme [26] PSIS Small No Yes Birkhoff Interpolation No

Scheme [28] PSIS Small No Yes Lagrange’s
interpolation No

Scheme [32] RGVCS Small No No OR Yes
Scheme [35] XVCS Medium Yes No XOR Yes

Proposed scheme VCS Alternative No Yes OR Yes

In general, the reconstructed image of VCS is not completely consistent with the secret image.
The size expansion and visual quality are commonly used to measure the performance of VCS. The
proposed scheme has high flexibility that a (t, s, k, n)-EVCS can be constructed utilizing any monotone
(k, n)-VCS. The performance of EVCS is determined by the performance of chosen VCS. For example, if
we construct (t, s, k, n)-EVCS by Yan et al.’s (k, n)-RGVCS, we can achieve (t, s, k, n)-EVCS without size
expansion. In Example 3, we adopt a traditional (k, n)-VCS and a non-size-expansion (k, n)-RGVCS in
order to validate our scheme, respectively. From Example 3, we know that EVCS based on RGVCS
has better size expansion than that based on traditional VCS. Arumugam et al. [17] proposed (1, 1,
k, n)-EVCS and Guo et al. [18] proposed (t, t, k, n)-EVCS. Both schemes in [17,18] are special cases of
(t, s, k, n)-EVCS, and construct the basis matrices of EVCS from the basis matrices of VCS. The main
disadvantage of EVCS in [17,18] is the large size expansion, which is not convenient for the storage
and transmission. We compare the experiment results among Arumugam et al.’s (1, 1, 3, 4)-VCS,
Guo et al.’s (1, 1, 3, 4)-VCS, and the proposed (1, 1, 3, 4)-EVCS. Figure 8 shows the experimental results.
The sizes of the revealed secret images of the three schemes are six, six, and one times of the secret
image, respectively. Figure 8b,d show the revealed secret images of the three schemes, respectively. As
we can see, the revealed images of Arumugam et al.’s (1, 1, 3, 4)-VCS, Guo et al.’s (1, 1, 3, 4)-VCS have
large size expansion, while the proposed (1, 1, 3, 4)-EVCS has no size expansion, namely, the size of
revealed image is the same as the original secret image. In addition, our proposed scheme can realize
general (t, s, k, n)-EVCS.
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In this paper, we propose EVCS based on existing monotonic VCS. From the definition of (K,
N)-VCS, the contrast condition guarantees that no information about the secret can be revealed with
less than K shadows. When we construct (t, s, k, n)-EVCS from a monotonic (K, N)-VCS, the security
condition of EVCS is derived from that of VCS. In Section 3.2, we show the construction method of
EVCS from a monotonic (K, N)-VCS, where w1 (resp. w2) shadows of VCS are stacked together as an
essential (resp. non-essential) shadow of EVCS. Combining with the access structures of EVCS and
VCS, some constraints should be satisfied when determining the values of w1 and w2, as shown in
Equations (9)–(11). Therefore, a forbidden set of EVCS cannot contribute at least K shadows of VCS,
and then they cannot reveal any information regarding the secret image. In other words, the security
level of the proposed EVCS is the same as the VCS.

For the security condition of (K, N)-VCS, no information regarding the secret image can be revealed
with less than K shadows. With less than K shadows, the secret pixel is revealed as a black pixel or a
white pixel with the same probability. From the view point of information theory, the entropy has the
largest value. For the contrast condition of (K, N)-VCS, any K shadows can reveal the secret image
by stacking operation. Each shadow can be viewed as the key to decode the secret image. Since all
of the shadows have the same size, VCS can be also viewed as a one-time pad system. The Shannon
theories have already proven that one-time pad system is a perfect secret system. Therefore, the secret
image cannot be revealed with less than K shadows, even with computational resources. To the best
of our knowledge, there is no cryptoanalysis scheme for VCS while using machine learning or deep
learning algorithms.

4.3. Applications of EVCS

VCS is technique for sharing a binary secret image among the participants. The main advantage of
VCS is that the revealing process does not need the computer resources. VCS has potential application
when the collective decision making is required and the computer resources is not available. For
example, in the battlefield, VCS shares the military instruction from the commander is shared into
multiple shadows. Each shadow is delivered to a soldier. Since the environment of the battlefield is
not predictable, the soldiers can decode the military instruction by stacking their shadows without
any computational resources. VCS with essential participants (EVCS) divide the participants into two
groups: essentials with higher status and non-essentials with lower status. In the revealing process,
(t, e, k, n)-EVCS requires k participants, including t essentials to stacking their shadows. EVCS has
the potential application when some participants are accorded special privileges due to their status
or importance, e.g., heads of government, managers of company, high-level corporate officers, major
employers, etc.

EVCS also has potential application in key distribution when exchanging message in a public
secure network [30,31]. The trapped users may have different social attributes. Hence, they can be
divided as essentials or non-essentials according to their attributes. Before message exchange, users
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need to obtain the correct password in order to ensure the confidentiality of communication. The
password usually consists of letters or numbers. It is suitable to share the password by EVCS. In
addition, EVCS has the advantage of easy-decoding without computation. The environment of the
various emergency events, e.g., natural disaster, terrorist attacks, etc., is terrible. The computational
resources may be also limited. EVCS is a perfect way to decode secret by stacking shadows without
computer. The decoding process is simple, and do not need any cryptography knowledge.

In realistic implementation, the access structure of EVCS should be open to public. The values of t,
s, k, and n are known to the participants. In addition, the essentials and non-essentials are credible and
known to everyone. With the above known information, the participants can confirm whether they
can constitute a qualified set. When the participants of a qualified set are gathered and their shadows
are collected, the secret information can be easily decoded by stacking their shadows.

5. Conclusions

In this paper, we proposed a construction method for (t, s, k, n)-EVCS with essential participants.
The proposed EVCS is constructed from a monotonic VCS that is based on integer programming.
When cmpared with literature EVCS, the proposed EVCS might achieve no size expansion if we adopt
RGVCS to generate shadows. By solving the corresponding integer programming model, we give the
condition and optimal choice of (K, N)-VCS to construct (t, s, k, n)-EVCS. The proposed EVCS also
has the advantage of easy decoding since VCS can reveal the secret image by stacking shadows. The
experimental results show the feasibility of our scheme. The construction method of general (t, s, k,
n)-EVCS scheme with better performance needs further study.
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