
mathematics

Article

Birnbaum-Saunders Quantile Regression Models
with Application to Spatial Data

Luis Sánchez 1 , Víctor Leiva 2,* , Manuel Galea 3 and Helton Saulo 4

1 Department of Mathematics and Statistics, Universidad de La Frontera, Temuco 4780000, Chile;
ldaniel9.24@gmail.com

2 School of Industrial Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso 2362807, Chile;
3 Department of Statistics, Pontificia Universidad Católica de Chile, Santiago 8320000, Chile; mgalea@mat.uc.cl
4 Department of Statistics, Universidade de Brasília, Brasília 70910-90, Brazil; heltonsaulo@gmail.com
* Correspondence: victor.leiva@pucv.cl or victorleivasanchez@gmail.com

Received: 30 April 2020; Accepted: 12 June 2020; Published: 18 June 2020
����������
�������

Abstract: In the present paper, a novel spatial quantile regression model based on the
Birnbaum–Saunders distribution is formulated. This distribution has been widely studied and
applied in many fields. To formulate such a spatial model, a parameterization of the multivariate
Birnbaum–Saunders distribution, where one of its parameters is associated with the quantile of
the respective marginal distribution, is established. The model parameters are estimated by the
maximum likelihood method. Finally, a data set is applied for illustrating the formulated model.
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1. Introduction

An asymmetric distribution that has recently received considerable attention is the
Birnbaum–Saunders (BS) model. It originated from material fatigue and has been applied to reliability
and fatigue studies [1–3]. Extensive work has been done on the BS distribution with regard to its
mathematical and statistical properties, inference, modeling, and diagnostics. Its natural applications
have been mainly focused on engineering. However, today they range diverse fields including
air pollution [4,5], business [6], earth sciences [7,8], industry [9,10], and medicine [11,12], among
other areas. These applications have been performed by an international transdisciplinary group of
researchers.

Standard regression models provide an estimate of the mean response given certain values of
the covariates. These models cannot be applied to estimate other parameters that are different to
the mean, being a limitation of such models. Nevertheless, first, in engineering, environmental,
and social sciences, as well as in other areas, often the practitioners are interested in estimating
quantiles for establishing warranties of products, determining the levels of nutrients in the soil or
measuring economic inequality for poor (lower tail) and rich (upper tail) people by means of their
household incomes [13]. Second, the other limitation of the standard regression models is that if
the response variable follows a skew distribution, then the mean is not a good central tendency
measure to summarize the data and, in this case, the median is a more informative and robust estimate.
Additionally, third, regression models can describe parameters of the whole distribution related to
variability, skewness, and other higher-order moments, which can characterize a distribution [14]. In
order to solve the first two limitations mentioned above, quantile regression models were proposed
by [15], extending the median regression model attributed to [16], and generalizing the ordinary
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sample quantiles to the regression setting. We are interested in modeling the median or other quantiles
of the BS distribution by regression; see [17,18].

The accuracy of an estimator of the mean (or median) might be improved if a spatial component
is added in the modeling [19]. The idea of spatial quantile regression was initially proposed by [20],
and [21] discussed a general spatial quantile regression based on the conditional quantile function,
while [22] showed variants of the spatial quantile regression. We provide background of quantile
regression including the spatial case in the next section. Ref [23–25] introduced BS spatial mean
regression models and their diagnostics for the conditional mean; see [26] for details on diagnostic
methods. Stochastic processes are applied in the modeling of spatial data to know the corresponding
finite dimensional multivariate distributions. BS multivariate distributions have been proposed and
studied by [27–29]. BS quantile regression models were recently derived by [13] for the independent
case, where household income data were considered. However, no studies on BS quantile regression
for data with spatial dependence have been proposed.

The main objective of this work is to formulate a novel class of spatial quantile regression models
based on the BS distribution. To accomplish this, we propose a quantile parameterization to generate
a new multivariate BS model, whose parameters are estimated by the maximum likelihood method.
Subsequently, a data set is applied for illustration.

The remainder paper is organized as follows. In Section 2, quantile regression models for the
cases of independent and spatial data are described. Section 3 presents the univariate BS distribution
in its original parameterization and a new parameterization of it, which allows us to model a quantile.
In Section 4, the multivariate normal distribution and its connection to the new parametrization of the
multivariate BS distribution are introduced. In Section 5, we formulate the spatial quantile regression
model based on the BS distribution. Section 6 derives estimation of model parameters using the
maximum likelihood method, whereas tools for model checking are discussed in Section 7. In Section 8,
we carry out an empirical example with spatial data to illustrate potential applications of the novel
model. Conclusions and future works are mentioned in Section 9. An Appendix A with derivatives for
the score vector and Hessian matrix is provided at the end of this paper.

2. Quantile Regression

Standard regression models have been widely used in different areas and they are defined as

Yi = x>i β + εi, i = 1, n,

where Y is the dependent (or response) variable; x corresponds to the values of the vector of
independent variables (covariates) X; β is a vector of regression parameters; and ε is a random
error with E[ε] = 0, Var[ε] = ς2 (constant variance), and Cov[ε l , εk] = 0, for l 6= k (uncorrelated errors).
This implies that a regression model describes the conditional mean E[Y|X = x] = x>β, so that it can
be written by the probability density function (PDF) of Y parameterized in terms of its mean. For
example, if Y is normally distributed, then its linear regression model might be visualized as

Yi|Xi = xi ∼ N(µi = x>i β, ς2), i = 1, n, (1)

with Y1|X1 = x1, . . . , Yn|Xn = xn being independent random variables. Additionally, we can generalize
the expression for µi given in (1) when considering µi = h1(x>i β), where h1 is an invertible function,
such as in generalized linear models [30]. If we now consider a k-parameter distribution, with
θ = (θ1 = µ = h1(x>β), θ2, . . . , θk)

>, that is, distributions parameterized on their mean [31,32] in
addition to other parameters, one may establish a more general model of the form

Yi|Xi = xi ∼ fY (y; θ1 = h1(x>i β), θ2, . . . , θk), i = 1, n, (2)

where Y now follows some distribution.
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Quantile regression models for a response Y offer a mechanism to estimate and predict the
median response as well as other quantiles [15]. This class of regression models is based on the quantile
function that is given by

QY (τ; θ) = inf{y: FY (y; θ) ≥ τ},

where θ is a k × 1 parameter vector of the underlying distribution and 0 < τ < 1. If one of the
pararameters of the distribution of Y is its quantile function, we can represent a quantile regression
model, similarly to (2), as

Yi|Xi = xi ∼ fY (y; QY (τ; β, xi) = h(x>i β), θ2, . . . , θk), i = 1, n, (3)

where h is an invertible function, with positive support and at least twice differentiable, τ is a fixed
value and, as before, Y1|X1 = x1, . . . , Yn|Xn = xn are independent random variables.

Let {Y(s), s ∈ D} be a stochastic process that is defined over a region D ⊂ R2. We use the
notation QY(s)(τ; θ) = inf{y: FY(s)(y; θ) ≥ τ} to represent the quantile function for Y in the location
s ∈ D ⊂ R2. If we consider spatial locations si, the quantile function of the process can be modeled
by regression as QY(si)

(τ; β|x(si)) = x(si)
>β, or more generally as QY(si)

(τ; β|x(si)) = h−1(x(si)
>β),

for i = 1, n. Here, QYi
(τ; β|xi) is the conditional quantile function of Y given a set of values xi for

the covariates, in the location si, where τ is a fixed value, and h is as given in (3). When τ = 0.5, the
median is modeled. Often it is assumed that the covariance function of the process only depends on
the distance between spatial locations, that is, the stochastic process is stationary.

3. The Univariate Birnbaum-Saunders Distribution

If Z ∼ N(0, 1), then the random variable T given by

T = T(Z; α, $) = $

[
αZ/2 +

√
(αZ/2)2 + 1

]2
(4)

has a BS distribution with parameters of shape α > 0 and scale $ > 0, which is denoted by T ∼ BS(α, $).
The random variable T has positive support and the transformation given in (4) is one-to-one, which
allows us to establish that

Z =
1
α

(√
T/$−

√
$/T

)
∼ N(0, 1).

The PDF and cumulative distribution function (CDF) of T are expressed, respectively, by

fT(t) = φ(A(t; α, $)) a(t; α, $), FT(t) = Φ(A(t; α, $)), t > 0,

where φ, Φ are the PDF and CDF of the standard normal distribution, whereas

A(t; α, $) =
1
α

(√
t/$−

√
$/t
)

, a(t; α, $) =
d
dt

[A(t; α, $)] =
1

2α$

[√
$/t +

√
(t/$)3

]
. (5)

Let T ∼ BS(α, $). Subsequently, the following properties hold:

(i) E[T] = $(1 + α2/2).
(ii) Var[T] = $2α2(1 + 5α2/4).

(iii) bT ∼ BS(α, b$), for b > 0.
(iv) 1/T ∼ BS(α, 1/$).
(v) W = Z2 = (1/α2)(T/$ + $/T − 2) ∼ χ2(1), with E[W] = 1 and Var[W] = 2.

These properties are useful for diverse statistical purposes, such as the generation of moments and
of random numbers, estimation of parameters, and modeling based on regression. Another property of
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the BS distribution is presented next. Given q ∈ (0, 1), note that the qth quantile of the BS distribution
is defined as

Q = tq =
$

4

(
αzq +

√
α2z2

q + 4
)2

=
$

4
γ2

α, (6)

where
γα = αzq +

√
α2z2

q + 4, (7)

with zq being the qth quantile of the standard normal distribution.

4. The Multivariate BS Distribution and a New Parametrization

Let V = (V1, . . . , Vn)> ∈ Rn be a random vector with n-variate normal distribution, denoted by
V ∼ Nn(µ, Σ), with mean vector µ = (µi) ∈ Rn and variance-covariance matrix Σ = (σkl) ∈ Rn×n,
with rank(Σ) = n. Note that Σ is symmetric, non-singular, positive definite, and then the distribution
of V is non-singular [33]. When the mean vector is zero, that is, µ = 0n×1, we use the notation φn and
Φn for the n-variate normal PDF and CDF, respectively, where 0n×1 is an n× 1 vector of zeros.

The random vector T = (T1, . . . , Tn)> ∈ Rn
+ follows an n-variate BS distribution with parameters

α = (α1, . . . , αn)> ∈ Rn
+, $ = ($1, . . . , $n)> ∈ Rn

+, and Σ ∈ Rn×n, if Ti = T(Vi; αi, $i), for i = 1, n,
where T is given in (4) and V = (V1, . . . , Vn)> ∈ Rn ∼ Nn(0n×1, Σ), with Σ ∈ Rn×n being the
variance-covariance matrix of V with diagonal elements equal to one. Therefore, Σ is also the correlation
matrix of V in this case. Note that Σ is the correlation matrix of V and not of T , but we use the notation
T ∼ BSn(α, Q, Σ) due to the relationship between the BS and normal distributions. Observe that the
CDF and PDF of T ∼ BSn(α, $, Σ) are defined, respectively, by

FT(t; α, $, Σ) = Φn(A; Σ), fT(t; α, $, Σ) = φn(A; Σ) a(t; α, $), t = (t1, . . . , tn) ∈ Rn
+,

where A = A(t; α, $) = (A1, . . . , An)>, with Ai = A(ti; αi, $i), a(t; α, $) = ∏n
i=1 a(ti; αi, $i), and both

A(ti; αi, $i) and a(ti; αi, $i) are as expressed in (5).
Let q ∈ (0, 1) be a fixed number and T ∼ BS(α, $). If we apply the transformation given by

(α, $) 7→ (α, Q) (8)

where Q is defined in (6), then this transformation is one-to-one. Therefore, if T = (T1, . . . , Tn) ∼
BSn(α, $, Σ), we have a new parametrization of the multivariate BS distribution, denoted by T ∼
BSn(α, Q, Σ), acting similarly as in (8) by the transformation expressed as

(α, $, Σ) 7→ (α, Q, Σ), (9)

where the elements Qi, $i of Q, $ are related by (6) for the marginal distribution of Ti, ∀i = 1, n. Thus,
according to (9), the CDF and PDF of T ∼ BSn(α, Q, Σ) are given, respectively, by

FT(t; α, Q, Σ) = Φn(A; Σ), fT(t; α, Q, Σ) = φn(A; Σ) a(t; α, Q), t = (t1, . . . , tn) ∈ Rn
+, (10)

where A = (A1, . . . , An)>, with Ai = A(ti; αi, 4Qi/γ2
αi
) = [1/(αiγαi

√
4Qiti)](tiγ

2
αi

/4Qi − 1),
a(t; α, Q) = ∏n

j=1 a(ti; αi, 4Qi/γ2
αi
) = ∏n

j=1[1/(αiγαi

√
4Qiti)](γ

2
αi

/2 + 2Qi/ti), and γαi being defined
in (7). Figures 1 and 2 present different graphical plots for the PDF defined in (10) with n = 2, when
the parameters α and Q vary, for different rotations of these PDFs.

Theorem 1. Let T = (T1, . . . , Tn) ∼ BSn(α, Q, Σ), with α = (α1, . . . , αn), Q = (Q1, . . . , Qn), and
Σ = (σkl) being an n× n correlation matrix. Afterwards,

(i) Ti ∼ BS(αi, Qi), for i = 1, n.
(ii) (Ti, Tj) ∼ BS2(α

(i,j), Q(i,j), Σ(i,j)), where α(i,j) = (αi, αj), Q(i,j) = (Qi, Qj) and Σ(i,j) is a 2× 2 matrix
with ones in its diagonal and its other elements equal to element (i, j) of the matrix Σ.
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(iii)

Cov[Ti, Tj] =
4αiαjQiQj

γ2
αi

γ2
αj

[
αiαjσ

2
ij + 4I(αi, αj, σij)

]
, i, j = 1, n,

where I(αi, αj, σij) = E{ZiZj[(αiZi/2)2 + 1]1/2[(αjZj/2)2 + 1]1/2}, with (Zi, Zj) following a bivariate
normal distribution and correlation matrix Σ(i,j); see [34].

(iv) The variance-covariance matrix of T is Var[T ] = 4Ω� (Σ� Σ� Ξ + 4U), where Ω = (ωij), Ξ = (ξij)

and U = (uij) have elements ωij = α2
i α2

j QiQj/(γ2
αi

γ2
αj
), ξij = αiαj and uij = I(αi, αj, σij), respectively,

for i, j = 1, n, and � is the Hadamard product. If T1, . . . , Tn are independent random variables, then
Var[T ] = 4D(εii), where D(εii) = diag(ε11, . . . , εnn), that is, D is a diagonal matrix with elements
εii = α2

i Q2
i (α

2
i + 4I(αi, αi, 1))/γ4

αi
.

Proof. The results are deduced using Theorem 3.1 and p. 117 of [34], with our parametrization.

(a) (b)

(c) (d)

(e) (f)

Figure 1. Plots of the reparametrized bivariate BS PDF for αi = 0.5 (a), αi = 0.8 (b), αi = 1.5 (c) with
Qi = 1.0, and Qi = 0.5 (d), Qi = 0.8 (e), Qi = 1.5 (f) with αi = 1.0, for i = 1, 2 and σ = 0.9.
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(a) (b)

(c) (d)

Figure 2. Plots of the reparametrized bivariate BS PDF for αi = 0.5 and Qi = 1.0, for i = 1, 2, with
σ = 0.9, (a–d) are seen from different angles.

Corollary 1. Let T = (T1, T2) ∼ BS2(α, Q, Σ), with α = (α1, α2), Q = (Q1, Q2) and Σ =
( 1 σ

σ 1
)
.

Then,

(i)

E[T1T2] =
4Q1Q2

γ2
α1

γ2
α2

[
4 + 2(α2

1 + α2
2) + α2

1α2
2(1 + σ2) + 4α1α2 I(α1, α2, σ)

]
,

with I(α1, α2, σ) being defined in Theorem 1(iii).
(ii)

Cov[T1, T2] =
4σ2α1α2Q1Q2

γ2
α1

γ2
α2

[
α1α2σ2 + 4I(α1, α2, σ)

]
.

(iii)

Corr(T1, T2) =
α1α2σ2 + 4I(α1, α2, σ)√

4 + 5α2
1

√
4 + 5α2

2

.

Proof. The results are obtained using ([34] p.117), with our parametrization; see also [35].

5. Formulation of the Spatial Model

Let T = {T(s), s ∈ D} be a stochastic process that is defined over a region D ⊂ R2. We assume
that the stochastic process T is stationary and isotropic, and that, for given spatial locations si, with
i = 1, n, the quantile function of the process can be modeled by

Q(T(si); β|xi) = Qi = h−1(x>i β), i = 1, n, (11)

where h is an invertible function, with positive support, at least twice differentiable, and x>i =

(1, xi1, . . . , xi(p−1)) represents the values of p− 1 covariates, with xij = xj(si), for j = 1, p− 1, that is,
xij is the value of the covariate Xj at the location si. Note that p < n must be satisfied. In addition,
β = (β0, β1, . . . , βp−1)

> is a vector of unknown parameters to be estimated and (T(s1), . . . , T(sn)) =
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(T1, . . . , Tn) ∼ BSn(α1n×1, Q(β), Σ), with α > 0 and 1n×1 being an n× 1 vector of ones. Observe that
Q(β) is related to Q defined in (9), but now depending on β. Here, Σ = (σij) is the n× n (non-singular)
correlation matrix earlier defined. Thus, based on Theorem 1(iv), the variance-covariance matrix of the
BS spatial quantile regression model can be written as

Var[T ] =
4α2

γ4
α
[Q(β)Q(β)>]� (α2Σ� Σ + 4 U), (12)

where Q(β)> = (Q1(β), . . . , Qn(β)), with Qi(β) = h−1(x>i β), for i = 1, n. Notice that the
variance-covariance matrix of the BS spatial process that is stated in (12) depends on its quantile
function.

Note that the spatial correlation is often modeled by a function of the Matérn family [19].
Subsequently, by using this family and an alternative parameterization suggested by [36], the elements
of the matrix Σ involved in (12) are given by

σij =

{
1, i = j;

1
2δ−1Γ(δ) (ϕ hij)

δKδ(ϕ hij), i 6= j; (13)

where δ > 0 is a shape parameter; Γ is the usual gamma function; hij is the Euclidean distance between
the locations si and sj, that is, hij = ||si − sj||; ϕ > 0 is a parameter known as the spatial dependence
inverse radius [37] and also related to a parameter named microergodic by [36]; and, Kδ is the modified
Bessel function of the third kind of order δ [38]. Some particular cases of the Matérn family are
presented in Table 1.

Table 1. Particular cases of the Matérn correlation function with h denoting a distance measure.

Model Shape Parameter Correlation Function

Exponential δ = 0.5 σ(h) = exp(−ϕ h)
Whittle δ = 1.0 σ(h) = ϕ h K1(ϕ h)
Gaussian δ→ ∞ σ(h) = exp(−(ϕ h)2)

6. Estimation of Model Parameters

Let θ = (α, β>, ϕ)> be a vector of unknown parameters of the spatial quantile regression model
formulated in (11), which can be estimated by the maximum likelihood method, as follows. Note that
ϕ > 0 is the spatial dependence inverse radius [39] of the Matérn spatial correlation function defined
in (13). Therefore, the corresponding log-likelihood function for θ based on the vector of observations
t = (t1, . . . , tn) can be written as

`(θ) = −n
2

log(2π)− 1
2

log(|Σ|)− 1
2

A>Σ−1 A + log(a), (14)

where A = A(t; α1n×1, Q), with Q = Q(β), a = a(t; α1n×1, Q), and Σ involved in (12). Taking the
derivative of (14), with respect to the corresponding parameters, leads to the (p + 2)× 1 score vector
that is defined as

˙̀ (θ) =

[
∂`(θ)

∂α
,
(

∂`(θ)

∂β

)>
,

∂`(θ)

∂ϕ

]>
=
(

˙̀
α, ˙̀

β0 , ˙̀
β1 , . . . , ˙̀

βp−1 , ˙̀
ϕ

)>
. (15)

For details of the score vector given in (15), see the Appendix A. In order to find the maximum
likelihood estimate θ̂ of θ, the non-linear system ˙̀ (θ) = 0(p+2)×1 must be solved. Because this system
does not provide a closed analytical solution, θ̂ must be computed using an iterative procedure for
non-linear systems. Here, a quasi-Newton procedure, named Broyden-Fletcher-Goldfarb-Shanno [40,
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41], may be used through the functions optim and optimx implemented in the R software; see www.
R-project.org and [42]. The signs of the determinants of the corresponding Hessian matrix and of its
minors were also checked to ensure that a valid maximum has been attained.

Note that the Hessian matrix ῭(θ) for the BS spatial quantile regression model is a (p+ 2)× (p+ 2)
diagonal block matrix. This Hessian matrix is obtained by taking the second derivative of (14), with
respect to the corresponding parameters, and it is given by

῭(θ) =



∂2`(θ)

∂α2
∂2`(θ)

∂α∂β>
∂2`(θ)

∂α∂ϕ

∂2`(θ)

∂β∂α

∂2`(θ)

∂β∂β>
∂2`(θ)

∂β∂ϕ

∂2`(θ)

∂ϕ∂α

∂2`(θ)

∂ϕ∂β

∂2`(θ)

∂ϕ2


=

 ῭
αα

῭
αβ

῭
αϕ

῭
βα

῭
ββ

῭
βϕ

῭
ϕα

῭
ϕβ

῭
ϕϕ

 , (16)

where the elements of the matrix ῭(θ) are detailed in the Appendix A. Therefore, for the BS spatial
quantile regression model, the (p + 2)× (p + 2) expected Fisher information matrix, as obtained from
(16), is expressed as

K(θ) = E[− ῭(θ)] =

Kαα Kαβ Kαϕ

Kβα Kββ Kβϕ

Kϕα Kϕβ Kϕϕ

 ,

where the elements of the matrix K(θ) are detailed in the Appendix A as well.

7. Model Checking

We consider a property of the multivariate BS distribution related to the Mahalanobis distance in
order to evaluate the fit of the spatial model, which might be used to validate the model in practice. Let

ui = A>(i)Σ
−1 A(i), i = 1, n, (17)

where A(i) = (A1(i), . . . , An(i))
>, with

Aj(i) =
1

αiγαi

√
4h−1(x>i β̂(i))

ti

[
tiγ

2
αi

4h−1(x>i β̂(i))
− 1

]
, j = 1, n,

and β̂(i) being the maximum likelihood estimate of β obtained using the data set without the case i.
A Newton–Raphson one-step approximation to θ̂(i) can be obtained by

θ̂(i) = θ̂− [ ῭ (i)(θ̂)]
−1 ˙̀

(i)(θ̂), i = 1, n,

where ῭
(i)(θ) and ˙̀

(i)(θ) are the Hessian matrix and score vector of the BS spatial quantile regression
model with its parameters estimated by the maximum likelihood method without the case i.
Subsequently, under the assumption T ∼ BSn(α1n×1, Q(β), Σ), ui defined in (17) is an observation of
a random variable that follows approximately a χ2 distribution with n− 1 degrees of freedom, for
i = 1, n. Thus, by using the Wilson–Hilferty approximation [43], we have that

zi =

( ui
n−1
)1/3 −

[
1− 2

9(n−1)

]
[

2
9(n−1)

]1/2 , i = 1, n, (18)

is an observation of a random variable which follows approximately a standard normal distribution.
Hence, a plot of theoretical versus empirical quantiles (QQ) for zi given in (18) can be used to evaluate

www.R-project.org
www.R-project.org
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the model fit. In addition to the approximation of Wilson–Hilferty, the randomized quantile residual
defined by [44] may be employed to evaluate the fit of the BS spatial quantile regression model. In the
case of this model, such a residual is given by

ri = Φ−1[F(ui)], i = 1, n, (19)

where Φ−1 is the inverse N(0, 1) CDF and F is the χ2(n− 1) CDF. Because the randomized quantile
residual has approximately a N(0, 1) distribution, a QQ plot of ri defined in (19) might also be employed
for evaluating the model fit.

8. Empirical Illustrative Example

We analyze a chemical data set associated with imbalances and deficiencies of key nutrients in
the soil in order to illustrate the results obtained in this paper. This data set corresponds to levels of
magnesium (Mg), which affects the development of the root system, and calcium (Ca) that competes
with Mg for absorption of nutrients, for n = 82 locations of an area in Brazil. The response variable (T)
is the content of Mg in the soil (in cmolc/dm3) and the covariate (X) is the content of Ca in the soil (in
cmolc/dm3).

A descriptive summary of the response variable includes the sample values (in cmolc/dm3) of
the median = 2.0306; mean = 2.008; standard deviation = 0.7713; coefficient of variation = 0.3841;
coefficient of skewness = 0.3394; coefficient of kurtosis = 2.9717; minimum = 0.5734; and, maximum
= 4.2538. Figure 3 shows the histogram (a), boxplot (b), and scatterplot (c) of the values of the
response T. In the boxplot, we detect two outliers that correspond to locations #12 and #47. The
directional variogram in Figure 3d shows that there is no preferred direction, that is, an omni-directional
semi-variogram is appropriate. Thus, the associated stochastic process can be considered as isotropic.
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Figure 3. Histogram (a), boxplot (b), scatterplot (c), and semi-variogram (d) for the response variable
with chemical data.
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In order to estimate the parameters of BS spatial quantile regression model, we consider the
following: (i) the spatial correlation is obtained according to the Matérn function (with δ = 0.5; see
Table 1); (ii) the random vector (T(s1), . . . , T(s82)) = (T1, . . . , T82) ∼ BS82(α182×1, Q(β), Σ) is assumed;
(iii) q = 0.5 (the quantile to model the median); and, (iii) the identity, logarithm, and square root
functions for the link h of the spatial quantile regression defined in (11) are used and expressed as

Qi = x>i β, log(Qi) = x>i β,
√

Qi = x>i β, i = 1, 82, (20)

where β = (β0, β1)
> is the regression coefficient vector and x>i = (1, xi), with xi being the value of X

for the location i.
We can compare spatial regression models while using the corrected Akaike information criterion

(CAIC) and the Schwarz Bayesian information criterion (BIC). The CAIC and BIC are given, respectively,
by

CAIC = 2d− 2`(θ̂) + (2d2 + 2d)/(n− d− 1), BIC = d log(n)− 2`(θ̂),

where `(θ̂) is the log-likelihood function for the parameter θ associated with the model evaluated at
θ = θ̂, d is the dimension of the parameter space, and n is the size of the data set. Both criteria are
based on the log-likelihood function and penalize the model with more parameters. A model whose
information criterion has a smaller value is better [45]. The log-likelihood, CAIC, and BIC values for
the model with links defined in (20) are presented in Table 2. Additionally, we fit a Gaussian spatial
regression to the data set, which considers the modeling of the mean = median (symmetric case),
allowing us to compare the models that are given in (20). Note that the BS model with square root link
is better than the Gaussian model. From this table, we conclude that the BS spatial quantile regression
with square root link function should be selected.

Table 2. Values of log-likelihood, CAIC, and BIC for indicated models with chemical data.

Model `(θ̂) CAIC BIC

Gaussian −32.1411 70.5900 77.5024
BS–identity link −36.3659 81.2513 90.3587
BS–logarithm link −36.3659 81.2513 90.3587
BS–square root link −24.9112 58.3419 67.4493

The maximum likelihood estimates of the selected model parameters and the corresponding
asymptotic standard errors, estimated by using the robust covariance matrix method [46] and reported
in parentheses, are:

α̂ = 0.2323(0.0460), β̂0 = 0.3821(0.0030), β̂1 = 0.1884(0.0093), ϕ̂ = 0.0045(0.0021).

These standard errors are low, indicating that all of the parameters are estimated with good statistical
precision and allow us to infer they must be part of the model. Based on (13), note that the parameter ϕ

is significant at 5% using the confidence interval-method, which means that exists spatial dependence.
Therefore, the estimated BS spatial quantile regression model is given by

Q̂i = (0.3821 + 0.1884xi)
2, i = 1, 82,

where the correlation matrix is determined as Σ̂ = Σ(δ, ϕ̂), for δ = 0.5 and evaluated at ϕ̂ = 0.0045,
whereas the variance-covariance matrix of the BS spatial quantile regression model defined in (12) is
estimated as ̂Var[T ] =

4α̂2

γ̂α
4 (Q̂(β)Q̂(β)

>
)�

(
α̂2Σ̂� Σ̂ + 4 Û

)
,
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where γ̂α corresponds to γα evaluated at α̂ = 0.2323, Q̂(β)
>

= (Q̂1, . . . , Q̂82) and Û is obtained
evaluating U at α̂ and ϕ̂.

Figure 4 provides the QQ plot of the residuals, transformed by the Wilson–Hilferty approximation,
after removing a location that was outside the bands. Note that most of the residuals are inside of the
bands. Additionally, Figure 5a displays a three-dimensional scatterplot that shows the estimated and
observed values of T. These same values are presented in a two-dimensional scatterplot in Figure 5b.
These plots allow us to observe a good fit of our model to the data. Therefore, we conclude that the
BS spatial quantile regression model is adequate to describe these spatial data, but a better fitting
could be obtained if a heavy-tailed asymmetric distribution is considered, such as the BS-Student-t
distribution. However, this is beyond of the objective of the present study and it provides a challenge
for further research.
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Figure 4. QQ plots for transformed residuals with chemical data.
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Figure 5. Three-dimensional (a) and two-dimensional (b) scatterplots estimated versus observed
response values with chemical data.
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9. Conclusions and Future Works

In this paper, we have obtained the following findings:

(i) A new parameterization of the multivariate Birnbaum-Saunders distribution has been
established.

(ii) A novel Birnbaum–Saunders spatial quantile regression model has been proposed and derived.
(iii) We have developed maximum likelihood estimation for the parameters of the proposed model.
(iv) A randomized quantile residual has been used for model checking. We have utilized the

Wilson–Hilferty approximation for our spatial model residuals to evaluate adequacy model.
(v) The obtained results have been applied to a real data set illustrating its potential usages.

Therefore, we have derived a novel class of spatial quantile regression, which is useful for modeling
data generated from a positive skew distribution. The main feature of this spatial regression is the
modeling of a quantile for a response variable that follows the Birnbaum–Saunders distribution.
The numerical results have reported the good performance of the spatial quantile regression model,
indicating that the Birnbaum–Saunders distribution is a good modeling choice when dealing with data
that have spatial dependence, positive support and follow a distribution skewed to the right. Hence, it
can be a valuable addition to the tool-kit of applied statisticians and data scientists.

The following aspects are open problems for the Birnbaum–Saunders spatial quantile regression
models and they can be considered for future work:

(i) A global test for independence might be stated based on H0: σij = 0 (or Σ = In, the n× n identity
matrix). Specifically, let Lfull be the likelihood function for the full model and Lreduced be the
likelihood function for the reduced model (under H0 indicating independence). Subsequently,
we can use the likelihood ratio statistic Λ = Lreduced/Lfull to test H0. Thus, instead of using the
asymptotic distribution of −2 log(Λ), which is unknown, a bootstrap test can be employed.

(ii) In addition, we can consider H0: ϕ = 0 versus H1: ϕ > 0. In this case, the asymptotic distribution
of −2 log(Λ) under H0 is an equally weighted mixture of chi-square distributions with zero and
one degree of freedom, whose critical value is 2.7055 at a significance level of 5% [47]. In the
spatial case, such a distribution might also be unknown, so that the bootstrap technique can be
employed.

(iii) it is of interest to study details of the asymptotic behavior and performance of maximum
likelihood estimators [48]. However, applicability of asymptotic frameworks to spatial data is
not an easy aspect. This is due to there being at least two relevant frameworks, which can behave
quite differently when estimating the spatial dependence parameters; see details about these
asymptotic frameworks and their implications in [49].

(iv) The Birnbaum–Saunders distribution is based on the normal distribution and then parameter
estimation in spatial quantile regression models can be affected by atypical cases. Thus, robust
estimation to these cases, for example based on the Birnbaum–Saunders-t distribution, can be
considered to decrease their effects; see [50].

(v) Besides fixed effects that are added to the modeling by regression, random effects can also be
added by mixed models, which may produce a more sophisticated Birnbaum-Saunders spatial
quantile regression model and closer to reality [51].

(vi) Local influence diagnostics can be conducted for Birnbaum–Saunders spatial quantile regression,
which permits the detection of individual or combined influence of cases. Works on local
influence in Birnbaum–Saunders models were conducted by a number of authors; see, for
example, [18,23,25,52].

Research on these issues is in progress and their findings will be reported in future articles.
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Appendix A. Score Vector and Fisher Information Matrix

Appendix A.1. Score Vector

The elements of the (p + 2)× 1 score vector given in (15) are detailed as

˙̀
α = −A>Σ−1 ∂A

∂α
+

∂

∂α
[log(a)],

˙̀
β j = −A>Σ−1 ∂A

∂β j
+

∂

∂β j
[log(a)],

˙̀
ϕ = −1

2
tr
(

Σ−1 ∂ Σ

∂ϕ

)
+

1
2

A>Σ−1 ∂Σ

∂ϕ
Σ−1 A,

where ∂A/∂α = (∂Ak/∂α) and ∂A/∂βk = (∂Ak/∂β j), with

∂Ak
∂α

=

√
4Qk
tk

[
γ′αtk
2αQk

− 1
(αγα)2 (γα + αγ′α)

(
tkγ2

α

4Qk
− 1
)]

,

∂Ak
∂β j

= − 1
αγα
√

tkQk

(
tkγ2

α

4Qk
+ 1
)

1
h′(Qk)

xkj,

∂

∂α
[log(a)] = − n

αγα
(γα + αγ′α) +

n

∑
k=1

2tkγαγ′α
tkγ2

α + 4Qk
,

∂

∂β j
[log(a)] =

n

∑
k=1

(
− 1

2Qk
+

4
tkγ2

α + 4Qk

)
1

h′(Qk)
xkj.

In addition, ∂ Σ/∂ϕ = (∂σij/∂ϕ), with elements defined as

∂σij

∂ϕ
=


hδ

ij

2δ−1Γ(δ)
[
δϕδ−1Kδ(ϕ hij) + ϕδK′δ(ϕ hij)hij

]
, i 6= j;

0, i = j;

where K′δ(u) = dKδ(u)/du.
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Appendix A.2. Information Matrix

To obtain the Fisher information matrix, − ῭(θ) must be evaluated at θ = θ̂. For the BS spatial
quantile regression model presented in (11), the elements of the Hessian matrix can be expressed as

῭
β j βl = −

[(
∂A
∂βl

)>
Σ−1 ∂A

∂β j
+ A>Σ−1 ∂2 A

∂β j∂βl

]
+

∂

∂βl

(
∂ log(ã)

∂β j

)
,

῭
β j ϕ = A>

(
Σ−1 ∂Σ

∂ϕ
Σ−1

)
∂A
∂β j

,

῭
ϕϕ = −1

2
∂

∂ϕ

[
tr
(

Σ−1 ∂Σ

∂ϕ

)]
+

1
2

A>
[(
−Σ−1 ∂Σ

∂ϕ
Σ−1 ∂Σ

∂ϕ
+ Σ−1 ∂2Σ

∂ϕ2

)
Σ−1 − Σ−1 ∂Σ

∂ϕ
Σ−1 ∂Σ

∂ϕ
Σ−1

]
A,

where

∂2 Ãk
∂β j∂βl

=
1

αγα
√

tkQk

{(
3tkγ2

α

8Q2
k

+
1

2Qk

)
1

h′(Qk)

+

(
tkγ2

α

4Qk
+ 1
)

h′′(Qk)

[h′(Qk)]2

}
1

h′(Qk)
xkjxkl ,

∂

∂βl

(
∂ log(ã)

∂β j

)
=

n

∑
k=1

{[
1

2Q2
k
− 16

(tkγ2
α + 4Qk)2

]
1

[h′(Qk)]

+

[
1

2Qk
− 4

tkγ2
α + 4Qk

]
h′′(Qk)

[h′(Qk)]2

}
1

h′(Qk)
xkjxkl ,

and ∂2Σ/∂ϕ2 = (∂2σij/∂ϕ2), whose elements are given by

∂2σij

∂ϕ2 =


hδ

ij ϕ
δ−2

2δ−1Γ(δ)
[
δ(δ− 1)Kδ(ϕ hij) + δϕK′δ(ϕ hij) i 6= j;

+δϕK′δ(ϕ hij) + ϕ2K′′δ (ϕ hij) hij
]

,
0, i = j;

with K′′δ (u) = d2Kδ(u)/du2. In addition, the p× 1 and 3× 1 vectors ῭
βα = [ ῭αβ]

> and ῭
ϕα = [ ῭αϕ]>,

respectively, have elements given by

῭
αβ j = −

( ∂A
∂β j

)>
Σ−1 ∂A

∂α
+ A>Σ−1 ∂2 A

∂α∂β j

+
∂

∂α

(
∂ log(ã)

∂β j

)
,

῭
αϕ = A>

(
Σ−1 ∂Σ

∂ϕ
Σ−1

)
∂A
∂α

,

where ∂2 A/∂α∂β j = (∂2 Ãk/∂α∂β j), with

∂2 Ãk
∂α∂β j

=

[
1

(αγα)2 (γα + αγ′α)

(
tkγ2

α

4Qk
+ 1
)
− 1

αγα

(
tkγαγ′α

2Qk

)]
× 1√

tkQk

1
h′(Qk)

xkj,

∂

∂α

(
∂ log(ã)

∂β j

)
= −

n

∑
k=1

(
8tkγαγ′α

(tkγ2
α + 4Qk)2

)
1

h′(Qk)
xkj.
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Furthermore, we have

῭
αα = −

[(
∂A
∂α

)>
Σ−1 ∂A

∂α
+ A>Σ−1 ∂2 A

∂α2

]
+

∂2 log(ã)
∂α2 ,

where ∂2 A/∂α2 = (∂2 Ãk/∂α2), with

∂2 Ãk
∂α2 =

√
4Qk
tk

{(
tkγ2

α

4Qk
− 1
) [

2
(αγα)3 (γα + αγ′α)

2 − 2γ′α + αγ′′α
(αγα)2

]
− (γα + αγ′α)tkγαγ′α

2Qk(αγα)2 +
tk

2Qk

(
γ′′α α− γ′α

α2

)}
and

∂2 log(ã)
∂α2 = −n

(2γ′α + αγ′′α )(αγα)− (γα + αγ′α)
2

(αγα)2

+
n

∑
k=1

2tk
([γ′α]

2 + γαγ′′α )(tkγ2
α + 4Qk)− 2tkγ2

α(γ
′
α)

2

(tkγ2
α + 4Qk)2 .
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