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Abstract: Most of today’s secret image sharing (SIS) schemes are based on Shamir’s polynomial-based
secret sharing (SS), which cannot recover pixels larger than 250. Many exiting methods of lossless
recovery are not perfect, because several problems arise, such as large computational costs, pixel
expansion and uneven pixel distribution of shadow image. In order to solve these problems and
achieve perfect lossless recovery and efficiency, we propose a scheme based on matrix theory modulo
256, which satisfies (k, k) and (k, k + 1) thresholds. Firstly, a sharing matrix is generated by the filter
operation, which is used to encrypt the secret image into n shadow images, and then the secret image
can be obtained by matrix inverse and matrix multiplication with k or more shadows in the recovery
phase. Both theoretical analyses and experiments are conducted to demonstrate the effectiveness of
the proposed scheme.
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1. Introduction

Shamir [1] and Blakley [2] proposed secret sharing (SS) in 1979, respectively. Due to the
characteristics of the image, SS is applied to the image to achieve secret image sharing (SIS). A (k, n)
threshold SIS encrypts a secret image into n shadows (also called shares or shadow images) and
distributes them among n participants, where any k or more shadows can reconstruct the secret while
less than k shadows can obtain nothing of the secret. Unlike traditional encryption and information
hiding, SIS has the feature of loss tolerance. SS has many application scenarios, such as access control,
transmitting passwords, cloud computing security, block chain security, distributed storage system,
etc. [3–6].

There are two primary branches in SIS, visual cryptography scheme (VCS) [7–10] and Shamir’s
polynomial-based SIS scheme.

The original visual cryptography scheme was introduced by Naor and Shamir in 1995. The best
advantage of VCS is that the secret image can be recovered by superposing shadows and human
visual system (HVS) without cryptographic computation. It also has several drawbacks, such as lossy
recovery and low visual quality of recovered images.

Original Shamir’s polynomial-based scheme is based on a (k − 1)-degree polynomial, whose
constant coefficients are used to cover secret pixels. In the recovery phase, the secret image can be
obtained by k or more shadows modulo 251 based on Lagrange interpolation. The modular arithmetic
is in a Galois Field of GF(p). p is a prime number to ensure that each element in GF(p) has a unique
multiplicative inverse. Thien and Lin [11] applied original polynomial-based SS to an image for
the first time, they employed all the coefficients of the polynomial for embedding secret, so the
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shadow size is reduced to 1/k times to the original image. However, because the adjacent pixels
of the image are correlated, encryption must be performed before sharing to ensure that there is no
information leakage in the shadow image, so this method permuted the pixels of the secret image
before the sharing phase. Meanwhile, there is another disadvantage in their scheme that it cannot
actually achieve lossless recovery, because the grayscale pixel value range is [0,255] and modulo 251
cannot cover it. Therefore, the pixel values of secret image between [251,255] are truncated as 250.
Inspired by Thien and Lin’s research, some polynomial-based schemes [12,13] were proposed to obtain
more features, such as meaningful shares [14], two-in-one recovery [15,16] and shares with different
priorities [17]. The advantage of polynomial-based scheme is the secret can be recovered with high
quality. Unfortunately, most polynomial-based SIS schemes suffer from lossy recovery.

To deal with lossy recovery and to obtain more features, the following polynomial-based schemes
were therefore proposed [18–20]. In Thien-and-Lin’s scheme with lossless recovery [11], they divided
a pixel larger than 250 into two parts and encrypted them separately, but it has the problem of random
shape changes. When p is 257, it is possible that the shared value might be calculated as 256, but the
maximum shadow pixel value is 255, so a part of the secret value is lost. Zhou et al. [21] mentioned a
method to solve this problem with the help of a screening operation, which reperforms the sharing
phase when the shared value is calculated as 256. However, the screening operation not only increases
the calculation amount in the sharing phase but also results in uneven pixel distribution of shadow
image. Some previous studies mentioned or used Galois Field GF(28), but they did not give a specific
implementation and analysis, Gong et al. [22] first theoretically analyze GF(28) and its arithmetic
operations, and then achieved SIS with lossless recovery. As a result that polynomial multiplication
suffered from high computational complexity, they decided to use table lookup to do the multiplication,
but this increased the space usage.

To sum up, the existing lossless recovery schemes have problems such as pixel expansion, uneven
pixel distribution of shadow image and large computational costs. In order to solve the above problems
and achieve perfect lossless recovery and high efficiency, we conduct this research.

In this paper, a lossless and efficient (k, n) threshold SIS scheme based on matrix theory is
presented. Denote the integer space of modulo 256 by MS(256). We take the modulo as 256, ensuring
that the elements in MS(256) can one-to-one correspond to 256 pixel values, thus achieving lossless
recovery. However, 256 is not a prime number, and there is no guarantee that all elements in MS(256)
have inverses, so Lagrange interpolation cannot be used in the recovery phase. Ding et al. [23] proved
that Shamir’s sharing polynomial constructed by the Vandermonde matrix is only a special case of
constructing a sharing polynomial satisfying (k, n) threshold, therefore, we design our method from a
broader perspective based on matrix theory. In the sharing phase, a sharing matrix is generated by a
filter operation, which is used to encrypt the secret image into n shadows. The secret image can be
reconstructed by matrix inverse and matrix multiplication with k or more shadows in the recovery
phase. There is only one inversion operation in the whole process. Using matrix multiplication can also
reduce the computational complexity of the recovery phase compared with Lagrange interpolation.
Both theoretical analyses and experiments are conducted to demonstrate the effectiveness of the
proposed scheme.

The rest of the paper is organized as follows. Section 2 introduces some preliminary techniques
as the basis of the proposed scheme. The proposed SIS scheme is explicitly presented in Section 3.
Furthermore, theoretical analyses are given in Section 4. Section 5 gives experimental results and
analyses. Finally, the conclusions and our future work are drawn in Section 6.

2. Preliminaries

In this section, we introduce some previous studies as the basis for the proposed method. First,
we introduce the implementation process of Shamir’s polynomial-based SS. Second we describe matrix
method for polynomial-based SS. Then the common method solving inverse matrix is given.
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The main notations used in this paper are as Table 1.

Table 1. Notations and descriptions.

Notations Descriptions

(k, n) threshold, k 6 n

MS(256) the integer space of modulo 256

p generally a prime number, we take 256 in this paper

K
a random matrix by a filter operation satisfying any k row vectors of the matrix
K are linearly independent and the determinant of any k× k submatrix is
coprime with 256

K a k× k submatrix of K

a a vector in which a0 is the secret pixel value and others are generated randomly
in [0,255]

f a vector obtained by Ka = f, whose elements are sci

sci a pixel in shadow image

SCi a shadow image corresponding to the i-th participant

2.1. Shamir’s Polynomial-Based SS

Shamir’s polynomial-based SS for (k, n) threshold generates secret data s into n pieces based on a
(k− 1)-degree polynomial as Equation (1), in which a0 = s, a1, a2, · · · , ak−1 are assigned randomly in
[0, p− 1] and p is a prime number greater than a0. All modulo operations are performed in a finite
field of GF(p).

f (x) = (a0 + a1x + · · ·+ ak−1xk−1) mod p (1)

In the sharing phase, given n different random x, we can obtain n pieces by calculating
sc1 = f (x1), sc2 = f (x2), · · · , scn = f (xn) and take (xi, sci) as a secret pair, where i serves as an
identifying index or an order label corresponding to the i-th participants. These n pairs are distributed
to n participants.

In the recovery phase, given any k pairs of the n shared pairs {(xi, sci)}n
i=1, we can obtain the

coefficients of f (x) by Lagrange interpolation as shown in Equation (2), and then s = f (0).

f (x) =
k

∑
j=1

f (ij)
k

∏
l=1
l 6=j

(x− il)

(ij − il)
(2)

Obviously, there are a large number of division operations in Lagrange interpolation, while all
modular arithmetic is in a finite field in polynomial-based scheme and division operation must be
converted to multiply the inverse. Therefore, p should be a prime to ensure that all elements in GF(p)
have multiplication inverses.

2.2. Matrix Method for Polynomial-Based SS

We mentioned Shamir’s polynomial-based SS in the previous subsection. In this subsection,
we introduce the matrix method for polynomial-based SS. Without loss of generality, we can assume
that the shared pairs are (1, f (1)), (2, f (2)), · · · , (n, f (n)). Therefore, we have n equations as follows:

a0 + a1 × 1 + · · ·+ ak−1 × 1k−1 = f (1)

a0 + a1 × 2 + · · ·+ ak−1 × 2k−1 = f (2)

· · ·
a0 + a1 × n + · · ·+ ak−1 × nk−1 = f (n)

(3)
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Equation (3) can be converted to matrix multiplication as Equation (4)
1 1 1 · · · 1
1 2 22 · · · 2k−1

1 3 32 · · · 3k−1

...
...

...
...

...
1 n n2 · · · nk−1

 ·


a0

a1

a2
...

ak−1

 =


f (1)
f (2)
f (3)

...
f (n)

 (4)

The above equation can be simplified as:

Ka = f (5)

It has been proved that linear equations in Equation (3) and vector equation in Equation (5) is
equivalent and K is a Vandermonde matrix [23], which has a property that the rank of any k × k
submatrix is k, that is, any k order submatrix of K is invertible. Therefore, we can use inverse matrix to
obtain a. Randomly select k row vectors of K to form K, which is a full rank matrix, and compute a
using Equation (6) with f(k corresponding f (x)). Then a0 is easy to obtain.

a = K−1f (6)

2.3. The Method to Solve Inverse Matrix

The most common way to solve the inverse matrix is as follows [24]:

K−1 =
K∗

|K| (7)

K∗ is the adjoint matrix of K. The value of the (i, j)-th entry of K∗ is that (−1)i+j times the
determinant of the matrix obtained by deleting the j-th row and i-th column of K. Note that the adjoint
matrix can be computed without division, so there is only one division operation in the recovery phase
through the matrix method. |K| is the determinant of K. Since K is a full-rank matrix, the determinant
value is not zero.

3. The Proposed Scheme

3.1. The Basic Idea

Most polynomial-based schemes specify 251 or 257 as the prime in the sharing polynomial,
because which are the closest prime numbers to 256, while the pixel value range of grayscale image is
[0,255], the elements in GF(251) or GF(257) cannot perfectly fit the grayscale pixels.

In our scheme, we take the modulo as 256, and share and recover based on matrix theory.
We make K a random matrix by a filter operation in the sharing phase as Equation (8), which satisfies
two conditions:

Condition 1: Any k row vectors of the matrix K are linearly independent.
Condition 2: The determinant of any k× k submatrix is coprime with 256.

K =


x11 x12 x13 · · · x1k
x21 x22 x23 · · · x2k
x31 x32 x33 · · · x3k

...
...

...
...

...
xn1 xn2 xn3 · · · xnk

 (8)
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In the recovery phase, the secret image can be recovered with the help of matrix inversion,
but there is a division operation, that is, the determinant value is divided. Condition 1 guarantees the
rank of any k× k submatrix is k and any k order submatrix of K is invertible.

It cannot guarantee that all elements in MS(256) are coprime with 256, and only the elements
that are coprime with 256 have multiplicative inverses, therefore, K should satisfy condition 2 such
that the determinant of any k× k submatrix has a multiplicative inverse.

We can encrypt a secret image into n shadows with K and distribute them among n participants.
Any k or more shadows can reconstruct the secret while less than k shadows can obtain nothing of the
secret image.

3.2. The Sharing Phase

At first, to divide the secret pixel s into pieces sci, we generate a vector a = (a0, a1, · · · , ak−1)
T

in which a0 = s and a1, · · · , ak−1 are generated randomly in [0,255], and an n× k matrix K, which
satisfies the two conditions mentioned in Section 3.1. Then we can obtain a shares vector f by Ka = f
as follows: 

x11 x12 x13 · · · x1k
x21 x22 x23 · · · x2k
x31 x32 x33 · · · x3k

...
...

...
...

...
xn1 xn2 xn3 · · · xnk

 ·


a0

a1

a2
...

ak−1

mod 256 =


sc1

sc2

sc3
...

scn

 (9)

sci is a pixel value of the i-th shadow image SCi, which is corresponding to the i-th row vector ki
of K and the i-th participant. Then put sci into the corresponding position of SCi. We take (ki, SCi) as a
shared pair and distribute them to n participants. The steps are described in Algorithm 1.

Algorithm 1 The sharing phase of the proposed scheme.
Input: The threshold parameters (k, n), n = k or n = k+ 1, and a grayscale secret image S with size of M×N.
Output: n shadows SC1, SC2, · · · , SCn and matrix K.

Step 1: Generate an n × k matrix K randomly, and determine that the determinant of any k × k
submatrix is not zero and is coprime with 256. If not, repeat Step 1.
Step 2: For every secret pixel s in each position S(i, j), (i, j) ∈ {(i, j)|1 6 i 6 M, 1 6 j 6 N}, repeat Step 3–4.
Step 3: Generate a vector a = (a0, a1, · · · , ak−1)

T, set a0 = s, and generate a1, · · · , ak−1 randomly in [0,255].
Step 4: Compute f = Ka (mod 256), where SC1(i, j) = f (1), · · · , SCn(i, j) = f (n).
Step 5: Output n shadows SC1, SC2, · · · , SCn and matrix K.

In order to satisfy the conditions of K, we set a filter condition in Step 1 to obtain a suitable matrix.
The condition that the determinant of any k× k submatrix is not zero is equivalent to any k row vectors
of the matrix K being linearly independent.

For more applicable situations, some matrices that meet the conditions can be generated in
advance, and the matrices can be directly used when encrypting, so as to save real-time computational
overhead. The matrix itself does not need to be kept secret and can be made public.

To illustrate the sharing phase of our method more intuitively, we give Example 1 as follows.

Example 1. Given the first pixel of secret image, whose value is 66, and threshold parameters (3, 4).

Firstly, we generate a 4 × 3 matrix K satisfying the conditions mentioned in Section 3.1.

We suppose that K =


122 251 47
130 31 24
129 127 72
147 115 117

. Secondly, we generate a vector a = (a0, a1, a2)
T

in which a0 = 66, a1 and a2 are generated randomly in [0,255], so we suppose a1 = 129
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and a2 = 14. Then f can be obtained by f = Ka =


122 251 47
130 31 24
129 127 72
147 115 117

 ·
 66

129
14

 mod

256 =


129
115
49
63

. Then put the four elements {129, 115, 49, 63} of f into the first pixel

position of four shadow images SC1, SC2, SC3 and SC4, respectively. Finally, distribute
{SC1, [122 251 47]}, {SC2, [130 31 24]}, {SC3, [129 127 72]}, {SC4, [147 115 117]} to the corresponding
four participants.

3.3. The Recovery Phase

In the recovery phase, randomly select k participants to get their shadows and row vectors
ki, we can combine their vectors into a k × k matrix K. Then compute the adjoint matrix K∗ and
determinant |K| of matrix K. Subsequently, concatenate k pixels in the same position in k shadows to
generate f. Thus, we can finally obtain the vector a by a = K−1f, a0 is the pixel value of original secret
image. The steps are described in Algorithm 2.

Algorithm 2 The recovery phase of the proposed scheme.
Input: The k shadows which are randomly selected from n shadows SC1, SC2, · · · , SCn and
corresponding k vectors ki.
Output:The original secret image S.

Step 1: Construct a matrix K by k vectors ki.
Step 2: Calculate the adjoint matrix K∗ and determinant |K| of matrix K. Compute the inverse matrix
K−1 according to Equation (7).
Step 3: For each position S(i, j), (i, j) ∈ {(i, j)|1 6 i 6 M, 1 6 j 6 N}, repeat Step 4–5.
Step 4: Get a by a = K∗

|K| f.
Step 5: Set the pixel S(i, j) = a0.
Step 6: Output the secret image S.

Obviously, if there are fewer than k participants getting together, the matrix K cannot be formed,
and the secret image cannot be recovered.

Here, we give Example 2 to illustrate the recovery phase of the proposed scheme.

Example 2. Given three shadow images SC1, SC2, SC3 and three corresponding row vectors
[122 251 47],[130 31 24],[129 127 72].

Firstly, we combine three row vectors into a 3× 3 matrix K =

 122 251 47
130 31 24
129 127 72

. Secondly,

we compute the adjoint matrix K∗ =

 208 185 215
136 161 110
223 245 80

 and determinant value |K| = 105. Then we

calculate the inverse |K|−1 = 217 of 105. Then the inverse matrix K−1 can be obtained by K−1 = K∗
|K| =

K∗ · |K|−1 =

 208 185 215
136 161 110
223 245 80

 · 217 mod 256 =

 80 209 63
72 121 62
7 173 208

. Next we take the pixel values
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from the first pixel position of the three shadow images SC1, SC2, SC3 to form vector f =

 129
115
49

.

Finally, we can obtain vector a through a = K−1f =

 80 209 63
72 121 62
7 173 208

 ·
 129

115
49

 mod 256 =

 66
129
14

,

the first element 66 is the secret pixel value.

4. Theoretical Analysis

4.1. Threshold Analysis

In this section, we analyze the threshold of our scheme to find out the relationship between k and n.
As mentioned in Section 3, we use the matrix K to encrypt the image, which satisfies the

determinant of any k× k submatrix is not zero and is coprime with 256. All odd numbers in MS(256)
are coprime with 256, obviously the other even numbers including zero are not coprime with 256.
The condition becomes that the determinant of any k× k submatrix is odd.

We first consider the case of n = k, that is, K is a square matrix. The formula for calculating the
determinant is as follows:∣∣∣∣∣∣∣∣∣∣∣∣

x11 x12 x13 · · · x1k
x21 x22 x23 · · · x2k
x31 x32 x33 · · · x3k

...
...

...
...

...
xk1 xk2 xk3 · · · xkk

∣∣∣∣∣∣∣∣∣∣∣∣
= ∑

j1 j2 ...jk

(−1)τ(j1 j2 ...jk)x1j1 x2j2 . . . xkjk (10)

Take a square matrix of k = 3 as an example:∣∣∣∣∣∣∣
x11 x12 x13

x21 x22 x23

x31 x32 x33

∣∣∣∣∣∣∣ = x11x22x33 − x11x23x32 − x12x21x33

+x12x23x31 + x13x21x32 − x13x22x31

(11)

Theorem 1. The determinant parity is only related to the parity of the square matrix elements, not to the size
of the square matrix elements. We can use 1 for any odd number, and 0 for any even number, to compute the
determinant in GF(2) [25].

Proof of Theorem 1. The value of the k-order integer determinant is the sum of k! product terms,
each of which has k integer factors.

• To make the determinant odd, we need to add an odd number of product terms with odd products.
Corresponding to: to make the determinant to be 1, we need to add an odd number of product
terms whose product is 1.

• To make the product term odd, all the factors need to be odd. Corresponding to: to make the
product term to be 1, we need all 1 in the factor.

• There is one even number in the factor, then the product is even. Corresponding to: there is one 0
in the factor, then the product is 0.

The question becomes to find the non-singular matrix in GF(2). Each such matrix corresponds to
k linearly independent vectors, which are all non-zero vectors. There are 2k − 1 possibilities for the
first row vector. The second row vector must be outside the linear subspace generated by the first row
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vector, so there are 2k − 21 possibilities. By analogy, the i-th row vector should be outside of the linear
subspace generated by the first i− 1 row vectors, and there are 2k − 2i−1 possibilities. When n = k
there exist matrixes that satisfy the conditions mentioned in Section 3. Hence, the probability that the
k-order determinant is odd is:

P(k,k) =
(2k − 20)(2k − 21) . . . (2k − 2k−1)

2k2

= (1− 1
2k )(1−

1
2k−1 ) . . . (1− 1

2
)

=
k

∏
i=1

(1− 1
2i )

(12)

P(k,k) is the probability that a randomly generated k× k matrix meets the two conditions.
When n = k + 1, add another non-zero row vector below the square matrix, to satisfy that the

(k + 1)-th line is outside the linear subspace composed of any previous k− 1 lines, there is only one
possibility left. When n = k + 1 there exist matrixes that satisfy the condition mentioned in Section 3.
Hence, the probability that a (k + 1)× k matrix is the matrix we need is:

P(k,k+1) =
1
2k P(k,k) =

1
2k

k

∏
i=1

(1− 1
2i ) (13)

When n > k + 1, there is no matrix for our scheme. Therefore, the proposed scheme can achieve
(k, k) and (k, k + 1) thresholds.

Next we discuss how P(k,k) and P(k,k+1) change when k is very large. For the case of n = k, when k

tends to infinity, P(k,k) =
∞
∏
i=1

(1− 1
2i ) ≈ 0.288788. For the case of n = k + 1, when k tends to infinity,

P(k,k+1) =
1

2∞

∞
∏
i=1

(1− 1
2i ) ≈ 0. This is because when discussing in GF(2), the number of all (k + 1)× k

random matrices is 2(k+1)·k, but there is only one (k + 1)-th row vector that makes the matrix K satisfy
the conditions, and with the increase of k, the denominator of P(k,k+1) is growing rapidly. For large k,
P(k,k+1) decreases rapidly to zero. Although P(k,k+1) tends to 0 when k tends to infinity, this does not
mean that there is no matrix K that satisfies the conditions.

The size of the random matrix generated in the sharing phase is n× k. Since each element of the
matrix is randomly selected from [0,255], the total number of random matrices is 256n·k.

When n = k, the probability of the matrix satisfying the conditions is P(k,k), so the number of

matrix K satisfying the conditins is num(K) = 256k2 · P(k,k) = 128k2 · (2k − 20)(2k − 21) . . . (2k −
2k−1). It can be seen that as k increases, the number of K grows rapidly. For (3,3) threshold,
num(K) = 1549526502191602335744, and for (7,7) threshold, num(K) ≈ 2.935857× 10117.

When n = k + 1, the probability of the matrix satisfying the conditions is P(k,k+1), so the number

of matrix K satisfying the conditins is num(K) = 256(k+1)·k · P(k,k+1) = 128(k
2+k) · (2k − 20)(2k −

21) . . . (2k − 2k−1). It can be seen that as k increases, the number of K grows rapidly. For (3,4) threshold,
num(K) = 3249592603124123221610201088, and for (7,8) threshold, num(K) ≈ 1.65274× 10132.

In practical applications, generally k 6 6, so the number of matrix K satisfying the conditions can
fully meets the actual needs.

4.2. Security Analysis

In the previous subsection, we explained that the number of matrix K can fully meet the actual
needs, and as the threshold increases, the number of K increases rapidly, so the probability of an
attacker finding the corresponding sharing matrix is extremely small.

The proposed scheme provides two options, one is to generate a sharing matrix K to encrypt
secret image during the sharing phase, and then distribute shadow images and corresponding row
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vectors. The other is to generate a large number of matrix K in advance, which is directly used to
save real-time consumption during the sharing phase. In the second case, matrix K can be made
public, because of the characteristics of the secret sharing scheme, even if the attacker knows the
corresponding sharing matrix, the secret image cannot be recovered if k or more shadow images are
not available. Therefore, the security of the second case is not on the sharing matrix, but mainly on
whether a sufficient number of shadow images can be obtained.

In the proposed scheme, only one secret pixel value is encrypted per round, and the remaining
elements of the vector a are randomly selected from [0,255], so there is no security problem caused
by the correlation of adjacent pixels. Moreover, the elements in MS(256) correspond to the grayscale
pixel value range [0,255], so the shadow image pixel values are evenly distributed. All these guarantee
that if the attacker gets less than k shadow images, he cannot recover the secret image. Even if the
attacker gets k− 1 shadow images, since grayscale pixel value range is [0,255], the secret image has a
total of 256× 256 secret pixels, the attacker cannot guess the k-th shadow image, so the secret image
will not be obtained.

4.3. Complexity Evaluation

There are a large number of pixels in an image, therefore every pixel of the secret image needs to
be shared once, and every pixel of the shadow image needs to be decoded once, so time is spent on
iterative operation.

For the (k, n) threshold scheme, no matter whether the polynomial method or the matrix method
is used, sharing a secret pixel value requires calculating n shared values. The scheme using polynomial
method to calculate a shared value requires k − 1 addition operations and k(k−1)

2 multiplication
operations. For the proposed scheme using matrix multiplication, the process of calculating a shared
value is the process of multiplying a k-dimensional row vector by a k-dimensional column vector,
with a total of k− 1 additions and k multiplications. When k is the same, polynomial method and
matrix method need the same number of addition operations to calculate a shared value. When k < 3,
the polynomial method has fewer multiplication operations. When k = 3, the two methods have the
same multiplication operations. When k > 3, the matrix method multiplies less times. Therefore,
when k < 3, the calculation amount in the sharing phase of the polynomial method is smaller.

The scheme for p = 257 reperforms the sharing phase when the shared value is calculated as 256
and there are 257 elements in GF(257), so the probability of each redo is 1

257 . For a 256× 256 grayscale
image, approximately 256×256

257 ≈ 256 times need to be redone during the sharing phase. Our scheme
only needs to generate a matrix K by filtering before the sharing phase, which can be used in every
subsequent sharing process. Take (3,3) threshold as an example, P(3,3) =

21
64 , in other words, it takes

about 3 cycles to get the matrix K. Now the (3,4) threshold, P(3,4) =
21

512 , it takes about 24 cycles. All
of these are far less than the number of redo of the scheme for p = 257. When k > 3, the time spent
in the sharing phase of the proposed scheme is certainly less than that of the scheme for p = 257.
When k < 3, we can not qualitatively analyze whether the influence of the filter operation is greater or
that of the multiplication operation, so we will use experiments to quantitatively explain later.

The algorithm complexity for decryption of Shamir’s scheme is O(k log2 k), which uses Lagrange
interpolation in the recovery phase. Our scheme uses matrix multiplication during the recovery phase,
a k× k matrix is multiplied with a k× 1 matrix, so the algorithm complexity is O(k× k× 1) = O(k2).
As a result that only a0 is the secret pixel value, only the first element of f needs to be calculated, so the
complexity can be reduced to O(k), which is a little lower than that of Shamir.

4.4. Lossless Recovery Analysis

In the sharing phase, we use f = Ka (mod 256) to encrypt the secret image, in which the operation is
matrix multiplication, which can be refined into integer multiplication and addition, without involving
division, so there is no inverse operation. The remainder of modulo 256 is 0 to 255, which exactly
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corresponds to the pixel value of the grayscale image, so the shared value can be stored in the shadow
images without loss.

In the recovery phase, we construct K and recover a through a = K−1 f. The initial filter operation
guarantees the determinant of any k× k submatrix of K is not zero and is coprime with 256. K is a submatrix
of K, so its determinant is not zero and is coprime with 256. K−1 is calculated by K∗

|K| . |K| is not zero, so it can
be used as denominator. The calculation process of the adjoint matrix K∗ also does not involve division, so
dividing by the determinant |K| is the only division operation. |K| is coprime with 256 so that it has an exact
inverse of 256. Therefore, a can be correctly obtained by a = K−1 f and a0 is the secret pixel value. Hence,
the secret value is recovered losslessly and the proposed scheme is a lossless scheme.

5. Experiments and Comparisons

In this section, experiments and analyses are conducted to evaluate the effectiveness of the
proposed method.

5.1. Image Illustration

Figure 1 is the experimental results of our proposed scheme, where k = 3, n = 3. Figure 1a is the
secret image. Figure 1b–d are three shadows, which are noisy-like. Figure 1e is the result of recovery by
two shadows, from which we can know nothing of the secret. Therefore, obtaining any shadow alone
or less than k shadows will not reveal secret information. Figure 1f is the result of recovery by three
shadows. Figure 1g is the result of subtracting the pixel matrix of secret image and the recovered image.
Figure 1h is the distribution histogram of pixel values of Figure 1g. It can be seen from Figure 1g,h that
the difference between the pixel matrix of the recovered image and the pixel matrix of the secret image
is a zero matrix, which means that lossless recovery is achieved.

(a) S (b) SC1 (c) SC2

(d) SC3 (e) S′t=2 (f) S′t=3

Figure 1. Cont.
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Figure 1. Experimental results of our proposed scheme, where k = 3, n = 3. (a) Secret image;
(b–d) three shadows SC1, SC2 and SC3; (e) result of recovery by SC1, SC2; (f) result of recovery by
SC1, SC2 and SC3; (g) the difference between S and S′t=3; (h) the distribution histogram of pixel
values of Sub.

Figure 2a is used as a comparison test image, whose distribution histogram of pixel values
is Figure 2b. It can be seen from the histogram that the secret image has some pixels larger
than 250. Figures 3–5 are the results of (3,4) threshold sharing by our scheme and the other two
schemes [1,21], respectively.

(a) S

0 50 100 150 200 250 300
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0.000
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0.020

0.025

Di
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rib
ut

io
n

(b) Hist(S)

Figure 2. (a) The secret image S; (b) the distribution histogram of pixel values of the secret image S.

As shown in Figure 3, Figure 3a–d are four shadows, which are noisy-like. The abscissa range
of Figure 3e is [0,p− 1], which is [0,255]. In order to observe the distribution of pixel values more
carefully, we take the latter part of Figure 3e as Figure 3f. The pixel values of the shadows are evenly
distributed. Figure 3g is the result of recovery by two shadows. Therefore, obtaining any shadow
alone or less than k shadows will not reveal secret information. From Figure 3h–l we can know that
the proposed scheme can achieve lossless recovery when k or more shadows are obtained.
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(g) S′t=2 (h) S′t=3 (i) S′t=4
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Figure 3. Experimental results of our proposed scheme, where k = 3, n = 4. (a–d) Four shadows
SC1, SC2, SC3 and SC4; (e) the distribution histogram of pixel values of SC1; (f) the latter part of (e);
(g) result of recovery by SC1, SC2; (h) result of recovery by SC1, SC2 and SC3; (i) result of recovery by
SC1, SC2, SC3 and SC4; (j) the distribution histogram of pixel values of S′t=4; (k) the difference between
S and S′t=4; (l) the distribution histogram of pixel values of Sub.
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5.2. Comparisons with Related Works

5.2.1. Illustration Comparison

Figure 4b,d have no pixel value larger than 250. The grayscale pixel value range is [0,255] and
modular 251 cannot cover it, therefore the pixel values of secret image between [251,255] are truncated
as 250.

(a) SC1
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(b) Hist(SC1)

(c) S′t=3
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Figure 4. Experimental results of polynomial-based SIS modulo 251, where k = 3, n = 4. (a) A shadow
SC1; (b) the distribution histogram of pixel values of SC1; (c) result of recovery by three shadows;
(d) the distribution histogram of the recovered image.

Figure 5 shows a experimental result of polynomial-based SIS modulo 257 based on screening, of
which p is 257. The abscissa range of Figure 5c is [0,p− 1], which is [0,256]. From Figure 5c,d it can be
seen that there are no pixel values in the shadow image at 256 points, indicating that the pixel values
are unevenly distributed, so there will be security issues. If the attacker grasps the p-value and obtains
such a shadow with uneven pixel distribution, he will doubt the encryption behavior.
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(a) SC1 (b) S′t=3

0 50 100 150 200 250
Gray Value

0.000

0.001

0.002

0.003

0.004

Di
st

rib
ut

io
n

(c) Hist(SC1)
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Figure 5. Experimental results of polynomial-based SIS modulo 257 based on screening, where
k = 3, n = 4. (a) A shadow SC1; (b) result of recovery by three shadows; (c) the distribution histogram
of pixel values of SC1; (d) the latter part of (c).

5.2.2. Efficiency Comparison

We make statistics on the time consumption of the filter operation in the sharing phase as Table 2,
the unit is second. It can be seen that the filter of (k + 1)× k matrices takes more time than that of
k× k matrices. For (k, k), the time is similar. For (k, k + 1), the time is increasing with the increase
of k, but this is within the acceptable range. For applicable situations, some matrices that meet the
conditions can be generated in advance, so as to save real-time computational overhead.

Table 2. Time consumption of the filter operation.

(k, k) Time (k, k + 1) Time

(2, 2) 0.000499 (2, 3) 0.000998
(3, 3) 0.000497 (3, 4) 0.001501
(4, 4) 0.000501 (4, 5) 0.004497
(5, 5) 0.000499 (5, 6) 0.009499
(6, 6) 0.000499 (6, 7) 0.031500

We conduct experiments on 20 different grayscale images, and the size of each image is 256× 256.
The two schemes [21,22] are chosen for comparison, which can also recover losslessly. We compare the
average sharing time as Table 3, average recovery time as Table 4 and average total time as Table 5.
The unit is second.



Mathematics 2020, 8, 1018 15 of 17

Table 3. Average sharing time.

(k, n) mod 257 mod 28 mod 256 (Ours)

(2, 2) 1.040 1.116 0.906
(2, 3) 1.387 1.513 0.992
(3, 3) 1.522 1.752 1.131
(3, 4) 1.871 2.144 1.211

Table 4. Average recovery time.

(k, n) mod 257 mod 28 mod 256 (Ours)

(2, 2) 1.146 0.934 0.785
(2, 3) 1.139 0.923 0.789
(3, 3) 1.743 1.562 0.891
(3, 4) 1.746 1.561 0.878

Table 5. Average total time.

(k, n) mod 257 mod 28 mod 256 (Ours)

(2, 2) 2.187 2.050 1.691
(2, 3) 2.526 2.436 1.781
(3, 3) 3.266 3.314 2.022
(3, 4) 3.617 3.705 2.089

From the results, it can be observed that the higher the threshold, the more sharing time, and
the more total time. The recovery time is only related to k. The larger the k, the longer the recovery
time becomes, and the recovery time is close with the same k value in the same scheme. Compared
with the other two lossless schemes, our scheme has obvious advantages in both sharing time and
recovery time.

5.3. Brief Summary

Based on experimental results shown above, we can conclude that:

1. The secret image can be reconstructed losslessly with k or more shadows and there is no leakage
of secret information from the recovered image with less than k shadows.

2. The shadows are noisy-like, thus every single shadow gives no clue about the secret. Pixel values
of shadow are evenly distributed without security issues.

3. The proposed scheme has obvious advantages in efficiency.

6. Conclusions

A lossless and efficient (k, n) threshold SIS scheme based on matrix theory was presented in this
paper. We also analyzed the threshold of the proposed scheme and proved that (k, k) and (k, k + 1)
thresholds can be achieved. Afterwards, the effectiveness and advantages of the proposed scheme
compared with other schemes were demonstrated through experiments and analysis, that is, lossless
recovery, efficiency and security.

We may further extend our work in the following ways.

• To further exploit the secret image sharing scheme, we can consider various recommendation
mechanisms that provide content to the end users [26].

• We can use the personalized content retrieval mechanisms [27], in order to exploit the content,
i.e., images, that the users consume to further improve our secret image sharing scheme.

• Big data that are available in complex systems [28] can be exploited to improve our analysis
and model.
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