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Abstract: In this paper, we find a solution of an open problem posed by Alzer, Berg, and Koumandos:
determine (α, m) ∈ R+ ×N such that the function xα|ψ(m)(x)| is completely monotonic on (0, ∞), where
ψ(x) denotes the logarithmic derivative of Euler’s gamma function.
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1. Introduction

Completely monotonic functions have attracted the attention of many authors. They play an important
role in the mathematical analysis, statistics, physics and so on. For example, in the book ([1], p. 275), it can
be found that Hanyga [2] showed that complete monotonicity is essential to ensure the monotone decay of
the energy in isolated systems (as it appears reasonable from physical considerations); thus, restricting to
completely monotonic functions is essential for the physical acceptability and realizability of the dielectric
models. Next, in the paper [3], it was shown that, according to consequences of complete monotonicity
properties of some functions involving the gamma function, authors established various new upper and
lower bounds for the gamma function and the harmonic numbers. Monotonic functions have been studied
very intensively by many researchers. A detailed list of references on completely monotonic functions can
be found in [1,2,4–17].

We remind some useful definitions and theorems.
It is well known that the function ψ(x) = Γ′(x)/Γ(x) is called as digamma or psi function, where

Γ(x) is the classical Euler’s gamma function [6]. The following useful formula

ψ(m)(x) = (−1)m+1m!
∞

∑
j=0

1
(x + j)m+1 = (−1)m+1

∞∫
0

tm

1− e−t e−xtdt

is valid for x > 0.

Definition 1 ([14]). We say that a function f is a completely monotonic on the interval I, if f (x) has derivatives of
all orders on I and the inequality (−1)n f (n)(x) ≥ 0 holds for x ∈ I and n ∈ N0.

A characterization of completely monotonic function is given by the Bernstein–Widder
theorem [17,18], which reads that a function f (x) on (0, ∞) is completely monotonic if and only if there
exists bounded and non-decreasing function α(t) such that the integral

f (x) =
∞∫

0

e−xtdα(t)
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converges for x ∈ (0, ∞).

Definition 2 ([14]). Let h(t) be a completely monotonic function on (0, ∞) and let h(∞) = lim
t→∞

h(t) ≥ 0. If the

function tα [h(t)− h(∞)] is a completely monotonic on (0, ∞) when and only when 0 ≤ α ≤ r ∈ R, then we say
h(t) is of completely monotonic degree r; if tα [h(t)− h(∞)] is a completely monotonic on (0, ∞) for all α ∈ R, then
we say that the completely monotonic degree of h(t) is ∞.

In the paper [9], Guo designed a notation degt
cmh(t) for denoting the completely monotonic degree r

of h(t) with respect to t ∈ (0, ∞).
Recall that in the paper [4] Alzer and all disproved the following Conjecture 1 of Clark and Ismail [6]:

Conjecture 1 ([6]). Let Φm(x) = −xmψ(m)(x), where ψ(x) denotes the logarithmic derivative of Euler’s gamma
function. Then, the function Φ(m)

m (x) is completely monotonic on (0, ∞) for each m ∈ N.

Clark and Ismail [6] showed that the function Φ(m)
m (x) is completely monotonic for m = 1, ..., 16, and

they conjectured that it is true for all m ∈ N. Alzer and all proved [4] that there is m∗ ∈ N such that if
m > m∗ then Φ(m)

m (x) is not completely monotonic on (0, ∞). The proof of Alzer, Berg and Koumandos [4]
was based on properties of new function

s(x) =
1
2
+

1
π

H
( x

2π

)
where

H(x) =
∞

∑
k=1

1
k

sin
( x

k

)
is the Hardy–Littlewood function [7,8,10,11,15] defined for x ∈ C. Authors showed that the functions
Φ(m)

m (x) are all completely monotonic on (0, ∞), m ∈ N if and only if s(x) ≥ 0 for x > 0. In their proof,
it was shown that, for each K > 0, there is xK > 0 such that H(xK) < −K. It implies Conjecture 1 is not
valid. In the paper [13] Matejíčka showed that the result of Alzer is valid for function xmβ(m)(x), where
β(x) is the Nielsen β function and he also showed that the functions xm−1ψ(m)(x) and xm−1β(m)(x) are
completely monotonic on (0, ∞) for each m ∈ N, m > 2. In the paper [12] it was shown that the function
xm
∣∣∣β(m)(x)

∣∣∣ is completely monotonic on (0, ∞) for m = 1, 2, 3. Recall that the Nielsen β function can be
defined as

β(x) =

∞∫
0

e−xt

1 + e−t dt =
1∫

0

tx−1

1 + t
dt =

∞

∑
m=0

(−1)m

m + x
=

=
1
2

(
ψ

(
1 + x

2

)
− ψ

( x
2

))
for x > 0.

We believe that the information mentioned and the ideas used in the paper can give some directions
for obtaining new results for the Nielsen β function.
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Definition 3 ([16]). A function f has exponential order α if there exist constants M > 0 and α such that, for some
t0 ≥ 0,

| f (t)| ≤ Meαt, t ≥ t0.

Definition 4 ([13]). We say that

α∗ = inf
{

α; there are constants M, t0 such that | f (t)| ≤ Meαt, t ≥ t0
}

is a lower exponential order of function f .

In the paper [13], the following theorem was proved.

Theorem 1 ([13]). Let m ∈ N and ϕ, ϕ′, ... ϕ(m) be continuous functions of lower exponential orders L∗0 , L∗1 , ...
L∗m, respectively, on (0, ∞). Let

L = max
{

L∗0 , L∗1 , ..., L∗m
}
≥ 0; F(x) =

∞∫
0

ϕ(t)e−xtdt ≥ 0 for x > L; ϕ(m)(t) ≥ 0 on (0, ∞). Let

p1 : lim
t→+∞

ϕ(k)(t)
∂m−1−k

∂tm−1−k

(
tne−xt) = 0

and

p2 : lim
t→0+

ϕ(k)(t)
∂m−1−k

∂tm−1−k

(
tne−xt) = 0

for x > L, n ∈ N, k = 0, ..., m− 1. Then, xmF(x) is a completely monotonic function on (L,+∞).

Remark 1 ([13]). We note that, if the conditions

lim
t→0+

ϕ(k)(t) = 0, lim
t→∞

ϕ(k)(t)e−xt = 0

are fulfilled for k = 0, ..., m− 1, and x > L where m ∈ N, then p1, p2 are also valid.

In the paper ([4], p. 110), Alzer and all posed the following open problem:

Conjecture 2 ([4]). Determine all (α, m) ∈ R+ ×N such that the function ∆α,m = xα|ψ(m)(x)| is completely
monotonic on (0, ∞).

Our goal is to find the solution of the Conjecture 2.

2. Results

Lemma 1. There is only one mψ ∈ N, mψ ≥ 16 such that xm | ψ(m)(x) | is completely monotonic on (0, ∞) for
m ≤ mψ, m ∈ N, and is not completely monotonic on (0, ∞) for m ≥ mψ + 1, m ∈ N.

Proof. In the paper [13], it was presented that tm | ψ(m)(t) | is completely monotonic for t > 0 if and only
if fm(t) > 0 for t > 0, where

fm(t) =
dm

dtm

(
tm

1− e−t

)
.
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Simple calculation gives

fm(t) =
dm−1

dtm−1

(
tm−1

1− e−t

)
+

dm−1

dtm−1

(
t

d
dt

(
tm−1

1− e−t

))
= 2

dm−1

dtm−1

(
tm−1

1− e−t

)
+

dm−2

dtm−2

(
t

d2

dt2

(
tm−1

1− e−t

))
Repeating the above procedure m− 1 times, we obtain

fm(t) = m
dm−1

dtm−1

(
tm−1

1− e−t

)
+ t

dm

dtm

(
tm−1

1− e−t

)
= m fm−1(t) + t f ′m−1(t) (1)

for t > 0 and m > 1, m ∈ N. Now, we show that, if fm(t) > 0 for t > 0 and m > 1, m ∈ N, then fm−1(t) > 0
for t > 0. Let m > 1, m ∈ N and fm(t) > 0 for t > 0. If fm−1(t0) ≤ 0 for some t0 > 0, then (1) implies
f ′m−1(t0) > 0, so there is 0 < t1 < t0 such that fm−1(t1) < 0. Put t∗ = inf{t1 > 0; such that fm−1(t1) < 0}.
Then, t∗ = 0 or t∗ > 0. If t∗ > 0, then we have again fm−1(t∗) ≤ 0 and f ′m−1(t

∗) > 0. Thus, there is
0 < t2 < t1 such that fm−1(t2) < 0. This is a contradiction with a definition of t∗. Thus, t∗ = 0 and
fm−1(t∗) ≤ 0.

In the paper ([4], p. 108), the following formula

xm

1− e−x = xm−1 +
xm

2
+

∞

∑
k=2

Bk
k!

xk+m−1 (2)

for 0 < x < 2π, where Bk are Bernoulli numbers, was presented.
This implies lim

x→0+
fm(x) = m!/2, so lim

x→0+
fm−1(x) = (m− 1)!/2. However, this is a contradiction

with fm−1(0+) ≤ 0 if m > 1.
We remind readers that Alzer and all [4] showed that there is m∗ ∈ N such that xm | ψ(m)(x) | is not

completely monotonic on (0, ∞) for all m ≥ m∗, so fm(x) > 0 is not valid for all x > 0 and each m ≥ m∗.
Put

mψ = inf{m ∈ N; such that fk(x) is not positive f or all x > 0, i f k ≥ m} − 1.

Clark and Ismail [6] proved that xm | ψ(m)(x) | is completely monotonic on (0, ∞) if m = 1, ..., 16.
Thus, mψ ≥ 16. It is easy to see that, if k > mψ, then xk | ψ(k)(x) | is not completely monotonic on (0, ∞)

and, if k ≤ mψ, then xk | ψ(k)(x) | is completely monotonic on (0, ∞) according to xmψ | ψ(mψ)(x) | is
completely monotonic on (0, ∞) and so fmψ(x) > 0 for all x > 0. This implies f j(x) > 0 on (0, ∞) for all
j < mψ. Thus, xj | ψ(j)(x) | is completely monotonic on (0, ∞) for j ≤ mψ, which completes our proof.

Lemma 2. Let m ∈ N, m > mψ, 0 < α ≤ 1. Let

ϕ(t) =
t∫

0

1
u1−α

(t− u)m

1− e−(t−u)
du

for t>0. Then,

(a) lim
t→0+

ϕ(k)(t) = 0 for k = 0, ..., m− 1,

(b) lim
t→+∞

ϕ(k)(t)e−xt = 0 for k = 0, ..., m− 1, x > 0.
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Proof. Case (a). Using lim
t→0+

tm/(1− e−t) = 0 for m ≥ 2 and integration by parts gives

ϕ(t) =
t∫

0

1
u1−α

(t− u)m

1− e−(t−u)
du =

1
α

t∫
0

uα d
dt

(
(t− u)m

1− e−(t−u)

)
du.

Applying the Formula (2) leads to

lim
x→0+

(
xm

1− e−x

)(k)
=


0 if 0 ≤ k ≤ m− 2
(m− 1)! if k = m− 1
m!
2

if k = m.
(3)

This implies that, for each m > mψ and each ε > 0, there is δm > 0 such that∣∣∣∣∣
(

xm

1− e−x

)(k)
∣∣∣∣∣ ≤ m!

2
+ ε (4)

for 0 < x < δm. Thus, for 0 < u ≤ t < δm, we have∣∣∣∣∣
(

(t− u)m

1− e−(t−u)

)(k)
∣∣∣∣∣ ≤ m!

2
+ ε.

Using mathematical induction leads to

ϕ(k)(t) =
1
α

t∫
0

uα dk+1

dtk+1

(
(t− u)m

1− e−(t−u)

)
du

for k = 0, ..., m− 2, t > 0,

ϕ(m−1)(t) =
1
α

tα(m− 1)! +
t∫

0

uα dm

dtm

(
(t− u)m

1− e−(t−u)

)
du

 .

If 0 < t < δm, then ∣∣∣ϕ(k)(t)
∣∣∣ ≤ 1

α
t1+α

(
m!
2

+ ε

)
for k = 0, ..., m− 2 and ∣∣∣ϕ(m−1)(t)

∣∣∣ ≤ 1
α

tα

(
(m− 1)! + t

(
m!
2

+ ε

))
.

Thus, lim
t→0+

ϕ(k)(t) = 0 for k = 0, ..., m− 1, 0 < α ≤ 1.

Case (b). Denote again

fm(s) =
dm

dsm

(
sm

1− es

)
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for s > 0 and m ∈ N, m > 2. It is obvious that

ϕ(m−1)(t) =
1
α

tα(m− 1)! +
t∫

0

uα fm(t− u)du

 =
1
α

tα(m− 1)! +
t∫

0

(t− s)α fm(s)ds

 .

Considering that fm(0) = m!/2, we obtain, for each ε > 0, the inequality

fm(s) ≤
m!
2

+ ε

is valid for 0 < s < δm. Thus,

ϕ(m−1)(t) =
1
α

tα(m− 1)! +
δm∫
0

(t− s)α fm(s)ds +
t∫

δm

(t− s)α fm(s)ds


if t > δm. Alzer and all presented ([4], p. 112) that

| fm(x)| < m!
e
−

x
2

1− e
−

x
2

(5)

for x > 0. It is easy to show that g(t) = e−t/(1− e−t) is a decreasing function on (0, ∞). Thus,

| fm(s)| < m!
e
−

δm

2

1− e
−

δm

2

for s > δm. This implies

∣∣∣ϕ(m−1)(t)
∣∣∣ ≤ 1

α

tα(m− 1)! +
1

1 + α

(
m!
2

+ ε

)(
tα+1 − (t− δm)

1+α
)
+

1
1 + α

(t− δm)
1+α m!e

−
δm

2

1− e
−

δm

2

 .

for t > δm. Thus, we observe that lim
t→+∞

ϕ(m−1)(t)e−xt = 0 for x > 0. Next, it is evident that

ϕ(k)(t) =
1
α

t∫
0

uα dk+1

dtk+1

(
(t− u)m

1− e−(t−u)

)
du

for k = 0, ..., m− 2 and t > 0. Putting s = t− u yields

ϕ(k)(t) =
1
α

t∫
0

(t− s)α dk+1

dsk+1

(
sm

1− e−s

)
ds.
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By mathematical induction, it is easy to show that

ϕ(m−k)(t) =
1

α(α + 1)...(α + k− 1)

(m− 1)!tα+k−1 +

t∫
0

(t− s)α+k−1 fm(s)ds


for k = 2, ..., m and t > 0. Using the Formula (3), the inequality (5) and the similar way of estimation for
ϕ(m−1)(t) yields to lim

t→+∞
ϕ(k)(t)e−xt = 0 for x > 0, k = 0, ..., m− 2. The proof is complete.

Theorem 2. Let m ∈ N such that m > mψ. Let

fm(t) =
(

tm

1− e−t

)(m)

for t > 0. Let

cm = inf

0 < c ≤ 1;
(m− 1)!

t1−c +

t∫
0

1
u1−c fm(t− u)du > 0 f or t > 0

 .

Then, the function ∆α,m(x) = xα | ψ(m)(x) | is completely monotonic on (0, ∞) if and only if 0 < α ≤ m− cm.

Proof. Using the well known formulas

1
xα

=
1

Γ(α)

∞∫
0

tα−1e−xtdt =
1

Γ(α)

∞∫
0

1
t1−α

e−xtdt

for 0 < α ≤ 1, x > 0 and

∣∣∣ψ(m)(x)
∣∣∣ = ∞∫

0

tm

1− e−t e−xtdt

for x > 0 reveals

x−α
∣∣∣ψ(m)(x)

∣∣∣ = 1
Γ(α)

∞∫
0

1
t1−α

e−xtdt
∞∫

0

tm

1− e−t e−xtdt.

Applying the convolution theorem leads to

x−α
∣∣∣ψ(m)(x)

∣∣∣ = 1
Γ(α)

∞∫
0

 t∫
0

1
(t− u)1−α

um

1− e−u du

 e−xtdt.

Thus,

xm−α
∣∣∣ψ(m)(x)

∣∣∣ = xm 1
Γ(α)

∞∫
0

 t∫
0

1
(t− u)1−α

um

1− e−u du

 e−xtdt =
1

Γ(α)
xm

t∫
0

ϕ(t)e−xtdt,



Mathematics 2020, 8, 1031 8 of 9

where

ϕ(t) =
t∫

0

1
(t− u)1−α

um

1− e−u du.

If the function ϕ(t) fulfills the conditions p1, p2 of the Theorem 1, then the function xm−α
∣∣∣ψ(m)(x)

∣∣∣ is

completely monotonic if and only if ϕ(m)(t) > 0 for t > 0. The conditions p1, p2 are fulfilled according to
Lemmas 1 and 2. The inequality ϕ(m)(t) > 0 for t > 0 is equivalent to

γ(t) =
dm

dtm

t∫
0

1
u1−α

(t− u)m

1− e−(t−u)
du > 0.

Using the Formula (2) gives

γ(t) =
d
dt

t∫
0

1
u1−α

dm−1

dtm−1

(
(t− u)m

1− e−(t−u)

)
du

=
(m− 1)!

t1−α
+

t∫
0

1
u1−α

dm

dtm

(
(t− u)m

1− e−(t−u)

)
du

=
(m− 1)!

t1−α
+

t∫
0

1
u1−α

fm(t− u)du > 0.

This completes the proof.

3. Materials and Methods

In this paper, we used methods of mathematical analysis.

4. Conclusions

In this paper, we found conditions for m ∈ N and α ∈ R+ such that the function Υm(x) = xα |
β(m)(x) | is completely monotonic on (0, ∞).
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