
mathematics

Article

On the Lyapunov Exponent of Monotone
Boolean Networks †

Ilya Shmulevich

Institute for Systems Biology, Seattle, WA 98103, USA; ilya.shmulevich@isbscience.org
† Dedicated to the memory of A. D. Korshunov (1936–2019).

Received: 8 June 2020; Accepted: 23 June 2020; Published: date
����������
�������

Abstract: Boolean networks are discrete dynamical systems comprised of coupled Boolean functions.
An important parameter that characterizes such systems is the Lyapunov exponent, which measures
the state stability of the system to small perturbations. We consider networks comprised of monotone
Boolean functions and derive asymptotic formulas for the Lyapunov exponent of almost all monotone
Boolean networks. The formulas are different depending on whether the number of variables of
the constituent Boolean functions, or equivalently, the connectivity of the Boolean network, is even
or odd.
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1. Introduction

Boolean networks are complex dynamical systems that were proposed as models of genetic
regulatory networks [1,2] and have since then been used to model a range of complex phenomena.
Random Boolean networks (RBNs) are ensembles of randomly generated Boolean networks with
random topology and random updating functions. It is known that RBNs undergo a phase transition.
In the thermodynamic limit, meaning that the number of nodes goes to infinity, the phase transition
curve for RBNs is given by λ = log(2Kp (1− p)) = 0, where p is the so-called bias of the random
Boolean functions, which is the probability that the function takes on the value 1, and K is the
connectivity of the network, or equivalently, the number of inputs to each Boolean function [3].

Under a synchronous updating scheme, whereby all Boolean functions get updated
simultaneously at each time step, this phase transition curve separates two qualitatively distinct
dynamical regimes. Below the curve, when λ < 0, infinitesimally small perturbations to the state of
the network decay, while above the curve, when λ > 0, small perturbations spread throughout the
network. Thus, the two regimes are often referred to as ordered and chaotic regimes, respectively.
The quantity λ coincides with the Lyapunov exponent [4,5]. Networks that are known to operate in
the dynamically critical regime, meaning that their Lyapunov exponent is 0, are widely known to
have many optimal properties and are thought to be a hallmark of living systems [2,6]. In the context
of Boolean networks, these properties include: the ability to balance resilience to random mutations
with emergence of new phenotypes for adapting to new environmental challenges [7], maximization
of the associative memory of the network [8], maximization of the diversity in structure-dynamics
relationships [9], maximization of communication among nodes [10], maximization of so-called set
complexity of the dynamics of the network [11], emergence of diversity in a spatial arrangement of
Boolean networks representing cells in a tissue [12], and optimum network learning and generalization
when the Boolean network has input and output signals [13,14].

We consider monotone Boolean networks in which all updating rules belong to the class of
monotone Boolean functions. This class of functions is one of the most widely studied classes of
Boolean functions [15]. Monotone Boolean networks have been primarily studied in the asynchronous
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updating scheme setting, whereby only one node is updated at a time. Some work has focused
on long-term dynamics, such as fixed points and limit cycles [16–18]. It is also known that certain
classes of fully asynchronous Boolean networks can be simulated by monotone Boolean networks [19].
However, in the context of the Lyapunov exponent, asynchronous updating schemes appear to be
less relevant than synchronous updating schemes [20]. Our main results are asymptotic formulas,
depending on whether n is even or odd, for the so-called expected average sensitivity of a monotone
Boolean function, first given in [21]. In light of the results in [5], the logarithm of the expected average
sensitivities, ŝ f , in Theorems 4 and 5, can be directly interpreted as the Lyapunov exponent λ.

In the remainder, we will use n, rather than the conventional K in the Boolean network literature,
to denote the number of variables of the Boolean functions. Our results concerning almost all monotone
Boolean networks can be understood in a probabilistic manner, meaning that the asymptotic formulas
are valid with probability almost 1 if a monotone Boolean network is chosen at random from the
set of all such networks. As the formulas are asymptotic, they should not be interpreted for small n.
At the same time, they are quite accurate even for n = 7, which follows from the results originally
published in [22]. Absent additional constraints on the Boolean functions, such as the classes of
canalizing functions [5,23–25] or Post classes [26], random monotone Boolean networks quickly enter
the disordered regime relative to n, but slower than RBNs. For example, for n = 4, monotone Boolean
networks have the expected average sensitivity ŝ f = 1.125, which is already slightly in the chaotic
regime (λ > 0). For n = 20, the expected average sensitivity is s f = 3.2, whereas for random Boolean
networks, it is s f = 10 (we can also see this if we plug n = 20 and p = 1/2 into 2np (1− p)).

2. Definitions and Preliminaries

Let f : {0, 1}n → {0, 1} be a Boolean function of n variables x1, . . . , xn. Let

∂ f (x̃)/∂xj = f (x̃(j,0))⊕ f (x̃(j,1)) (1)

be the partial derivative of f with respect to xj, where ⊕ is addition modulo 2 (exclusive OR) and
x̃(j,k) =

(
x1, . . . , xj−1, k, xj+1, . . . xn

)
, k = 0, 1. Clearly, the partial derivative is a Boolean function itself

that specifies whether a change in the jth input causes a change in the original function f . The activity
of variable xj in function f can be defined as

α
f
j =

1
2n ∑

x̃∈{0,1}n
∂ f (x̃) /∂xj. (2)

Note that although the vector x̃ consists of n components (variables), the jth variable is fictitious in
∂ f (x̃)/∂xj. A variable xj is fictitious in f if f (x̃(j,0)) = f (x̃(j,1)) for all x̃(j,0) and x̃(j,1). For a n-variable

Boolean function f , we can form its activity vector α̃ f = [α
f
1 , . . . , α

f
n]. It is easy to see that 0 ≤ α

f
j ≤ 1,

for any j = 1, . . . , n. In fact, we can consider α
f
j to be a probability that toggling the jth input bit changes

the function value, when the input vectors x̃ are distributed uniformly over {0, 1}n. Since we’re in the
binary setting, the activity is also the expectation of the partial derivative with respect to the uniform
distribution: α

f
j = E[∂ f (x̃)/∂xj]. The activity of a fictitious variable xj is α

f
j = 0. Under an arbitrary

distribution, α
f
j is referred to as the influence of variable xj on the function f [27]. The influence of

variables was used in the context of genetic regulatory network modeling in [28].
Another important quantity is the sensitivity of a Boolean function f , which measures how

sensitive the output of the function is to changes in the inputs. The sensitivity s f (x̃) of f on vector x̃ is
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defined as the number of Hamming neighbors of x̃ on which the function value is different than on x̃
(two vectors are Hamming neighbors if they differ in only one component). That is,

s f (x̃) = |{i ∈ {1, . . . , n} : f (x̃⊕ ei) 6= f (x̃)}| (3)

=
n

∑
i=1

χ [ f (x̃⊕ ei) 6= f (x̃)] ,

where ei is the unit vector with 1 in the ith position and 0s everywhere else and χ [A] is an indicator
function that is equal to 1 if and only if A is true. The average sensitivity s f is defined by taking the
expectation of s f (x̃) with respect to the distribution of x̃. It is easy to see that under the uniform
distribution, the average sensitivity is equal to the sum of the activities:

s f = E
[
s f (x̃)

]
=

n

∑
i=1

E [χ [ f (x̃⊕ ei) 6= f (x̃)]] (4)

=
n

∑
i=1

α
f
i .

Therefore, s f is a number between 0 and n.
The average sensitivity has been studied intensively by a number of authors [5,29–37].

For example, it was shown by Friedgut [33] that if the average sensitivity of f is k then f can be
approximated by a function depending on only ck variables where c is a constant depending only
on the accuracy of the approximation, but not on n. Shi [34] showed that the average sensitivity can
serve as a lower bound of quantum query complexity. Average sensitivity was used to characterize the
noise sensitivity of monotone Boolean functions by Mossel and O’Donnell [35]. Zhang [36] gives lower
and upper bounds of the average sensitivity of a monotone Boolean function. The upper bound is
asymptotic to

√
n, which has been shown by Bshouty and Tamon [37]. Shmulevich and Kauffman [5]

have shown that the average sensitivity determines the critical phase transition curve in random
Boolean networks and thus coincides with the Lyapunov exponent as λ = log s f . We now turn to
monotone Boolean functions.

2.1. Monotone Boolean Functions

Let α̃ = (α1, · · · , αn) and β̃ = (β1, · · · , βn) be two different n-element binary vectors. We say that
α̃ precedes β̃, denoted as α̃ ≺ β̃, if αi ≤ βi for every i, 1 ≤ i ≤ n. If α̃ ⊀ β̃ and β̃ ⊀ α̃, then α̃ and β̃ are
said to be incomparable. Relative to the predicate ≺, the set of all binary vectors of a given length is
a partially ordered set. A Boolean function f (x1, · · · , xn) is called monotone if for any two vectors α̃

and β̃ such that α̃ ≺ β̃, we have f (α̃) ≤ f (β̃).
We denote by M (n) the set of all monotone Boolean functions of n variables. Let En denote

the Boolean n-cube, that is, a graph with 2n vertices each of which is labeled by an n-element binary
vector. Two vertices α̃ = (α1, · · · , αn) and β̃ = (β1, · · · , βn) are connected by an edge if and only if the
Hamming distance ρ(α̃, β̃) = ∑n

i=1 (αi ⊕ βi) = 1. The set of those vectors from En in which there are
exactly k units, 0 ≤ k ≤ n, is called the kth layer of En and is denoted by En,k.

A vector α̃ ∈ En is called a minimal one or minimal unit of monotone Boolean function
f (x1, . . . , xn) if f (α̃) = 1 and f (β̃) = 0 for any β̃ ≺ α̃. A vector α̃ ∈ En is called an maximal
zero of monotone Boolean function f (x1, . . . , xn) if f (α̃) = 0 and f (β̃) = 1 for any β̃ � α̃. The minimal
ones correspond directly to the terms in the minimal disjunctive normal form (DNF) representation of
the monotone Boolean function. In [38], asymptotic formulae for the number of monotone Boolean
functions of n variables with a most probable number of minimal ones were derived, confirming the
conjecture in [39] that the number of monotone Boolean functions relative to the number of minimal
ones asymptotically follows a normal distribution, with the assumption of all monotone Boolean
functions being equiprobable.
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2.2. The Structure of Special Monotone Boolean Functions

We now briefly review some known results concerning the structure of so-called special monotone
Boolean functions. Let M0 (n) denote the set of functions in M (n) possessing the following properties.
If n is even, then M0 (n) contains only functions f ∈ M (n) such that all minimal ones of f are situated
in En,n/2−1, En,n/2, and En,n/2+1 while function f is equal to 1 on all vectors in En,n/2+2, · · · , En,n.
For odd n, M0 (n) contains only functions f ∈ M (n) such that all minimal ones of f are situated
in either En,(n−3)/2, En,(n−1)/2, and En,(n+1)/2 or En,(n−1)/2, En,(n+1)/2, and En,(n+3)/2. In the first
case, f (α̃) = 1 for all α̃ in En,(n+3)/2, · · · , En,n while in the second case, f (α̃) = 1 for all α̃ in
En,(n+5)/2, · · · , En,n.

Then, as shown in [22],

lim
n→∞

|M0 (n)|
|M (n)| = 1, (5)

which we denote by |M0 (n)| ∼ |M (n)| . In [40], asymptotic formulae for the number of special
functions from M0 (n) were established and subsequently used to characterize statistical properties of
a popular class of nonlinear digital filters called stack filters [41]. The set of these special functions
is denoted by M1

0 (n) and, depending on whether n is even or odd, is defined differently. While we
shall omit the rather lengthy definitions of special functions, the result from [40] that will be important
to us is that

∣∣M1
0 (n)

∣∣ ∼ |M (n)|. In other words, almost all monotone Boolean functions are special.
We shall also need the following results.

Let us start with the case of even n. Let

r0 = r0 (n) = v0 = v0 (n) =
⌊(

n
n/2− 1

)
2−n/2−1

⌋
, (6)

z0 =

⌊
1
2

(
n

n/2

)⌋
.

Let M1
0 (n, r, z, v) denote the set of functions f ∈ M1

0 (n) such that f has r minimal ones in En,n/2−1,
v maximal zeros in En,n/2+1, and f is equal to 1 on z vertices in En,n/2. In [40], the following result
was proved.

Theorem 1. Let n be even,
r = r0 + k, z = z0 + u, v = v0 + t, (7)

where r0, z0, v0 are defined in (6). Then, for any k, t, and u such that |k| ≤ n2n/4, |t| ≤ n2n/4, |u| ≤ n2n/2,

∣∣∣M1
0 (n, r, z, v)

∣∣∣ ∼
√√√√ 2n+1

π3( n
n/2)

3 |M (n)|

× exp

{
− 2n/2

( n
n/2−1)

(
k2 + t2

)
− 2u2

( n
n/2)

}
.

For any odd n, we use the parameters r1, z1, v1 which are given by

r1 = r1 (n) =
⌊(

n
(n− 3) /2

)
2−(n+3)/2

⌋
, (8)

v1 = v1 (n) =
⌊(

n
(n + 1) /2

)
2−(n+1)/2

⌋
,

z1 =

⌊
1
2

((
n

(n− 1) /2

)
+ r1 (n + 3) /2− v1 (n + 1) /2

)⌋
(9)
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and parameters r2, z2, v2, which are given by

r2 = r2 (n) =
⌊(

n
(n− 1) /2

)
2−(n+1)/2

⌋
, (10)

v2 = v2 (n) =
⌊(

n
(n + 3) /2

)
2−(n+3)/2

⌋
,

z2 =

⌊
1
2

((
n

(n + 1) /2

)
+ r2 (n− 1) /2− v2 (n + 3) /2

)⌋
. (11)

Let M1
0,1 (n, r, z, v) denote the set of functions f ∈ M1

0 (n) such that f has r minimal ones in
En,(n−3)/2, v maximal zeros in En,(n+1)/2, and f is equal to 1 on z vertices in En,(n−1)/2. Similarly,
let M1

0,2 (n, r, z, v) denote the set of functions f ∈ M1
0 (n) such that f has r minimal ones in En,(n−1)/2,

v maximal zeros in En,(n+3)/2, and f is equal to 1 on z vertices in En,(n+1)/2. Then, in [40], the following
two Theorems were proved.

Theorem 2. Let n be odd,
r = r1 + k, z = z1 + u, v = v1 + t, (12)

where r1, z1, v1 are defined in (8) and (9). Then, for any k, t, and u such that |k| ≤ n2n/4, |t| ≤ n2n/4,
|u| ≤ n2n/2,

∣∣∣M1
0,1 (n, r, z, v)

∣∣∣ ∼ 1
2

√√√√ 2n+1

π3( n
(n−1)/2)

3 |M (n)|

× exp

{
− 2(n+1)/2

( n
(n−3)/2)

k2 − 2(n−1)/2

( n
(n+1)/2)

t2 − 2u2

( n
(n−1)/2)

}
.

Theorem 3. Let n be odd,
r = r2 + k, z = z2 + u, v = v2 + t, (13)

where r2, z2, v2 are defined in (10) and (11). Then, for any k, t, and u such that |k| ≤ n2n/4, |t| ≤ n2n/4,
|u| ≤ n2n/2,

∣∣∣M1
0,2 (n, r, z, v)

∣∣∣ ∼ 1
2

√√√√ 2n+1

π3( n
(n−1)/2)

3 |M (n)|

× exp

{
− 2(n−1)/2

( n
(n−1)/2)

k2 − 2(n+1)/2

( n
(n+3)/2)

t2 − 2u2

( n
(n+1)/2)

}
.

Prior to presenting the main results, we summarize some of the notation in Table 1.

Table 1. Table of notation.

f Boolean function
n number of variables of f
∂ f (x̃)/∂xj partial derivative of f with respect to xj
x̃ = (x1, . . . , xn) vector of n binary values
α

f
j activity of variable xj

s f average sensitivity of a Boolean function f
ρ(α̃, β̃) Hamming distance between α̃ and β̃
M (n) set of monotone Boolean functions of n variables
M0 (n) set of special monotone Boolean functions of n variables
En Boolean n-cube or {0, 1}n with vertices x̃
En,k {x̃ ∈ En|ρ(x̃, 0̃) = k} or the kth layer of En
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3. Main Results

Since |M0 (n)| ∼ |M (n)| , we can focus our attention on functions in M0 (n) and derive the
average sensitivity of a typical function from M0 (n) . By ‘typical’ we mean the most probable Boolean
function relative to the parameters k, t, and u in Theorems 1–3. It can easily be seen that the most
probable special Boolean functions will have k = t = u = 0. This will imply, to take the n-even case as
an example, that the most probable function f has r0 minimal ones in En,n/2−1, v0 maximal zeros in
En,n/2+1, and f is equal to 1 on z0 vertices in En,n/2, where r0, v0, and z0 are given in (6). Our proofs
are thus based on the derivation of the average sensitivity of such a function. Whenever we make
probabilistic assertions using words such as ‘most probable’ or ‘typical’ or talk about expectations,
we are implicitly endowing the set M1

0 (n, r, z, v) with a uniform probability distribution for fixed
parameters n, r, z, v. This should not be confused with the Gaussian-like distribution of M1

0 (n, r, z, v)
relative to its parameters n, r, z, v [38]. We will also omit the floor notation b·c as the results
are asymptotic.

Theorem 4. Let n be even and let f ∈ M1
0 (n) be a typical monotone Boolean function. Then, the expected

average sensitivity ŝ f = E[s f ] of f is

ŝ f ∼ n2−n
(

n
n/2− 1

)(
2−n/2−1 + 1

)
.

Proof. We will proceed by first focusing on determining the activity of an arbitrary variable xj of
a typical function f . By simple symmetry arguments, if we were to sample randomly from the set
M (n) of monotone Boolean functions, the expected activities would be equal for all the variables.
It will follow by (4) that the expected average sensitivity will be equal to n multiplied by the expected
activity. Since the function f is such that its minimal ones are situated in En,n/2−1, En,n/2, and En,n/2+1

while it is equal to 1 on all vectors in En,n/2+2, · · · , En,n, the only non-trivial behavior occurs between
the layers En,n/2−2 and En,n/2+2.

Let us consider the minimal ones, and hence all of the ones, on En,n/2−1. Since we are considering
variable xj, half of these minimal ones will have xj = 0 (i.e., x̃(j,0)) and the other half will have
xj = 1 (i.e., x̃(j,1)). It is easy to see that if x̃(j,0) ∈ En,n/2−1 is a minimal one, then by monotonicity,

f
(

x̃(j,1)
)
= 1. Consequently, the Hamming neighbors x̃(j,0) and x̃(j,1) contribute nothing to the sum

in (2). On the other hand, if x̃(j,1) ∈ En,n/2−1 is a minimal one, then ∂ f (x̃) /∂xj = 1, since f (x̃) = 0 for
all x̃ ∈ En,n/2−2. The most probable number of such minimal ones on En,n/2−1 contributing to the sum
in (2) is thus equal to

1
2

(
n

n/2− 1

)
2−n/2−1. (14)

The number of zeros on En,n/2−1 is equal to(
n

n/2− 1

)
− r0 =

(
n

n/2− 1

)(
1− 2−n/2−1

)
. (15)

As above, half of these will have xj = 0 and half will have xj = 1. We need not consider vectors
x̃(j,1) ∈ En,n/2−1, since f (x̃) = 0 for all x̃ ∈ En,n/2−2. However, we should consider the number of ones
situated on the middle layer En,n/2. The middle layer contains

1
2

(
n

n/2

)
(16)
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ones and an equal number of zeros. Thus, half of the vectors x̃(j,1) ∈ En,n/2 will be ones and the
other half will be zeros. In total, the number of vectors x̃ ∈ En,n/2−1 such that f (x̃) = 0, xj = 0,

and f
(

x̃(j,1)
)
= 1, is equal to

1
4

(
n

n/2− 1

)(
1− 2−n/2−1

)
. (17)

We have now examined all partial derivatives above and below the layer En,n/2−1.
Let us now jump to layer En,n/2+1, as it will be similar by duality considerations. The number of

maximal zeros on that layer is equal to v0 = r0. Half of these will have xj = 1 and thus ∂ f (x̃) /∂xj = 0
due to monotonicity. The other half will have xj = 0 and since f (x̃) = 1 for all x̃ ∈ En,n/2+2, the same
total as in (14) will result. Similarly, the number of ones on En,n/2+1 is the same as in (15). We are only
concerned with x̃(j,1) ∈ En,n/2+1, such that f

(
x̃(j,1)

)
= 1 and f

(
x̃(j,0)

)
= 0. As above, because the

middle layer contains the same number of ones and zeros, the total number of such pairs of vectors is
the same as in (17). Thus, having accounted for all partial derivatives above and below En,n/2+1 and
having convinced ourselves that their contribution to the overall activity of variable xj is the same as
in (14) and (17), we can multiply (14) and (17) by 2 and add them together to obtain(

n
n/2− 1

)
2−n/2−1 +

1
2

(
n

n/2− 1

)(
1− 2−n/2−1

)
(18)

=
1
2

(
n

n/2− 1

)(
2−n/2−1 + 1

)
(19)

Since there are 2−n+1 Hamming neighbors x̃(j,0) ≺ x̃(j,1) and since the average sensitivity is n
times the activity, we must multiply (19) by n2−n+1, resulting in the statement of the theorem.

The case of odd n is somewhat more involved because there is no “middle” layer En,n/2.
Instead, typical functions break up into two sets: M1

0,1 (n, r, z, v) and M1
0,2 (n, r, z, v) . In the first case,

all minimal ones are on layers En,(n−3)/2, En,(n−1)/2, and En,(n+1)/2 while in the second case, all minimal
ones are situated on En,(n−1)/2, En,(n+1)/2, and En,(n+3)/2. Under random sampling, these two cases
will occur with equal probabilities. As we shall see, the results will be different for each case.
Thus, the expected average sensitivity will be the average of the the expected average sensitivities
corresponding to these two cases.

Theorem 5. Let n be odd and let f ∈ M1
0 (n) be a typical monotone Boolean function. Then, the expected

average sensitivity ŝ f = E[s f ] of f is

ŝ f ∼ 1
2

(
ŝ f

1 + ŝ f
2

)
,

where ŝ f
1 and ŝ f

2 are given in (28) and (37), respectively.

Proof. Let us first address the set M1
0,1 (n, r, z, v) . As in Theorem 4, we only need to concern ourselves

with four cases. These are:

1. x̃ ∈ En,(n−3)/2, f (x̃) = 1, xj = 1
2. x̃ ∈ En,(n−3)/2, f (x̃) = 0, xj = 0
3. x̃ ∈ En,(n+1)/2, f (x̃) = 1, xj = 1
4. x̃ ∈ En,(n+1)/2, f (x̃) = 0, xj = 0

All other situations, such as x̃ ∈ En,(n−3)/2, f (x̃) = 1, xj = 0, will result in the partial derivatives
being zero due to monotonicity of f , hence will make no contribution to the activity of variable xj.
There are

1
2

(
n

(n− 3) /2

)
2−(n+3)/2 (20)
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minimal ones on En,(n−3)/2 such that xj = 1. At the same time, there are

1
2

(
n

(n− 3) /2

)(
1− 2−(n+3)/2

)
(21)

zeros on En,(n−3)/2 such that xj = 0. Unlike in the n-even case, where the middle layer contains an equal
number of ones and zeros, the number of ones and zeros on En,(n−1)/2 is not equal. The number of
ones on En,(n−1)/2 is given in (9). Thus, if x̃(j,0) is a zero on En,(n−3)/2, then the probability that
f
(

x̃(j,1)
)
= 1 is

(
n

(n− 1) /2

)−1 (1
2

((
n

(n− 1) /2

)
+

(
n

(n− 3) /2

)
2−(n+3)/2 (n + 3) /2

−
(

n
(n + 1) /2

)
2−(n+1)/2 (n + 1) /2

))
(22)

where we have simply divided the number of ones on En,(n−1)/2 by the total number of vectors on that
layer. Thus, multiplying (21) by (22) and adding to (20) gives us the total contribution to the activity of
variable xj from cases 1 and 2 above, which is equal to

1
2

(
n

(n− 3) /2

)
2−(n+3)/2 +

1
2

(
n

(n− 3) /2

)(
1− 2−(n+3)/2

)
×(

n
(n− 1) /2

)−1 (1
2

((
n

(n− 1) /2

)
+

(
n

(n− 3) /2

)
2−(n+3)/2 (n + 3) /2

−
(

n
(n + 1) /2

)
2−(n+1)/2 (n + 1) /2

))
(23)

Cases 3 and 4 are similar. The number of (maximal) zeros on En,(n+1)/2 for which xj = 0 is
equal to

1
2

(
n

(n + 1) /2

)
2−(n+1)/2 (24)

and the number of ones on En,(n+1)/2 for which xj = 1 is equal to

1
2

(
n

(n + 1) /2

)(
1− 2−(n+1)/2

)
. (25)

The proportion of zeros on En,(n−1)/2 is(
1−

(
n

(n− 1) /2

)−1 (1
2

((
n

(n− 1) /2

)
+(

n
(n− 3) /2

)
2−(n+3)/2 (n + 3) /2−

(
n

(n + 1) /2

)
2−(n+1)/2 (n + 1) /2

)))
(26)
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Thus, as before, multiplying (25) by (26) and adding to (24), we get the total contribution to the
activity from above and below the layer En,(n+1)/2 (cases 3 and 4), resulting in

1
2

(
n

(n + 1) /2

)
2−(n+1)/2 +

1
2

(
n

(n + 1) /2

)(
1− 2−(n+1)/2

)
×(

1−
(

n
(n− 1) /2

)−1 (1
2

((
n

(n− 1) /2

)
+(

n
(n− 3) /2

)
2−(n+3)/2 (n + 3) /2−

(
n

(n + 1) /2

)
2−(n+1)/2 (n + 1) /2

)))
(27)

Finally, adding (23) and (27) and then multiplying by n2−n+1 as in Theorem 4, we obtain the
expected average sensitivity ŝ f

1 of a typical function from M1
0,1 (n, r, z, v):

ŝ f
1 ∼ n2−n+1

(
1
2

(
n

(n− 3) /2

)
2−(n+3)/2 +

1
2

(
n

(n− 3) /2

)(
1− 2−(n+3)/2

)
×(

n
(n− 1) /2

)−1 (1
2

((
n

(n− 1) /2

)
+

(
n

(n− 3) /2

)
2−(n+3)/2 (n + 3) /2

−
(

n
(n + 1) /2

)
2−(n+1)/2 (n + 1) /2

))
+

1
2

(
n

(n + 1) /2

)
2−(n+1)/2 +

1
2

(
n

(n + 1) /2

)(
1− 2−(n+1)/2

)
×(

1−
(

n
(n− 1) /2

)−1 (1
2

((
n

(n− 1) /2

)
+(

n
(n− 3) /2

)
2−(n+3)/2 (n + 3) /2−

(
n

(n + 1) /2

)
2−(n+1)/2 (n + 1) /2

))))
. (28)

We now proceed to derive the expected average sensitivity ŝ f
2 of a typical function from

M1
0,2 (n, r, z, v) , following the same steps.

Again, we only need to concern ourselves with four cases:

1. x̃ ∈ En,(n−1)/2, f (x̃) = 1, xj = 1
2. x̃ ∈ En,(n−1)/2, f (x̃) = 0, xj = 0
3. x̃ ∈ En,(n+3)/2, f (x̃) = 1, xj = 1
4. x̃ ∈ En,(n+3)/2, f (x̃) = 0, xj = 0

There are
1
2

(
n

(n− 1) /2

)
2−(n+1)/2 (29)

minimal ones on En,(n−1)/2 such that xj = 1. At the same time, there are

1
2

(
n

(n− 1) /2

)(
1− 2−(n+1)/2

)
(30)
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zeros on En,(n−1)/2 such that xj = 0. As for M1
0,1 (n, r, z, v), the number of ones and zeros on En,(n+1)/2

is not equal. The number of ones on En,(n+1)/2 is given in (11). Thus, if x̃(j,0) is a zero on En,(n−1)/2,
then the probability that f

(
x̃(j,1)

)
= 1 is

(
n

(n + 1) /2

)−1 (1
2

((
n

(n + 1) /2

)
+

(
n

(n− 1) /2

)
2−(n+1)/2 (n− 1) /2

−
(

n
(n + 3) /2

)
2−(n+3)/2 (n + 3) /2

))
(31)

where we have simply divided the number of ones on En,(n+1)/2 by the total number of vectors on that
layer. Thus, multiplying (30) by (31) and adding to (29) gives us the total contribution to the activity of
variable xj from cases 1 and 2 above, which is equal to

1
2

(
n

(n− 1) /2

)
2−(n+1)/2 +

1
2

(
n

(n− 1) /2

)(
1− 2−(n+1)/2

)
×(

n
(n + 1) /2

)−1 (1
2

((
n

(n + 1) /2

)
+

(
n

(n− 1) /2

)
2−(n+1)/2 (n− 1) /2

−
(

n
(n + 3) /2

)
2−(n+3)/2 (n + 3) /2

))
(32)

Cases 3 and 4 are similar. The number of (maximal) zeros on En,(n+3)/2 for which xj = 0 is
equal to

1
2

(
n

(n + 3) /2

)
2−(n+3)/2 (33)

and the number of ones on En,(n+3)/2 for which xj = 1 is equal to

1
2

(
n

(n + 3) /2

)(
1− 2−(n+3)/2

)
. (34)

The proportion of zeros on En,(n+1)/2 is(
1−

(
n

(n + 1) /2

)−1 (1
2

((
n

(n + 1) /2

)
+(

n
(n− 1) /2

)
2−(n+1)/2 (n− 1) /2−

(
n

(n + 3) /2

)
2−(n+3)/2 (n + 3) /2

)))
(35)

Thus, as before, multiplying (34) by (35) and adding to (33), we get the total contribution to the activity
from above and below the layer En,(n+3)/2 (cases 3 and 4), resulting in

1
2

(
n

(n + 3) /2

)
2−(n+3)/2 +

1
2

(
n

(n + 3) /2

)(
1− 2−(n+3)/2

)
×(

1−
(

n
(n + 1) /2

)−1 (1
2

((
n

(n + 1) /2

)
+(

n
(n− 1) /2

)
2−(n+1)/2 (n− 1) /2−

(
n

(n + 3) /2

)
2−(n+3)/2 (n + 3) /2

)))
(36)
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Finally, adding (32) and (36) and then multiplying by n2−n+1 as in Theorem 4, we obtain the
expected average sensitivity ŝ f

2 of a typical function from M1
0,2 (n, r, z, v):

ŝ f
2 ∼ n2−n+1

(
1
2

(
n

(n− 1) /2

)
2−(n+1)/2 +

1
2

(
n

(n− 1) /2

)(
1− 2−(n+1)/2

)
×(

n
(n + 1) /2

)−1 (1
2

((
n

(n + 1) /2

)
+

(
n

(n− 1) /2

)
2−(n+1)/2 (n− 1) /2

−
(

n
(n + 3) /2

)
2−(n+3)/2 (n + 3) /2

))
+

1
2

(
n

(n + 3) /2

)
2−(n+3)/2 +

1
2

(
n

(n + 3) /2

)(
1− 2−(n+3)/2

)
×(

1−
(

n
(n + 1) /2

)−1 (1
2

((
n

(n + 1) /2

)
+(

n
(n− 1) /2

)
2−(n+1)/2 (n− 1) /2−

(
n

(n + 3) /2

)
2−(n+3)/2 (n + 3) /2

))))
. (37)

Given that a function is equally likely to be picked from M1
0,1 (n, r, z, v) as from M1

0,2 (n, r, z, v) ,
the expected average sensitivity is the average of Equations (28) and (37).
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