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Abstract: This research work presents results obtained from the simulation of natural convection
inside a concentric hexagonal annulus by using the lattice Boltzmann method (LBM). The fluid flow
(pressure and velocity fields) inside the annulus is evaluated by LBM and a finite difference method
(FDM) is used to get the temperature filed. The isothermal and no-slip boundary conditions (BC)
on the hexagonal edges are treated with a smooth profile method (SPM). At first, for validating the
present simulation technique, a standard benchmarking problem of natural convection inside a cold
square cavity with a hot circular cylinder is simulated. Later, natural convection simulations inside
the hexagonal annulus are carried out for different values of the aspect ratio, AR (ratio of the inner
and outer hexagon sizes), and the Rayleigh number, Ra. The simulation results are presented in terms
of isotherms (temperature contours), streamlines, temperature, and velocity distributions inside the
annulus. The results show that the fluid flow intensity and the size and number of vortex pairs formed
inside the annulus strongly depend on AR and Ra values. Based on the concentric isotherms and weak
fluid flow intensity at the low Ra, it is observed that the heat transfer inside the annulus is dominated
by the conduction mode. However, multiple circulation zones and distorted isotherms are observed
at the high Ra due to the strong convective flow. To further access the accuracy and robustness
of the present scheme, the present simulation results are compared with the results given by the
commercial software, ANSYS-Fluent®. For all combinations of AR and Ra values, the simulation
results of streamlines and isotherms patterns, and temperature and velocity distributions inside the
annulus are in very good agreement with those of the Fluent software.

Keywords: lattice Boltzmann method; smoothed profile method; hybrid method; natural convection
simulation; concentric hexagonal annulus

1. Introduction

Natural convection heat transfer in an annular space between two concentric cylinders (also known
as concentric annuli) is one of the most studied problems in the field of heat transfer. This fundamental
problem has attracted many researchers because of its significance in many engineering applications
such as the design of heat exchanger devices, solar energy collectors, cooling of electric power cables,
nuclear and chemical reactors, food processing devices, aircraft cabin insulation, etc. [1,2]. For early
research works of theoretical and/or experimental investigations on natural convection in an annular
space between cold outer and hot inner cylinders, one can find the literature [1–8]. Studying the
behavior of natural convection flow in an annulus with irregular geometries (other than the square or
rectangular such as circular, elliptical, triangular, and hexagonal) by using the numerical simulations
is highly challenging due to complex irregular boundaries. The irregular boundary problems are
generally treated with unstructured (body-fitted) grid methods, also known as conforming-mesh
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methods, which are very complicated and are computationally intensive. In the past two decades,
many researchers have paid attention to develop non-conforming-mesh methods, which use a fixed
Cartesian grid to simulate the fluid flow in complex geometries. Some of those numerical methods are
immersed boundary method (IBM) [9], distributed Lagrange multiplier method or fictitious domain
method [10], and smoothed profile method (SPM) [11–13].

In the past three decades, the lattice Boltzmann method (LBM) has evolved as a powerful
computational technique for solving fluid flow and heat transfer problems. In LBM, one gets the
solution for the particle density distribution functions (PDF) (by solving Boltzmann kinetic equation
on a discrete lattice mesh) instead of directly solving the pressure and velocity fields. The macroscopic
variables (such as pressure, velocity, and temperature) are obtained by calculating the hydrodynamic
moments of PDF [14]. Because of its many advantages [15] compared to the classical Navier–Stokes
equations solvers, LBM has been successfully used to simulate various Multiphysics problems such as
multiphase flows [15–17], magnetohydrodynamic (MHD) flows [18,19], micro- and nano-flows [20–22]
and fluid-solid interactions [13,23–26]. LBM has also been successfully implemented to predict
the behavior of the fluid flow due to natural convection in complex geometries [27–37]. In the
above-mentioned research works on natural convection, the following techniques have been used to
handle the no-slip and constant temperature BC on complex irregular surfaces: the bounce back (BB)
scheme [27–32], IBM [33–35], and SPM [36,37].

BB rule was first proposed by the Ladd [38,39] to impose the no-slip BC at curved surfaces of
solid particles. In this scheme, the irregular surface of a solid body is imagined as a flat edge that lies
in-between two neighboring solid and fluid grid points. The no-slip BC can then be achieved with
the help of the standard mid-plane BB scheme which bounces back the missing distribution functions
coming from the solid nodes to the fluid nodes. Later, Bouzidi et al. [40] and Yu et al. [41] developed
an improved version of the Ladd scheme, known as the interpolated bounce back (IBB) scheme to
achieve the second-order accuracy for the fluid velocity and temperature. Sheikholeslami et al. [27,28]
investigated MHD flow and heat transfer in an annular space between a heated inner circular and a cold
outer square cylinder and they reported the fluid flow and heat transfer results at various Ra and AR
values. Lin et al. [29] performed simulation of natural convection flow in an annulus between a heated
inner circular cylinder, which is located eccentrically, and a cold square enclosure. Bararnia et al. [30]
simulated the natural convection between a heated inner elliptical cylinder and a square outer cylinder.
They reported the fluid flow and heat transfer characteristics for various combinations of the vertical
positions of the inner cylinder and Ra. Sheikholeslami et al. [31] studied the effect of a magnetic field
on the fluid flow and heat transfer characteristics of a nanofluid inside a circular cylinder with an
inner triangular cylinder. Moutaouakil et al. [32] conducted lattice Boltzmann simulations of natural
convection in an annulus between an inner hexagonal cylinder and an outer square cavity. In all the
above-mentioned articles [27–32], IBB scheme was used to treat the complex boundaries of circular,
triangular, elliptical, and hexagonal geometries. Even though IBB scheme can effectively be used for
treating the complex curved boundary problems, the main drawback is that there may be fluctuations
in the velocity and temperature fields at fluid-solid interfaces especially when the solid boundary is
moving with a certain velocity.

In IBM, the complex irregular boundaries of solid bodies are represented with a set of Lagrangian
nodes while the evaluation of the fluid flow is considered on a fixed Eulerian grid. To enforce the
no-slip and constant temperature BC on the solid nodes, artificial body force and heat source terms
are added to fluid momentum and energy equations, respectively. On can refer to the review article
by Mittal and Iaccarino [42] for a clear discussion on different approaches for calculating the body
force terms. Hu et al. [33] simulated natural convection in a concentric annulus of circular cylinders
using LBM and they used IBM to treat the no-slip and isothermal BC on the curved boundaries.
Hu et al. [34] developed an immersed boundary lattice Boltzmann method (IBLBM) for simulating
fluid flow due to natural convection in a cold square cavity with a heated inner circular cylinder
covered by a porous layer. They investigated the effects of thermal conductivity ratio, Ra, and Darcy
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number on the behavior of fluid flow and heat transfer. Khazaeli et al. [35] used IBLBM to simulate
the natural convection due to a hot circular cylinder inside a square and circular enclosures (cold) for
different Ra values. IBM could resolve the problem of fluctuations in the velocity field of IBB scheme.
However, the main disadvantage of IBM is that it requires complex interpolation functions, and needs a
lot of data exchange between the fluid (Eulerian) and solid (Lagrangian) nodes. Therefore, the parallel
computational performance of the scheme based on the LBM and IBM becomes lower as the global
data communication between the neighboring grid points increases [13].

In SPM, a smoothed profile function is used to recognize the complex surfaces of a solid
body, and the same grid system is used for fluid and solid. The no-slip and isothermal BC at the
complex surfaces are implemented by adding a hydrodynamic force and heat source terms to the
fluid momentum and energy equations, respectively. The main advantage of SPM over the other
non-conforming-mesh methods is that all operations are completely local to a grid point as both fluid
and solid are represented with the same grid system; so, the implementation of this scheme to parallel
computing applications is easier [13]. Also, SPM does not need any complex interpolation function
as needed by IBM. Although SPM is computationally more efficient and easier to apply than IBB
and IBM schemes, till now, only a few researchers have used the method based on LBM and SPM to
study the fluid flow and heat transfer behavior in complex boundaries. Hu et al. [36] used the LBM
combined with SPM for simulating natural convection in complex irregular geometries. They reported
the simulation results for the velocity and temperature inside a square enclosure with a hot circular
cylinder for different values of Ra and AR. All the above-mentioned research works [27–36] considered
the double populations model (DPM) (where two sets of PDF are used: one set for solving the velocity
field and another one for the temperature field). Recently, Alapati et al. [37] developed a numerical
technique based on the combination of LBM and SPM to simulate particulate flows with heat transfer.
They used a hybrid method (HM), which solves the fluid flow by LBM with a set of PDF and the
temperature field by FDM and concluded that LBM-SPM method based on HM is computationally
more efficient than the method based on DPM.

Fluid flow and heat transfer thorough or over hexagonal-shaped geometries is a ubiquitous
problem in many engineering applications such as solar energy collectors [43,44], nuclear power
plants [45], microfluidic heat sinks [46], lamella type compact heat exchangers [47], air-conditioning
applications [48], etc. In solar energy collectors, to minimize the radiation and convection losses to the
surrounding atmosphere, an array of transparent tubes, arranged in a hexagonal honeycomb pattern,
is used in-between the absorbing surface and cover plate. Marshall et al. [43] and Buchberg et al. [44]
found that the thermal efficiencies of honeycomb solar collectors were higher compared to the collectors
without the honeycomb layer. The fuel rods of a nuclear reactor core are stacked in the form of a
hexagonal lattice and are located inside a circular or hexagonal channel to pass a coolant longitudinally
over them [45]. In a ministered heat sink used for electronic systems cooling, an array of pin-fins of
various cross-sectional shapes are attached to a microchannel wall. Aliabadia et al. [44] found that
hydrothermal (hydraulic and thermal) performance was best for the pin-fins with the circular and
hexagonal cross-sections. Hexagonal duct shape is a commonly used shape in lamella type compact
heat exchangers, which is used in many industries such as pulp and paper, alcohol, petrochemical,
and other chemical industries [47]. A desiccant disk used in air-conditioning applications consists of
an array of several ducts packed in the form of honeycomb pattern. Zhang [48] found that the heat
and mass transfer efficiencies of ducts with hexagonal cross-section were higher compared to circular
and rectangular ducts as the hexagonal duct walls are more uniformly placed in the desiccant wheel.

Even though it has great significance and applications only a few researchers have investigated
the behavior of natural convection flow in an annulus with a heated hexagonal cylinder. Boyd [3]
experimentally investigated natural convection in an annulus with a heated hexagonal inner cylinder
and cold outer circular cylinder. Raithby et al. [6] simulated the natural convection in an annulus
bounded by a circular cylinder outside and horizontal hexagonal cylinder inside by using an orthogonal
curvilinear coordinates system (a body-fitted grid system). Galkape and Asfaw [7] employed a
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non-orthogonal coordinate system to study the same problem of Raithby et al. [6]. More recently,
Moutaouakil et al. [32] studied the natural convection due to a hot hexagonal cylinder inside a square
enclosure (cold) with LBM. They presented the fluid flow and heat transfer characteristics for different
combinations of AR and Ra by considering two orientations for the hexagonal cylinder. As mentioned
earlier, they used DPM with IBB scheme to treat BC on hexagonal surfaces.

The literature review showed that the problem of natural convection in an annulus space between
two hexagonal cylinders (concentric with each other) has not been studied. The main objective of this
work is to solve the problem of two-dimensional natural convection flow caused by a hot hexagonal
cylinder placed concentrically inside a cold hexagonal cylinder. The numerical technique that combines
LBM, SPM, and FDM methods is employed because it offers many advantages over the other methods.
In the present work, an equation for smoothed profile function that identifies the hexagonal boundaries
is proposed. Assessing the accuracy and robustness of the present simulation technique by comparing
results given by the present method with ANSYS-Fluent® results is also another purpose of this work.
The remainder of this paper is arranged as follows. A brief description of the simulation technique is
given in Section 2. A discussion on numerical results is presented in Section 3. At first, the validation
results, by applying the present simulation scheme to a standard benchmarking test, are provided.
Later, the simulation results of streamlines, isotherms, and temperature and velocity distributions
inside the concentric hexagonal annulus are presented. The concluding remarks of the present study
are provided in Section 4.

2. Numerical Method

Figure 1 shows the simulation set-up, which consists of an annulus region formed by two concentric
horizontal hexagonal cylinders of different sizes, considered in the present work. Simulations are
performed inside a square enclosure and 251×251 lattice grid points are used to divide the computational
domain. The center positions of the two hexagonal cylinders are fixed at the center of the enclosure.
Lout in the figure represents the distance between two opposite sides of the outer hexagonal cylinder
(the size of the outer cylinder). Throughout the simulations, Lout is kept constant at Lout = 212 and
the size for the inner hexagonal cylinder, Lin in Figure 1, is varied based on the aspect ratio, which is
defined as: AR = Lin/Lout. g in the figure denotes the gravitational acceleration constant.
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Figure 1. Simulation set-up for investigating the natural convection in an annulus region between two
concentric hexagonal cylinders. The origin of the lattice grid is mentioned by ‘O’ in the figure.

The initial values for the fluid velocity and temperature inside the domain are set to zero.
The no-slip and constant temperature BC (To = Tc ≡ 0) are applied at the enclosure walls for the flow
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field and temperature field, respectively, and the standard mid-plane BB scheme is used to treat the
no-slip boundary condition. The temperature value for all edges/sides of the outer hexagonal cylinder
is kept constant at, Tout ≡ Tc = 0 (cold surface), and that for the inner one is fixed at Tin ≡ Th = 1
(hot surface). The constant temperature and no-slip BC on all sides of the inner and outer cylinder are
treated with SPM. In below, the formulations for LBM for solving the fluid flow field, FDM for solving
the temperature field, and SPM for treating BC on hexagonal edges are provided.

2.1. Solving Fluid Flow Using LBM

In this work, as mentioned earlier, LBM is used to obtain the flow field due to natural convection.
In LBM, the macroscopic variables such as fluid pressure and the velocity, are computed from the
fluid-PDF, fn(x, t), which are evaluated by solving the Boltzmann kinetic equation on a discrete
lattice mesh. Here, fn(x, t) is the probability of finding a fluid particle at a lattice position, x, and at
a time, t, moving with a discrete velocity, cn (the subscript n indicates the PDF number), which is
selected in such a way that after time step ∆t, the particle arrives at the nth neighboring grid point [21].
The single-relaxation-time lattice Boltzmann equation (LBE) with external body force term is given
by [37]

fn(x + cn∆t, t + ∆t) = fn(x, t) −
1
λ

(
fn(x, t) − f eq

n (x, t)
)
+

wn∆t
c2

s

((
fth(x, t) + ffl(x, t)

)
· cn

)
(1)

where λ is the relaxation time, f eq
n (x, t) is the equilibrium distribution functions, wn is the weighing

function, and cs is the sound speed. fth(x, t) and ffl(x, t) in Equation (1) represent the buoyancy
force and the hydrodynamic force (due to the no-slip BC on the hexagonal surfaces) source terms,
respectively. Through the Chapman–Enskog analysis, the above equation recovers the Navier–Stokes
equations in the low Mach number limit, |u|/cs � 1 [14]. The relation between the fluid kinematic
viscosity, ν, and relaxation time, λ, is given by

ν = c2
s ∆t

(
λ−

1
2

)
. (2)

To model the buoyancy force, fth(x, t), the Boussinesq approximation is used as follows

fth = ρ0β(T − T0)g
^
j, (3)

where ρ0 is the initial value for fluid density, T0 is the initial fluid temperature, β is the fluid thermal

expansion coefficient at T0, T is the fluid temperature field, and
^
j is the unit vector in the vertical

direction (y − direction). The hydrodynamic force term, ffl(x, t) of Equation (1) is obtained with SPM.
After solving for fn(x, t), the fluid density and the velocity fields, ρ(x, t) and u(x, t), are obtained from

ρ(x, t) =
b∑

n=0

fn, u(x, t) =
1
ρ

b∑
n=0

fncn. (4)

2.2. Solving Temperature Distribution with FDM

The temperature distribution inside the computational domain is obtained by discretizing the
energy equation with FDM by using the standard central difference scheme in space and the forward
difference scheme in time [37]. After discretization, the equation for finding the temperature value at a
grid point in new time level is (q in the below expression represents the heat source term due to the
constant temperature BC on the hexagonal edges)

Tnew
i, j = Told

i, j + (RHSold + qold
i, j )∆t, (5)
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with
RHSold = −4αTold

i, j +
(
α− 1

2 uold
i+1, j

)
Told

i+1, j +
(
α+ 1

2 uold
i−1, j

)
Told

i−1, j

+
(
α− 1

2 vold
i, j+1

)
Told

i, j+1 +
(
α+ 1

2 vold
i, j−1

)
Told

i, j−1

(6)

In the above equation, α is the thermal diffusivity, and the subscripts i & j represent lattice grid
indices in x−& y− directions, respectively.

2.3. Evaluation of ffl(x, t) and q(x, t) with SPM

In SPM, a smoothed profile function (also termed as concentration function or indicator function),
φk(x, t), is used to identify the solid regions [13] (here, k is the index value for the hexagonal cylinders;
k = 1 for the inner hexagon and k = 2 outer one). The equation for φk(x, t) is defined in such a way
that φk = 0 in the fluid region, φk = 1 in the solid region, and φk smoothly varies from 0 to 1 at the
fluid-solid interface. Here, the following equation is used to evaluate φk(x, t) of each hexagon

φk(x, t) = f (dk(x, t)), (7a)

f (dk(x, t)) =


0 r < −ξk/2
1
2

(
sin

(
π

dk(x,t)
ξk

)
+ 1

)
|r| < ξk/2

1 r > ξk/2

, (7b)

where dk(x, t) and ξk are the signed normal distance function to the solid surface (here, edges of two
hexagons) and the interface thickness of each hexagon, respectively. Unless otherwise mentioned,
throughout this work, the values for the interface thickness for the two hexagons are chosen as,
ξ1 = ξ2 ≡ 0.5. The following equation is used for finding dk(x, t) of each hexagon

dk(x, t) = max
{

Lx,k

2
, max

[(∣∣∣x−Xc,k
∣∣∣ sin(30◦) +

∣∣∣y−Yc,k
∣∣∣ cos(30◦)

)
,
(∣∣∣y−Yc,k

∣∣∣− Ly,k

2

)]}
(8)

Lx,k and Ly,k in the above equation are the distance between two corners and two opposite sides of each
hexagon, respectively (Ly,1 = Lin and Ly,2 = Lout are the sizes of the two hexagons), and Xc,k and Yc,k
are the center positions of hexagons, in x− and y− directions, respectively. The smoothly distributed
concentration field of two hexagons, φ(x, t), is obtained by adding the φk(x, t) values of two hexagons

φ(x, t) =
2∑

k=1

φk(x, t). (9)

The body force term for enforcing no-slip BC on hexagonal edges, ffl(x, t) in Equation (1),
is evaluated by using

ffl(x, t) =
[
up(x, t) − u(x, t)

]
φ(x, t)/∆t, (10)

up(x, t) in the above equation is the velocity field for the solid regions, which is zero as the two
hexagonal cylinders are stationary. Similarly, the heat source term for treating the constant temperature
BC, q(x, t) of Equation (5), can be obtained by

q(x, t) =
[
Tp(x, t) − T(x, t)

]
φ(x, t)/∆t, (11)

where Tp(x, t) is the hexagonal cylinders temperature field, which is evaluated by using

φ(x, t)Tp(x, t) =
2∑

k=1

φk(x, t)Tk(t), (12)
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where Tk(t) is the temperature of each hexagon; T1(t) = Tin ≡ 1 for hot inner cylinder and
T2(t) = Tout ≡ 0 the cold outer cylinder.

3. Simulation Results

3.1. Validation

The standard benchmarking problem of natural convection due to the hot circular cylinder inside
a square enclosure [36,49] is chosen to validate the numerical code developed based on the present
simulation technique (see Figure 2 for simulation set-up). The following equation is considered to fix
the kinematic viscosity, ν [37]

ν =

√
Pr
Ra

UcLc, (13)

where Pr, Uc, and Lc are the Prandtl number, the characteristic velocity, and the characteristic length,
respectively, and the definitions for Ra, Pr, and Uc are given by

Ra =
gβ∆TL3

c

να
, Pr =

ν
α

, and Uc =
√

gβ∆TLc, (14)

∆T in the above equation is the temperature difference between the inner circular cylinder (hot,
Tin = Th ≡ 1) and outer square cavity (cold, Tout = Th ≡ 1). The computational domain is divided
into 201× 201 lattice grid points. The simulations are performed for, Pr = 0.71 (i.e., heat transferring
medium is air), Uc = 0.1, and Lc = Lout (size of the outer square cavity). Three different combinations
for Rayleigh number, Ra = 104, 105, and 106, and the aspect ratio, AR = Lin/Lout ≡ 0.2, 0.4, and 0.6 are
considered. Figure 3 shows the isotherms (left side) and streamlines (right side) inside the enclosure
when Ra = 106 and AR = 0.2. Two symmetrical vortices appear in the upper region of the enclosure,
as the natural convection flow intensity is predominant in the upper region of the cavity due to Ra
value is very high. The details of the surface-averaged Nusselt number, Nu, on the inner cylinder at all
combinations of Ra and AR considered in the present work are provided in Table 1. The corresponding
results obtained by the previous works [36,49] are also given in Table 1. Nu increases with Ra for all
values of AR. The streamlines and the isotherms patterns, and Nu values of all Ra and AR combinations
are in excellent agreement with the previous results [33,35]. After this validation, simulation of fluid
flow and heat transfer due to natural convection inside the hexagonal annulus is performed and the
corresponding results are discussed in the following section.
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Table 1. The details of the surface average Nusselt number, Nu, on the inner cylinder at different
combinations of Ra and AR.

Ra AR Present Previous [36] Previous [49]

104
0.2 2.042 2.035 2.071
0.4 3.202 3.173 3.331
0.6 5.349 5.266 5.826

105
0.2 3.714 3.751 3.825
0.4 4.843 4.893 5.080
0.6 6.182 6.175 6.212

106
0.2 5.959 6.115 6.107
0.4 8.718 8.897 9.374
0.6 11.662 11.940 11.620

3.2. Natural Convection in the Concentric Hexagonal Annulus

In this session, the results obtained by the simulation of the fluid flow and heat transfer in the
annulus bounded by two horizontal concentric hexagonal cylinders are presented (set-up is shown in
Figure 1). Simulations are performed for different values of AR and Ra, by varying AR in the range,
AR = 0.2~0.6, and Ra in the range, Ra = 103

∼ 106. The characteristic length in Equation (14) is set as,
Lc = Lout (the size of the outer hexagon).

All the results obtained by the present simulation technique are compared with those given by
commercial software, ANSYS-Fluent®. Fluent 18.2 is used to simulate a steady laminar flow and
heat transfer inside a two-dimensional annular space bounded by two concentric hexagonal cylinders.
The size of the outer cylinder is fixed at Lout = 212 m and that of the inner cylinder is varied as per the
AR. The values for the temperatures at the walls of the inner and outer cylinder are set at Tin = 289 K
and Tout = 288 K, respectively. Constant temperature and no-slip BC are used for heat transfer and
fluid flow, respectively. The initial value for density is taken as ρ0 = 1.225 kg/m3 (air density value at
temperature 288 K) and the Boussinesq model is used to model the variation of the density as a function
of temperature. Dry air properties at temperature 288 K are used to set the values for specific heat,
viscosity, thermal conductivity, and thermal expansion coefficient. The value for the y− directional
gravitational acceleration constant is varied corresponds to Ra. SIMPLE (Semi-Implicit Method for
Pressure Linked Equation) scheme has opted for the pressure-velocity coupling. The governing
equations are discretized using the least square cell-based method and a second-order upwind scheme
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is chosen to solve momentum and energy equations. The Gauss–Seidal iterative method with default
under-relaxation factors is selected to solve the system of algebraic equations. The convergence
criterion for the residuals of all continuity, momentum, and energy equations is set as 10−9.

3.2.1. Streamlines and Isotherms Patterns Inside the Annulus

It is observed from the simulation results that irrespective of AR and Ra values, the fluid
flow patterns (streamlines) and temperature contours (isotherms) are symmetrical about the vertical
centerline of the annulus. Figure 4 shows the isotherms (left side) and streamlines (right side) pattern
inside the annulus for the two values of AR = 0.2 (Figure 4a) and AR = 0.6 (Figure 4b), when Ra = 103.
As Ra is very low, the strength of the buoyancy force (strength of the gravitational acceleration in this
case) that causes the convective flow is very low. Therefore, the heat transfer process inside the annulus
is mainly dominated by the conduction mode and the isotherms are very smooth (no distortion of
isotherms takes place due to very weak fluid flow) and are almost concentric to the inner and outer
hexagonal cylinders. Both isothermal and streamlines are symmetrical concerning the vertical as
well as horizontal centerlines of the annulus. When AR = 0.2, the isotherms are almost circular and
the spacing between them increases with the distance from the inner hexagon as the available space
between inner and outer hexagons is more than that when AR = 0.6. On the other hand, when AR = 0.6,
the isotherms in the vicinity of both inner and outer cylinders are in the form of the hexagon and
the spacing between them is less as they get squeezed due to constricted space between inner and
outer hexagons. The streamlines pattern for both AR = 0.2 and AR = 0.6 show that two symmetrical
recirculating eddies (kidney-shaped cells) are formed inside the annulus and the location of cell centers
is almost close to the horizontal centerline of the annulus as the fluid flow intensity in the upward
direction is almost negligible because of very low Ra. When we observe Figure 4b carefully, we can see
that there is slight penetration of the streamline into the solid edges, which is a slight drawback of
the present scheme. The main reason for this phenomenon is that as SPM is a non-conforming-mesh
method, the same grid system is used for the solid and fluid regions and simulations are also performed
inside the solid regions (even though it is enough to consider the boundary effects on the hexagonal
edges). However, performing the simulations inside the solid does not affect the flow field in the fluid
domain and the overall behavior of the fluid flow and heat transfer is well captured.

Figure 5 shows the isotherms (left side) and streamlines (right side) pattern inside the annulus
for the values of AR = 0.2 (Figure 5a) and AR = 0.6 (Figure 5b), and when Ra = 106. As the Ra is
very high, the effect of buoyancy-driven flow is significant and hence the heat transfer in the upper
region of the annulus is mainly dominated by the convection mode. Isotherms and streamlines are no
longer symmetrical about the horizontal median of the annulus. For AR = 0.2, it is concluded from
the isotherms and streamlines pattern that the fluid near the inner hexagonal cylinder surface gets
heated and moves upwards along the upper inclined edges of the hexagon due to the buoyancy effect.
Because of strong convection currents, a thermal plume is formed on the top of the inner cylinder and
thermal boundary layer thickness at the top flat edge of the outer cylinder is very thin (indicated by
close clustering of isothermal lines) as continuous impingement of fluid flow in the upper region of the
annulus. The thermal boundary layer thickness at the bottom of the inner hexagonal cylinder is also
found to be very low and the fluid temperature below the inner cylinder is almost uniform and is equal
to that of the outer cylinder as heat transfer in this region is dominated by conduction. The centers of
the symmetrical recirculating eddies are located well above the horizontal median as the fluid flow is
dominant in the upper half of the annulus. The streamline pattern for AR = 0.2 also reveals that two
symmetric secondary vortices are formed at the bottom wall of the outer cylinder due to the separation
of the momentum boundary layer as a result of strong upward convective flow.
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A completely different phenomenon is observed when AR = 0.6. Since there is limited available
space for convection on the top of the inner cylinder, two separate thermal plumes (due to the
buoyancy-driven fluid flow along the upper inclined edges of the hexagon) are formed along each
upper corner of the hexagon. A third thermal plume is also seen on the top flat edge of the inner
cylinder in the reverse direction as the uppermost corner of the inner hexagonal cylinder separates
the fluid flow and generates two secondary vortices. The fluid flow separation phenomenon can be
confirmed by noticing the two counter-rotating cells over the top flat edge of the inner cylinder from
the streamline pattern of AR = 0.6. This type of flow separation phenomena at a high AR value was also
observed by Raithby et al. [6], Bararnia et al. [30], Moutaouakil et al. [32], and Hu et al. [36], and even
though their simulation domains were completely different from the present study.

To assess the capability of the present simulation method for predicting the behavior of natural
convection flow in the concentric hexagonal annulus, the results obtained from the present method
are compared with ANSYS-Fluent® results. Figure 6 shows the simulation results of isotherms and
streamlines patterns obtained from Fluent for the values of AR = 0.2 (Figure 6a) and AR = 0.6 (Figure 6b),
and the case when Ra = 106. By comparing the isotherms and streamlines patterns of Figures 5 and 6,
we can say that the present simulation results are successfully reproduced the Fluent results.Mathematics 2020, 8, x 12 of 17 
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3.2.2. Temperature and Velocity Profiles

Figure 7 shows the temperature distribution along the gap between the inner and outer hexagonal
cylinders at three different angular directions, θ = 0◦ (along the line passing through the vertical
median), θ = 30◦ (along the line passing through the right uppermost corners of the two hexagons),
and at θ = 90◦ (along the line passing through the horizontal median) when AR = 0.2. Ri and Ro in the
figure denote the radius of circles that pass through the edges of inner and outer hexagonal cylinders,
respectively. The temperature distribution profiles are plotted for two Rayleigh numbers: Ra = 103

and Ra = 106. The symbols in the figure indicate the corresponding results obtained from the Fluent,
which are in good agreement with the present simulation results. When Ra = 103, the temperature
profiles, along all three θ directions, show a quasi-linear pattern (in other words, the temperature
gradients along the gap are almost constant) with the gap as the conduction is the primary mode of
the heat transfer process in the annulus. The temperature profiles along θ = 30◦ and θ = 90◦ are
almost the same as the isothermal lines are almost concentric and Ri values at θ = 30◦ and θ = 90◦

are the same. When Ra = 106, as the strong convective fluid flow disturbs the uniform temperature
distribution over the inner hexagon, high-temperature gradients are observed near the inner and
outer hexagonal cylinder edges. As mentioned earlier, a thermal plume is formed in the direction
of θ = 0◦ for AR = 0.2, the temperature gradients closer to the outer cylinder wall are very steep
for the temperature profile along θ = 0◦ as the thermal boundary layer thickness is very thin due
to continuous impingement thermal plume against the top flat edge of the outer hexagonal cylinder.
The slope of the temperature profile near the outer cylinder wall is steeper for θ = 30◦ compared to
that for θ = 90◦ as the convective fluid flow intensity is weaker at θ = 90◦.

Mathematics 2020, 8, x 13 of 17 

 

wall is steeper for o30θ =  compared to that for o90θ =  as the convective fluid flow intensity is weaker 
at o90θ = . 

 
Figure 7. Temperature distribution along the gap between the inner and outer hexagonal cylinders at 
different angular directions, o0θ = , o30θ = , and at o90θ =  for AR = 0.2. The symbols represent 
corresponding data from Fluent software. 

The curves for the temperature distributions along the gap when AR = 0.6 are provided in Figure 
8 for Rayleigh numbers, 3Ra 10=  and 6Ra 10= . The temperature data obtained from Fluent 
software is also provided (the symbols in the figure) for comparison purposes. The agreement 
between the two results is excellent, implying the capability of the present simulation technique in 
the simulation of fluid flow and heat transfer in the hexagonal annuals. In this case, also the slope of 
the temperature profiles in each θ  direction is almost constant when 3Ra 10= . For 6Ra 10=  case, 
the temperature profile in the direction of o30θ =  is in a similar trend with that of o0θ =  of Figure 
7 data (for the case of AR = 0.2) as the formation of thermal plume for AR = 0.6 is along the direction 
of o30θ = . The slope of the temperature profile near the inner cylinder wall is very steep for o0θ =  
as thermal boundary layer thickness over the flat top edge of the inner cylinder is very small due to 
the formation of the thermal plume in the reverse direction. 

 
Figure 8. Temperature distribution along the gap between the inner and outer hexagonal cylinders at 
angular directions, o0θ = , o30θ = , and at o90θ =  for AR = 0.6. The symbols represent 
corresponding data from Fluent software. 

Figure 7. Temperature distribution along the gap between the inner and outer hexagonal cylinders
at different angular directions, θ = 0◦, θ = 30◦, and at θ = 90◦ for AR = 0.2. The symbols represent
corresponding data from Fluent software.

The curves for the temperature distributions along the gap when AR = 0.6 are provided in Figure 8
for Rayleigh numbers, Ra = 103 and Ra = 106. The temperature data obtained from Fluent software is
also provided (the symbols in the figure) for comparison purposes. The agreement between the two
results is excellent, implying the capability of the present simulation technique in the simulation of
fluid flow and heat transfer in the hexagonal annuals. In this case, also the slope of the temperature
profiles in each θ direction is almost constant when Ra = 103. For Ra = 106 case, the temperature
profile in the direction of θ = 30◦ is in a similar trend with that of θ = 0◦ of Figure 7 data (for the case
of AR = 0.2) as the formation of thermal plume for AR = 0.6 is along the direction of θ = 30◦. The slope
of the temperature profile near the inner cylinder wall is very steep for θ = 0◦ as thermal boundary
layer thickness over the flat top edge of the inner cylinder is very small due to the formation of the
thermal plume in the reverse direction.
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The heat transfer between the outer and inner cylinders is enhanced by convection mode through
fluid circulation. The rotational velocity (tangential velocity), uθ, can be used as a good indication
for the intensity of the convective fluid flow. Figure 9 shows the variations of tangential velocity, uθ,
along the gap between the inner and outer hexagonal cylinders for Rayleigh numbers, Ra = 103 and
Ra = 106, and for aspect ratio, AR = 0.2. The profiles are plotted for θ = 30◦ and θ = 90◦. The reference
velocity, α/(Ro −Ri), has chosen to normalize uθ. It is noted that the magnitudes of uθ when Ra = 103

are very small (almost zero) compared to those when Ra = 106 because of a weak fluid flow intensity
at low Ra. For the velocity profile at θ = 90◦, the location of the flow reversal point is exactly at the
center of the gap (at the halfway between the corners of two hexagons). However, the flow inversion
point for the profile at θ = 30◦ is located a bit away from the gap center towards the outer cylinder.
The velocity gradients for the profile at θ = 90◦ are steeper near the inner cylinder than those at the
outer cylinder as the convective currents in the region adjacent to the inner cylinder (where fluid gets
heated) are stronger than those near the outer cylinder.
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The profiles for the tangential velocity distributions when AR = 0.6 are provided in Figure 10
for Rayleigh numbers, Ra = 103 and Ra = 106. In this case, as well the magnitudes of uθ when
Ra = 103 are very small compared to those when Ra = 106. When AR = 0.6, as the thermal plume is
formed along the θ = 30◦ direction, the tangential velocity in that direction is very low (fluid flow
radially outwards along θ = 30◦). Therefore, the magnitude of uθ along θ = 30◦ very low compared
to that along θ = 90◦. The locations for the flow reversal points of the two velocity profiles along
θ = 30◦ and θ = 90◦ are the same and are located away from the gap center and are towards the inner
cylinder. The magnitudes of uθ obtained for AR = 0.6 case are lower compared to those obtained for
AR = 0.2 (Ra = 106 data of Figure 9) as available space for convection flow is constricted at AR = 0.6.
The tangential velocity profiles data obtained from the present simulation technique, for cases of
AR = 0.2 and AR = 0.6, and Ra = 103 and Ra = 106, are compared with those of Fluent software
(the symbols in Figures 9 and 10). The present simulation results show good agreement with the
Fluent data.Mathematics 2020, 8, x 15 of 17 
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4. Conclusions

In this work, a FORTRAN code based on a hybrid method (which uses a combination of LBM,
SPM, and FDM) has been developed to simulate the natural convection inside an annulus between
two concentric hexagonal cylinders. After validating the numerical code by applying it to a standard
benchmarking problem, natural convection simulations inside the hexagonal annulus have been
performed by considering different combinations of Rayleigh number, Ra, and aspect ratio, AR.
When AR = 0.6, two separate thermal plumes are formed due to the separation of convective flow at the
upper corner of inner hexagon, which is in accordance with the previous studies. To verify the accuracy
and robustness of the present method for simulating natural convection flow inside the hexagonal
annulus, all the simulation results obtained from the present technique have been compared with the
Fluent results. The simulation results of isotherms and streamlines patterns, temperature, and velocity
distributions inside the annulus show good agreement with those obtained from Fluent software.
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