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Abstract: The present paper investigates digital topological properties of an alignment of fixed point
sets which can play an important role in fixed point theory from the viewpoints of computational or
digital topology. In digital topology-based fixed point theory, for a digital image (X, k), let F(X) be
the set of cardinalities of the fixed point sets of all k-continuous self-maps of (X, k) (see Definition
4). In this paper we call it an alignment of fixed point sets of (X, k). Then we have the following
unsolved problem. How many components are there in F(X) up to 2-connectedness? In particular,
let Cn,l

k be a simple closed k-curve with l elements in Zn and X := Cn,l1
k ∨ Cn,l2

k be a digital wedge

of Cn,l1
k and Cn,l2

k in Zn. Then we need to explore both the number of components of F(X) up to
digital 2-connectivity (see Definition 4) and perfectness of F(X) (see Definition 5). The present
paper addresses these issues and, furthermore, solves several problems related to the main issues.
Indeed, it turns out that the three models Cn,4

2n , Cn,4
3n−1, and Cn,6

k play important roles in studying these
topics because the digital fundamental groups of them have strong relationships with alignments
of fixed point sets of them. Moreover, we correct some errors stated by Boxer et al. in their recent
work and improve them (see Remark 3). This approach can facilitate the studies of pure and
applied topologies, digital geometry, mathematical morphology, and image processing and image
classification in computer science. The present paper only deals with k-connected spaces in DTC.
Moreover, we will mainly deal with a set X such that X] ≥ 2.

Keywords: digital image; digital wedge; normal adjacency; k-homotopy; k-contractibility; alignment;
fixed point set; digital topology; fixed point property

AMS: 55N35; 68U10

1. Introduction

Let Z (resp. N) be the set of integers (resp. natural numbers) and Zn be the n times Cartesian
products of Z. Moreover, we denote the set of even natural numbers with N0. A paper [1] initially
raised the following query involving a fixed point set and a homotopy fixed point set from the
viewpoint of typical fixed point theory.

(♠) How do the fixed points of a continuous self-map of an ordinary topological space depend
on the given self-map?

It can also be of interest in digital topology-based fixed point theory. Therefore, a paper [2]
partially studied this issue in a Rosenfeld’s digital topological setting, the so-called “digital fixed point
property” and “digital homotopy fixed point property”.

Specifically, how do the fixed points of a digitally continuous self-map of a digital image (X, k)
depend on the given self-map?

Indeed, this approach can be so natural and meaningful. Unfortunately, since the paper [2]
contains many errors, a paper [3] corrected many things and improved them. In a similar way as
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the above, given a digital image (X, k), a paper [4] studied the set of cardinalities of fixed point sets
of all k-continuous self-maps of (X, k), denoted by F(X), and explored some features of it and the
set of cardinalities of fixed point sets of all continuous self-maps g of (X, k) which are k-homotopic
to a given continuous self-map f of (X, k). Then the authors of [4] used the term, the so-called
“fixed point spectrum” and “homotopy fixed point spectrum”. Indeed, we may follow the term
“spectrum” because such a name can be taken by an author. However, for a given digital image (X, k),
since each of the above quantities need not be 2-connected, the present paper will take another term
to exactly characterize the “set of the cardinalities of fixed point sets of k-continuous self-maps of it”,
i.e., the so-called “an alignment of fixed point sets” exactly defining the above set in mathematical
sense and further, we denote it with F(X) as referred to in [4] (see Definition 4). A paper [5] explored
some alignments of fixed point sets which are 2-connected because an existence of a 2-connected
alignment of fixed point sets depends on the situation. At the moment, given a digital image (X, k),
we need to examine if an alignment of fixed point sets of (X, k) is connected up to 2-connectedness,
which can play an important role in digital topology and many areas in applied sciences [6,7].

In this paper, we investigate various properties of F(X) in the category DTC, where DTC is the
category consisting of the set of digital images and the set of digitally continuous maps (see Section 2
for details). In DTC, a recent paper [5] confirmed that a digital k-isomorphism preserves a k-homotopy.
Based on this approach, after considering a digital wedge Cn,l

k ∨ Cn,4
k whose digital k-fundamental

group is an infinite cyclic group or a trivial group, a recent paper [5] partially examined if F(Cn,l
k ∨

Cn,4
k ) is 2-connected and perfect (see Definition 5), where the term “perfect” means that for a digital

image (X, k), F(X) = [0, X]]Z, e.g., F(Cn,l
k ∨ Cn,4

k ) = [0, l + 3]Z. Motivated by the approach, in the
Rosenfeld’s digital topological setting for fixed point theory, regarding F(X) of (X, k), we may raise
the following queries.

(Q1) Given a digital image (X, k), does F(X) always have X] − 1?
Indeed, this issue was partially studied in [4].

(Q2) Given a digital image (X, k), under what condition can we have F(X) that is perfect?
(Q3) Given a digital image (X, k), how can we explore perfectness of F(X)?
(Q4) For a digital wedge Cn,l1

k ∨ Cn,l2
k , assume l1 ≥ l2. If l2 = 4, then is F(Cn,l1

k ∨ Cn,4
k ) 2-connected?

(Q5) For a digital wedge Cn,l1
k ∨ Cn,l2

k , assume l1 ≥ l2. If l2 = 6, then how can we characterize
F(Cn,l

k ∨ Cn,6
k )?

(Q6) Is F(Cn,l
k ∨ Cn,6

k ) perfect?

(Q7) Under what condition is F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ) perfect?

After developing many new tools, we will address all these queries.
The remainder of the paper is organized as follows: Section 2 investigates various concepts related

to digital topological spaces and deals with some properties of them. Section 3 explores various
properties related to 2-connectedness of an alignment of fixed point sets. In particular, we intensively
explore some conditions of which F(Cn,l1

k ∨ Cn,4
k ) is 2-connected, which addresses the main issues of

the present paper. Indeed, we can recognize a certain special role of Cn,4
k that makes F((X, k) ∨ Cn,4

k )

perfect. Section 4 intensively investigates some properties of F(Cn,l1
k ∨ Cn,6

k ) that are involved in the
2-connectedness or the perfectness of it. Section 5 concludes the paper with some remarks and a
further work. In this paper, we will often use the symbol “:=” to introduce a new term. In addition,
we will denote the cardinality of a set X with X]. This paper corrects and improves some results
stated by Boxer et al. in [4] (see Remark 3) and corrects several incorrect citations in [4] related to a
digital wedge (see Section 2) and a generalization of digital k-connectivity and a normal adjacency for
a digital product.
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2. Preliminaries

The papers [8,9] called a set X ⊂ Zn with digital k-connectivity (or a k-adjacency) a digital image
denoted by (X, k), n ∈ {1, 2, 3}. Thanks to these k-adjacency relations for digital images in Zn, n ≤ 3,
it turns out that a digital image (X, k) is a digital space [6,10]. Motivated by this approach, a paper [11]
initially developed the generalized version of the adjacency relations of Z3 for high-dimensional
digital images X ⊂ Zn, the so-called k-(or k(t, n)-)adjacency relations of Zn, n ∈ N (see below). Indeed,
this approach was initially taken in [11], which can play an important role in studying many structures
in digital topology such as digital products with normal adjacencies [11] and their applications.
To study digital images X ⊂ Zn, n ∈ N, we now recall the following [11] (see also [12,13]):

For a natural number t, 1 ≤ t ≤ n, distinct points

p = (p1, p2, · · · , pn) and q = (q1, q2, · · · , qn) ∈ Zn,

are k(t, n)-adjacent

if at most t of their coordinates differ by ± 1, and the others coincide. (1)

According to the statement of (1), the k(t, n)-adjacency relations of Zn, n ∈ N, were initially
formulated [11] (see also [12,13]) as follows:

k := k(t, n) =
t

∑
i=1

2iCn
i , where Cn

i =
n!

(n− i)! i!
. (2)

For instance,

(n, t, k) ∈



(1, 1, 2)

(2, 1, 4), (2, 2, 8)

(3, 1, 6), (3, 2, 18), (3, 3, 26)

(4, 1, 8), (4, 2, 32), (4, 3, 64), (4, 4, 80); and

(5, 1, 10), (5, 2, 50), (5, 3, 130), (5, 4, 210), (5, 5, 242).


For c, d ∈ Z with c � d, the set [c, d]Z = {n ∈ Z | c ≤ n ≤ d} with 2-adjacency is called a digital

interval [14].
Let us now recall some terminology and notions [8,9,11,15] which will be used in this paper.

• A digital image (X, k) is said to be k-disconnected [15] if there are non-empty sets X1, X2 ⊂ X
such that X = X1 ∪ X2, X1 ∩ X2 = ∅ and further, there are no points x1 ∈ X1 and x2 ∈ X2 which
are k-adjacent. Using this approach, a digital image (X, k) is said to be k-connected (or k-path
connected) if it is not k-disconnected.

• A k-connected digital image (X, k) in Zn whose cardinality is greater than 1, the so-called k-path
with l + 1 elements in X is assumed to be the finite sequence (xi)i∈[0,l]Z ⊂ X such that xi and xj
are k-adjacent if | i− j | = 1 [14]. Then we call the number l the lenth of this k-path.

• We say that a simple k-path is the finite set (xi)i∈[0,m]Z
⊂ Zn such that xi and xj are k-adjacent if

and only if | i− j | = 1 [6]. In case x0 = x and xm = y, we denote the length of the simple k-path
with lk(x, y) := m.

• A simple closed k-curve (or simple k-cycle) with l elements in Zn, denoted by SCn,l
k [11,14],

l ≥ 4, l ∈ N0 \ {2}, means the finite set (xi)i∈[0,l−1]Z ⊂ Z
n such that xi and xj are k-adjacent if and

only if | i− j | = ±1(mod l). Owing to this notion, it is obvious that the number of l should be
even. In particular, in the present paper we will use the notation Cn,l

k to abbreviate SCn,l
k . At the

moment, we need to remind that in some papers Cn,l
k is used for a notation of a closed k-curve
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with l elements in Zn. However, in this paper since we will not deal with such curves, we may
use the notation Cn,l

k for only a simple closed k-curve with l elements in Zn.

To fix the incorrect citation of [4] related to the notion of digital wedge, we now recall the concept
with originality.

• The notion of digital wedge (or one point union of two digital images) was initially proposed
in [11,16]. To be precise, two given digital images (X, k) and (Y, k), a digital wedge [11,16],
denoted by (X ∨Y, k), is defined as the union of the digital images (X′, k) and (Y′, k), where

(1) X′ ∩Y′ is a singleton, say {p}.
(2) X′ \ {p} and Y′ \ {p} are not k-adjacent, where the two subsets A and B of (X, k) are said to

be k-adjacent [14] if A ∩ B = ∅ and there are at least two points a ∈ A and b ∈ B such that a
is k-adjacent to b.

(3) (X′, k) is k-isomorphic to (X, k) and (Y′, k) is k-isomorphic to (Y, k) (see Definition 1).

In digital topology, we are strongly required to follow this digital wedge (X ∨Y, k). If we do not
follow this approach, we will have some big difficulties in proceeding with further works in digital
topology. Meanwhile, in the case (X, k0) and (Y, k1) such that k0 6= k1, the compatible k-adjacency of
(X ∨Y, k) was also established in [16].

• Motivated by the strong graph adjacency of a product of two typical graphs [17], its digital version
was initially developed in [11]. Indeed, this notion plays an important role in calculating digital
k-fundamental group of digital products [12,18–22].

For a digital image (X, k), X ⊂ Zn, we may consider it with two kinds of aspects: First, a graph
theoretic approach with the above k-adjacency relation of (2), e.g., digital k-graphs [8,9,23,24], can be
considered. Second, based on a discrete topological subspace induced by the n-dimensional usual
topological space, further consider it with one of the above k-adjacency relation of (2). Indeed, they are
eventually equivalent to each other. For a k-connected digital image (X, k), the paper [11] already
established a certain metric on (X, k). To be precise, a metric function, say dk, on a k-connected digital
image (X, k) was established, as follows:

dk(x, x′) :=

{
lk(x, x′), if x 6= x′ in X;

0, if x = x′.

}
(3)

Namely,

dk(x, x′) := min{l | l is a length of a k-path beteween x and x′.}[11].

It obviously follows from (3) that this metric dk is different from the typical Euclidean metric on
X ⊂ Zn. Thus, for a certain ε ∈ N, we defined [11,15]

Nk(x0, ε) := {x ∈ X| dk(x0, x) ≤ ε}, (4)

which is called a digital k-neighborhood of x0 with radius ε. Indeed, the notion of (4) is another
representation of the typical one established in [11]. The paper [10] defined a digital space. At the
moment, we should remind that a digital space need not be a topological space, e.g., a digital image
X(⊂ Zn) with digital k-connectivity in terms of the Rosenfeld’s model [8,9]. For instance, to wit that
a digital image (X, k) is a digital space, consider two distinct points p, q ∈ X. Then we say that p is
k-adjacent to q if

p ∈ Nk(q, 1) or q ∈ Nk(p, 1).
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Using this approach, we see that a digital image (X, k) on Zn is one of the digital spaces. Indeed,
there are countably many digital spaces in Zn [25] including Khalimsky [26] and Marcus-Wyse
topological spaces [27], Alexandroff space [28], and so on.

The notion of digital continuity of a map f : (X, k0) → (Y, k1) was initially defined by
Rosenfeld [9] by saying that f maps every k0-connected subset of (X, k0) into a k1-connected subset of
(Y, k1). Motivated by this approach, using the set in (4), we can represent the digital continuity of a
map between digital images using a digital k-neighborhood (see Proposition 1 below).

Proposition 1. [23,29] Let (X, k0) and (Y, k1) be digital images in Zn0 and Zn1 , respectively. A function
f : (X, k0) → (Y, k1) is (digitally) (k0, k1)-continuous if and only if for every x ∈ X f (Nk0(x, 1)) ⊂
Nk1( f (x), 1).

In Proposition 1, in the case n0 = n1 and k := k0 = k1, the map f is called a ‘k-continuous’ map to
abbreviate the (k, k)-continuity of Proposition 1. Due to this approach, we can have big advantages
of calculating the digital fundamental groups of digital images (X, k) using the unique digital lifting
theorem [11], the digital homotopy lifting theorem [29], a radius 2-(k0, k1)-isomorphism and its
applications [29], the multiplicative properties of a digital fundamental group [12,21,22], a Cartesian
product of the covering spaces [22], and so on.

To make the present paper self-contained, we need to recall the category DTC consisting of the
following two pieces of data [11] (see also [23]), called the digital topological category.

• The set of (X, k), where X ⊂ Zn, as objects of DTC, denoted by Ob(DTC);
• For every ordered pair of objects (Xi, ki), i ∈ {0, 1}, the set of all (k0, k1)-continuous maps between

them as morphisms of DTC, denoted by Mor(DTC).

In DTC, in the case of k := k0 = k1, we will particularly use the notation DTC(k) [20].
To classify digital images (X, k) [23,24]), we prefer the term a (k0, k1)-isomorphism

(or k-isomorphism) as in [23] to a (k0, k1)-homeomorphism (or k-homeomorphism) as in [30].

Definition 1. [23] (see also a (k0, k1)-homeomorphism in [30]) Consider two digital images (Z, k0) and
(W, k1) in Zn0 and Zn1 , respectively. Then a map h : Z → W is called a (k0, k1)-isomorphism if h is a
(k0, k1)-continuous bijection and further, h−1 : W → Z is (k1, k0)-continuous. Then we use the notation
Z ≈(k0,k1)

W. In the case k := k0 = k1, we use the notation Z ≈k W to abbreviate Z ≈(k0,k1)
W.

Based on the pointed digital homotopy in [26,31,32] (see also [30]), the following notion of
k-homotopy relative to a subset A ⊂ X is often used in studying k-homotopic properties of digital
images (X, k) in Zn. For a digital image (X, k) and A ⊂ X, we often call ((X, A), k) a digital image pair.

Definition 2. [11,30,33] Let ((X, A), k0) and (Y, k1) be a digital image pair and a digital image in Zn0 and
Zn1 , respectively. Let f , g : X → Y be (k0, k1)-continuous functions. Suppose there exist m ∈ N and a function
H : X× [0, m]Z → Y such that

(•1) for all x ∈ X, H(x, 0) = f (x) and H(x, m) = g(x);
(•2) for all t ∈ [0, m]Z, the induced function Ht : X → Y given by Ht(x) = H(x, t) for all x ∈ X is

(k0, k1)-continuous.
(•3) for all x ∈ X, the induced function Hx : [0, m]Z → Y given by

Hx(t) = H(x, t) for all t ∈ [0, m]Z is (2, k1)-continuous;
Then we say that H is a (k0, k1)-homotopy between f and g [30].

(•4) Furthermore, for all t ∈ [0, m]Z, assume that the induced map Ht on A is a constant which follows the
prescribed function from A to Y [11] (see also [33]). To be precise, Ht(x) = f (x) = g(x) for all x ∈ A
and for all t ∈ [0, m]Z.
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Then we call H a (k0, k1)-homotopy relative to A between f and g, and we say that f and g are
(k0, k1)-homotopic relative to A in Y, f '(k0,k1)rel.A g in symbols [33].

In Definition 2, if A = {x0} ⊂ X, then we say that F is a pointed (k0, k1)-homotopy at {x0} [30].
When f and g are pointed (k0, k1)-homotopic in Y, we use the notation f '(k0,k1)

g. In the case
k := k0 = k1 and n0 = n1, f and g are said to be pointed k-homotopic in Y and we use the notation
f 'k g to abbreviate f '(k0,k1)

g. If, for some x0 ∈ X, 1X is k-homotopic to the constant map in the
space X relative to {x0}, then we say that (X, x0) is pointed k-contractible [30]. Indeed, motivated by
this approach, the notion of strong k-deformation retract was developed in [18,33].

Based on this k-homotopy, the notion of digital homotopy equivalence initially introduced in [34]
(see also [24]), as follows:

Definition 3. [34] (see also [24]) For two digital images (Z, k) and (W, k) in Zn, if there are k-continuous
maps h : Z → W and l : W → Z such that the composite l ◦ h is k-homotopic to 1Z and the composite
h ◦ l is k-homotopic to 1W , then the map h : Z → W is called a k-homotopy equivalence and is denoted by
Z 'k·h·e W. Moreover, we say that (Z, k) is k-homotopy equivalent to (W, k). In the case that the identity map
1Z is k-homotopy equivalent to a certain constant map c{z0}, z0 ∈ Z, we say that (Z, k) is k-contractible.

In Definition 3, in the case of Z 'k·h·e W, we call that (Z, k) is the same k-homotopy type with
(W, k). In view of Definitions 2 and 3, it is easy to see that the pointed k-contractibility implies the
k-contractibility, but the converse does not hold.

For a given digital image (X, k), by using several notions such as digital k-homotopy
class [26,31,32], Khalimsky operation of two k-homotopy classes [31], trivial extension [30],
the paper [30] defined the digital k-fundamental group, denoted by πk(X, x0), x0 ∈ X. Indeed,
in digital topology there are several kinds of digital fundamental groups [19]. Also, we have the
following: If X is pointed k-contractible, then πk(X, x0) is a trivial group [30]. Hereafter, we shall
assume that each digital image (X, k) is k-connected.

Using the unique digital lifting theorem [11] and the homotopy lifting theorem [29] in digital
covering theory [11,12,16,18–22,33,35], for a non-k-contractible space Cn,l

k , we obtain the following:

Theorem 1. [11] (1) For a non-k-contractible Cn,l
k , πk(Cn,l

k ) is an infinite cyclic group. Indeed, πk(Cn,l
k ) is

trivial if and only if l = 4.
(2) For two non-k-contractible digital images Cn,li

k , i ∈ {1, 2}, πk(Cn,l1
k ∨ Cn,l2

k ) is a free group with two
generators with infinite orders.

This result will be essential in characterizing an alignment of fixed point sets in Sections 3 and 4.
By Theorem 1, Cn,4

3n−1 has the trivial group, n ≥ 2 [11,29,30] and further, C2,4
4 also has the trivial group,

i.e., πk(Cn,4
k ) is trivial if k = 3n − 1, n ∈ N \ {1}, and π4(C2,4

4 ) is also trivial.

Remark 1. [9,15,35] Only a singleton digital image has the FPP.

3. Digital Topological Properties of F(Cn,l
k ∨ Cn,4

k ) Up to 2-Connectedness and Perfectness of
F(Cn,l

k ∨ Cn,4
k )

As mentioned above, for Cn,l
k , in this paper we need to assume l ∈ N0 \ {2} in nature. The study

of digital topological properties of digital wedges Cn,l
k ∨ Cn,4

k , Cn,l
k ∨ Cn,6

k and in general Cn,l1
k ∨ Cn,l2

k
plays an important role in computational or digital topology. This section counts on a certain role
of Cn,4

k that is involved in the perfectness of F(Cn,l
k ∨ Cn,4

k ) (see Definition 5) with some hypothesis.

Indeed, the study of F(Cn,l
k ∨ Cn,4

k ), F(Cn,l
k ∨ Cn,6

k ), and F(Cn,l1
k ∨ Cn,l2

k ), and so on still remains open.

Up to now, it turns out that digital fundamental groups of Cn,l
k ∨ Cn,4

k , Cn,l
k ∨ Cn,6

k and Cn,l1
k ∨ Cn,l2

k are
strongly related to the digital topological features of alignments of fixed point sets of them.
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Definition 4. [4] Given a digital image (X, k),

F(X) := {Fix( f )] | f is a k-continuous self-map of X, i.e., f ∈ Mor(DTC(k))}.

As mentioned in Section 1, this paper calls this F(X) of Definition 4 an “alignment of fixed points
sets of (X, k)”. Indeed, this notion can be used to recognize the cardinalities of fixed point sets of all
k-continuous self-maps f ∈ Mor(DTC(k)) of (X, k). It is obvious that 2 ≤ F(X)] ≤ X] (see Remark 1)
because each identity map of a given digital image (X, k) is a k-continuous map, we obtain X] ∈ F(X).
Namely, for a digital image (X, k) with X] ≥ 2, we see {0, X]} ⊂ F(X).

In relation to the study of F(X), we need to define the following:

Definition 5. Given a digital image (X, k), if F(X) = [0, X]], then we say that F(X) is perfect.

In particular, given a digital image (X, k) in the case that F(X) is not perfect, we need a certain
method of establishing (X′, k) including (X, k) to make F(X′) perfect. Therefore, we intensively explore
n alignment of fixed point sets of several digital wedges.

A recent paper [5] studied F(Cn,l
k ∨ Cn,4

k ). Thus, the study of F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ), F(Cn,l

k ∨ Cn,6
k ),

F(Cn,l
k ∨ Cn,6

k ∨ Cn,6
k ) still remains open. Indeed, the study of these cases strongly plays an important

role in computational or digital topology (see Theorems 2, 3, 4, and 5) because Cn,4
k is a minimal simple

closed k-curve in Zn. Indeed, since Cn,4
k is k-contractible [11,30], its usage is very wide in digital and

computational topology.
Furthermore, unlike the existence of Cn,6

k in DTC, it is well known that there is no simple closed
digital curve with six elements in Z2 (resp. Zn) in the setting of Marcus-Wyse (resp. Khalimsky)
topology [5,27]. Thus, in this section, we firstly study some properties of the perfectness of
F(Cn,l

k ∨ Cn,4
k ), F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ), and so on. Next, in Section 4 will investigate some properties of
F(Cn,l

k ∨ Cn,6
k ), F(Cn,l

k ∨ Cn,6
k ∨ Cn,4

k ), and so on. Moreover, it also develops a certain method of making
F(Cn,l

k ∨ Cn,6
k ) and F(Cn,l

k ∨ Cn,6
k ∨ Cn,4

k ) perfect depending on the number l.
Hereafter, as usual, we say that a digital topological invariant is a property of a digital image

(X, k) which is invariant under a digital k-isomorphism. In other words, a property of a digital image
is digital topological property if whenever a digital image (X, k) possesses that property, then every
digital image k-isomorphic to (X, k) also has that property.

Proposition 2. [4,5] An alignment of fixed point sets of (X, k) is a digital topological invariant.

This section explores some conditions supporting the perfectness of an alignment of fixed point
sets. For Cn,l

k ∈ DTC(k), it is easy to see that F(Cn,l
k ) = [0, l

2 + 1]Z ∪ {l} [4]. Since only a singleton set
has the fixed point property in DTC(k) (see Remark 1) [9,35], any digital image (X, k) with X] ≥ 2 in
DTC has the property 0 ∈ F(X) which is a little bit different feature compared to other digital space in
applied topological space (see [5] for details). Indeed, it is clear that F(C2,4

4 ) = [0, 4]Z = F(Cn,4
3n−1) [4].

The following lemma characterizes a certain relationship between contractibility and perfectness
of Cn,l

k .

Lemma 1. (1) Cn,l
k is k-contractible if and only if F(Cn,l

k ) is perfect.
(2) Cn,l

k is not k-contractible if and only if F(Cn,l
k ) is not perfect.

Proof. The k-contractibility of Cn,l
k depends on the number l.

(1) In the case that Cn,l
k is k-contractible, we obviously obtain l = 4 (see Theorem 1(1)).

Hence F(Cn,4
k ) = [0, 4]Z. Conversely, since F(Cn,l

k ) = [0, l
2 + 1]Z ∪ {l} [4], by the hypothesis,

we obtain that l = 4, which implies the k-contractibility of Cn,l
k .
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(2) In the case l ≥ 6, Cn,l
k is not k-contractible (see Theorem 1). Since F(Cn,l

k ) = [0, l
2 + 1]Z ∪ {l},

we clearly obtain l − 1 /∈ F(Cn,l
k ). By using a method similar to the proof of (1), the converse is

proved.

In view of Theorem 1 and Lemma 1, it appears that F(Cn,l
k ) is perfect if and only if l = 4 and

further, F(Cn,l
k ) is not perfect if and only if l ≥ 6. When the paper [4] proved the non-perfectness of the

fixed point sets of the 3-dimensional digital cube I3 := [0, 1]3Z, the author of [4] used the 6-contractibility
of it. However, we need to point out that the proof is already done in [35]. Regarding Lemma 1, we also
need to remind that not every k-contractible digital image (X, k) has a perfect F(X) [4]. However,
in the case of Cn,l

k , Lemma 1 always holds. Namely, it turns out that the k-contractibility of Cn,l
k implies

the perfectness of F(Cn,l
k ) and the converse also holds. This section, hereafter, mainly investigates

some digital topological properties of F(Cn,l
k ∨ Cn,4

k ) and perfectness of it depending on the number l,
where l ≥ 4. One important thing to note is that we need to remind that the triviality of the digital
k-fundamental group of Cn,l

k ∨Cn,4
k depends on the number l (see Theorem 1). Specifically, Cn,4

k ∨Cn,4
k is

k-contractible [11], and if l ≥ 6, then Cn,l
k ∨Cn,4

k is not k-contractible [11] (see also Theorem 1). Based on
this observation, we obtain the following:

Lemma 2. [5] F(Cn,l
k ∨ Cn,4

k ) is perfect if and only if l ∈ {4, 6, 8, 10}.

Using Figure 1(1–3) and Figure 2(2), we can confirm Lemma 2.
Based on this approach, we now examine if F(Cn,l

k ∨ Cn,4
k ) is perfect depending on the number l.

Theorem 2. For a digital wedge Cn,l
k ∨ Cn,4

k , assume l ≥ 12. Then F(Cn,l
k ∨ Cn,4

k ) has two components up to
2-connectivity such that l + 2 ∈ F(Cn,l

k ∨ Cn,4
k ) and l − 1 /∈ F(Cn,l

k ∨ Cn,4
k ). Specifically, F(Cn,l

k ∨ Cn,4
k ) is not

perfect if and only if l ≥ 12.

Proof. Let us consider any k-continuous self-map f of Cn,l
k ∨ Cn,4

k . Indeed, though there are many
kinds of k-continuous self-maps f of it, regarding F(Cn,l

k ∨ Cn,4
k ), it is sufficient to consider only the

following k-continuous maps f such that

(a) f |Cn,4
k
(x) = x; or

(b) f |Cn,l
k
(x) = x; or

(c) f (Cn,l
k ) ( Cn,l

k and f (Cn,4
k ) ( Cn,4

k (see Figure 1(1–4)); or

(d) f does not support any fixed point of it, i.e., there is no point x ∈ Cn,l
k ∨ Cn,4

k such that f (x) = x,

where f |A means the restriction function f to the given set A. Regarding our consideration with (a)–(d)
above, we may take another cases similar to the cases of (a)–(d) only exhausting F(Cn,l

k ∨ Cn,4
k ). Now,

we can confirm that the case (a) or (b) is related to the identity map 1Cn,l
k ∨Cn,4

k
, f (Cn,l

k ) ⊂ Cn,l
k ∨ Cn,4

k or

f (Cn,4
k ) ⊂ Cn,l

k ∨ Cn,4
k . Thus, they obviously produce the element l + 3 ∈ F(Cn,l

k ∨ Cn,4
k ), where l + 3

is equal to (Cn,l
k ∨ Cn,4

k )]. Next, the case (c) covers all k-continuous self-maps of Cn,l
k ∨ Cn,4

k whose
images by the maps f are simple k-paths on Cn,l

k ∨ Cn,4
k . Finally, the case (d) supports the property

0 ∈ F(Cn,l
k ∨ Cn,4

k ).
Let us now investigate the set of cardinalities of fixed point sets of the maps relagted to the cases

(a)–(d) above.
First, from (a) above, we obtain

[4, 4 +
l
2
]Z ∪ {l + 3} ⊂ F(Cn,l

k ∨ Cn,4
k ). (5)
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Second, based on (b) above, we have

[l, l + 3]Z ⊂ F(Cn,l
k ∨ Cn,4

k ). (6)

Third, owing to (c) and (d) above, we obtain

[0,
l
2
+ 3]Z ⊂ F(Cn,l

k ∨ Cn,4
k ). (7)

After comparing the four numbers l
2 + 3, l, l + 3, and 4 + l

2 from (5)–(7), with the hypothesis of
“l ≥ 12”, we conclude that

F(Cn,l
k ∨ Cn,4

k ) = [0, 4 +
l
2
]Z ∪ [l, l + 3]Z, (8)

which deduces that there is at least an element l − 1 which do not belong to F(Cn,l
k ∨ Cn,4

k ) if l ≥ 12.
Specifically, it appears that there is at least an element l − 1 ∈ [0, l + 3]Z such that

l − 1 /∈ F(Cn,l
k ∨ Cn,4

k ).

Indeed, depending on the number l, the volume of the part

[0, l + 3]Z \ F(Cn,l
k ∨ Cn,4

k ) (9)

is determined. To be specific, according to equality of (8), with the hypothesis of l ≥ 12, let us precisely
examine F(Cn,l

k ∨ Cn,4
k ) (see Figure 1(4)).

(Case 1) If l = 12, then we see that the number 11 does not belong to F(Cn,12
k ∨ Cn,4

k ). To be specific,
we obtain

F(Cn,12
k ∨ Cn,4

k ) = [0, 10]Z ∪ [12, 15]Z.

(Case 2) If l = 14, then owing to (8), it appears that the elements 12, 13 do not belong to F(Cn,14
k ∨Cn,4

k ).
Namely,

F(Cn,14
k ∨ Cn,4

k ) = [0, 11]Z ∪ [14, 17]Z.

(Case 3) If l = 16, then we observe that the numbers 13, 14, and 15 do not belong to F(Cn,16
k ∨Cn,4

k ), i.e.,

F(Cn,16
k ∨ Cn,4

k ) = [0, 12]Z ∪ [16, 19]Z.

(Case 4) If l = 18, then owing to (8), we obtain that the elements 14, 15, 16, and 17 do not belong to
F(Cn,18

k ∨ Cn,4
k ), i.e.,

F(Cn,18
k ∨ Cn,4

k ) = [0, 13]Z ∪ [18, 21]Z.

(Case 5) If l = 20, then we see that the numbers 15, 16, 17, 18, and 19 do not belong to
F(Cn,20

k ∨ Cn,4
k ), i.e.,

F(Cn,l
k ∨ Cn,4

k ) = [0, 14]Z ∪ [20, 23]Z.

(Case 6) If l = 22, then it appears that the elements 16, 17, 18, 19, 20, and 21 do not belong to
F(Cn,22

k ∨ Cn,4
k ), i.e.,

F(Cn,l
k ∨ Cn,4

k ) = [0, 15]Z ∪ [22, 25]Z.

Now, we strongly count on the set

[0, l + 3]Z \ F(Cn,l
k ∨ Cn,4

k )
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which is one component up to 2-connectedness, which deduces that F(Cn,l
k ∨ Cn,4

k ) has only two
components up to 2-connectedness if l ≥ 12.

For instance, though there are countably many cases as a generalization of the above six cases,
just see each of the six cases above according to the formula of (8). Furthermore, the volume of the set
of (9) depends on the number l of F(Cn,l

k ∨ Cn,4
k ) (see the six cases above). In view of the equality of

(8), in the case l ≥ 12, we confirmed that at least the element l − 1 does not belong to F(Cn,l
k ∨ Cn,4

k ),
which implies that F(Cn,l

k ∨Cn,4
k ) is not 2-connected. Hence it is not perfect since F(Cn,l

k ∨Cn,4
k ) has two

components up to 2-connectedness. Eventually, if l ≥ 12, it turns out that F(Cn,l
k ∨ Cn,4

k ) is not perfect.
In addition, one important thing to note is that the number l + 2 is equal to (Cn,l

k ∨Cn,4
k )]− 1 which

is quite different feature compared to the feature of the case F(Cn,l
k ) = [0, l

2 + 1]Z ∪ {l}, l ≥ 6.

In the following Figure 1, the dotted arrows indicate 8-continuous mappings. Moreover, all points
are on Z2 formulating certain C2,l

8 depending on the element l of C2,l
8 .

(1) (2)

(4)(3)

(5)

(6)

(7)

(8)

(0, 0)

(-5, 0)

(-3, 0)

(0, 0)

(0, 0)

(-9, 0)

(0, 0)

(0, 0)

(-6, 0)

(0, 0)

(0, 0)

(-8, 0)

(4, 0)

(6, 0)

Figure 1. (1) F(C2,6
8 ∨ C2,4

8 ) = [0, 9]Z; (2) F(C2,8
8 ∨ C2,4

8 ) = [0, 11]Z; (3) F(C2,10
8 ∨ C2,4

8 ) = [0, 13]Z;
(4) F(C2,12

8 ∨ C2,4
8 ) = [0, 15]Z \ {11}; (5) F(C2,14

8 ∨ C2,4
8 ∨ C2,4

8 ) = [0, 20]Z; (6) F(C2,16
8 ∨ C2,4

8 ∨ C2,4
8 ) =

[0, 22]Z; (7) F(C2,22
8 ∨C2,4

8 ∨C2,4
8 ) = [0, 28]Z \ {19, 20, 21}; and (8) F(C2,18

8 ∨C2,4
8 ∨C2,4

8 ∨C2,4
8 ) = [0, 27]Z.

Indeed, the above two cases such as (Case 4) and (Case 6) in the proof of Theorem 2 will be used in
further studying F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ), F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ∨ Cn,4

k ), and so on (see Theorem 4). In view
of Theorem 2, we obtain the following:
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Remark 2. As a generalization of F(Cn,l
k ∨ Cn,4

k ), for Cn,l1
k ∨ Cn,l2

k , we can have a certain formula similar to
that of (8) depending on the numbers l1 and l2. The current formula of (8) only for the case F(Cn,l

k ∨ Cn,4
k ).

In the case that the number 4 of Cn,4
k is changed into another, the formula of (8) is also changed depending on the

number l of Cn,l
k (compare (8) with (18) of Section 4).

Thanks to the formula in (8), the following is obtained, which will be used in Theorem 4.

Example 1. (1) F(C2,24
8 ∨ C2,4

8 ) does not have the following elements

17, 18, 19, 20, 21, 22, and 23.

(2) F(C2,30
8 ∨ C2,4

8 ) does not contain the following elements

20, 21, 22, 23, 24, 25, 26, 27, 28, and 29.

In view of Example 1, we see that F(Cn,24
k ∨ Cn,4

k ) (cf. see (1) of Example 1) and F(Cn,30
k ∨ Cn,4

k )

(cf. see (2) of Example 1) have the same features with respect to 2-connectedness. Indeed, the number
l ∈ {18, 24, 30} plays an important role in studying some properties of the perfectness of F(Cn,l

k ∨ Cn,4
k ).

Using a method similar to the method suggested in Example 1, we may further consider many cases.

Remark 3. Lemma 4.8 of [4] is incorrectly stated, as follows: To make the paper self-contained, we now write it as
follows: “Let X be connected with n = X]. Then n− 1 ∈ F(X) if and only if there are distinct points x1, x2 ∈ X
with N(x1) ⊂ N∗(x2)," where N(x1) = {y ∈ X | y is k-adjacent to x.} and N∗(x1) = N(x1) ∪ {x1}.
Indeed, for convenience of the reader, we need to understand this situation with a digital image (X, k), i.e.,
we need to represent this situation with Nk(x1) and N∗k (x2). To explain this lemma more precisely, let us
consider the digital image (X, 8) as an example, where X := {0 := x0 := (0, 0), 1 := x1 := (1, 0), 2 := x2 :=
(2, 1), 3 := x3 := (1, 2), 4 := x4 := (0, 2), 5 := x5 := (−1, 1), p := (1, 1)} (see Figure 2(1)). Then we clearly
see that X \ {p} is equal to C2,6

8 . To adapt this digital image (X, 8) into Lemma 4.8 of [4], we can assume two
distinct points p and q ∈ {1, 2, 3} ⊂ X. Then we see that N8(q) ⊂ N∗8 (p) and further, we obviously obtain
F(X) = [0, 7]Z (see the process given through Figure 1(a–d)) so that F(X) is perfect, which satisfies Lemma 4.8
of [4].

However, we now point out that the condition for the assertion need not be “if and only if" with the
following counterexample.

Consider the digital image C2,4
8 ∨ C2,4

8 (see Figure 2(2)). As described in Figure 2(2) via (a)–(c), we can
see that F(C2,4

8 ∨ C2,4
8 ) is also perfect, i.e., F(C2,4

8 ∨ C2,4
8 ) = [0, 7]Z. Despite this situation, we see that there

are not any distinct points x1, x2 in C2,4
8 ∨ C2,4

8 satisfying the condition N8(x1) ⊂ N∗8 (x2), where N8(x1) :=
N(x1) and N∗8 (x2) := N∗(x2). Indeed, for any distinct points x1, x2 in C2,4

8 ∨ C2,4
8 , it is easy to see that

N8(x1) * N∗8 (x2).
As another counterexample, we may consider the case F(C2,4

8 ) = [0, 4]Z and so on.

In view of the previously-obtained results, since Cn,l
k , Cn,l1

k ∨ Cn,l2
k , Cn,l1

k ∨ Cn,l2
k ∨ Cn,l3

k and so on
play important roles in digital topology, let us now intensively explore an alignment of fixed point sets
of them, e.g., F(Cn,l

k ), F(Cn,l1
k ∨ Cn,l2

k ), and so forth.
By Theorem 2, for l ≥ 12, it turns out that F(Cn,l

k ∨ Cn,4
k ) is not 2-connected. Hereafter, let us now

examine if F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is perfect, according to the number l. Specifically, after joining another

Cn,4
k onto Cn,l

k ∨Cn,4
k to establish the new digital wedge Cn,l

k ∨Cn,4
k ∨Cn,4

k (see Figure 1(6,7)), we confirm
the perfectness of F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ) if l ∈ {12, 14, 16}, as follows:
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(1)

(2)

p 2

6

5

0

34

7

5

1

7

p 25

0

34

p 25

34

25

34

(a) (b) (c) (d)

(b)(a) (c)

4

5

3

5

3

7

1
2

3

6
6

2
1

1

Figure 2. In these figures, the dotted arrows indicate 8-continuous mappings in the DTC(8)-setting.
(1) Perfectness of F(X, 8); (2) Perfectness of F(C2,4

8 ∨ C2,4
8 ).

Theorem 3. If l ∈ {12, 14, 16}, then F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is perfect.

Proof. Let us consider any k-continuous self-map f of Cn,l
k ∨ Cn,4

k ∨ Cn,4
k . Indeed, though there are

many kinds of k-continuous self-maps f of it, regarding F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ), it is sufficient to consider

only the maps f such that

(a) f |Cn,4
k
(x) = x; or

(b) f |Cn,l
k
(x) = x; or

(c) f |Cn,l
k ∨Cn,4

k
(x) = x; or

(d) f |Cn,4
k ∨Cn,4

k
(x) = x; or

(e) f (Cn,l
k ) ( Cn,l

k and f (Cn,4
k ) ( Cn,4

k ; or

(f) f does not support any fixed point of it, i.e., there is no x ∈ Cn,l
k ∨ Cn,4

k ∨ Cn,4
k such that f (x) = x.

Let us investigate the set of cardinalities of fixed point sets of k-continuous maps associated with
the cases of (a)–(f) above.

First, from (a) above, we obtain

[4, 7 +
l
2
]Z ∪ {l + 6} ⊂ F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ). (10)

Second, from (b) above, we have

[l, l + 6]Z ⊂ F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ). (11)

Third, from (c) above, we have

[l + 3, l + 6]Z ⊂ F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ). (12)

Fourth, from (d) above, we have

[7, 7 +
l
2
]Z ∪ {l + 6} ⊂ F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ). (13)

Fifth, from (e)–(f), we obtain

[0,
l
2
+ 5]Z ⊂ F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ). (14)

After checking the sets from (10)–(14), we can obtain F(Cn,l
k ∨Cn,4

k ∨Cn,4
k ) according to the numbers

l ∈ {12, 14, 16}, as follows:
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According to these three cases, with the hypothesis of l ∈ {12, 14, 16}, let us precisely investigate
F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ).

(Case 1) If l = 12, then we see that F(Cn,12
k ∨ Cn,4

k ∨ Cn,4
k ) = [0, 18]Z.

(Case 2) If l = 14, then we obtain that F(Cn,14
k ∨ Cn,4

k ∨ Cn,4
k ) = [0, 20]Z (see Figure 1(5)).

(Case 3) If l = 16, then we observe that F(Cn,16
k ∨ Cn,4

k ∨ Cn,4
k ) = [0, 22]Z (see Figure 1(6)).

Hence, it turns out that F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is perfect if l ∈ {12, 14, 16}.

In view of Theorem 3, it turns out that if l ≤ 16, then F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is perfect.

After checking (10)–(14) in the proof of Theorem 3, for l ∈ {18, 20, 22}, let us precisely examine if
F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ) is perfect, as follows:

Theorem 4. If l ≥ 18, then

(1) F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is not 2-connected.

(2) F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) has two components up to 2-connectedness.

Proof. For l ≥ 18, l ∈ N0, after checking the sets from (10)–(14) in the proof of Theorem 3, we obtain
the following:

(Case 1) If l = 18, then we see that

F(Cn,18
k ∨ Cn,4

k ∨ Cn,4
k ) = [0, 24]Z \ {17}.

(Case 2) If l = 20, then we see that

F(Cn,20
k ∨ Cn,4

k ∨ Cn,4
k ) = [0, 26]Z \ {18, 19}.

(Case 3) If l = 22, then we observe that

F(Cn,22
k ∨ Cn,4

k ∨ Cn,4
k ) = [0, 28]Z \ {19, 20, 21}(see Figure 1(7)).

(Case 4) If l ≥ 24, then it is obvious that F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is not 2-connected.

In view of this calculation, if l ≥ 18, l ∈ N0, then

(1) F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is not perfect, and the proof is completed.

(2) Since the set [0, l + 6]Z \ F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ) is 2-connected, it appears that F(Cn,l

k ∨
Cn,4

k ∨ Cn,4
k ) has only two components.

As proved in Theorem 2, in the case l ≥ 12, it turns out that F(Cn,l
k ∨ Cn,4

k ) is not perfect. Then,

after joining a certain Cn,l′
k onto Cn,l

k ∨ Cn,4
k (see Theorem 4) to produce a new digital wedge, we have a

natural question, as follows: For Cn,l
k ∨ Cn,4

k ∨ Cn,l′
k ,

Is F(Cn,l
k ∨ Cn,4

k ∨ Cn,l′
k ) perfect?

Regarding this query, motivated by Theorem 2 (see the Cases (1)–(6) in the proof of Theorem 2),
we have the following: Owing to the cases, (Case 1)–(Case 6), we get some advantages of finding some
more features of F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ), F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ∨ Cn,4

k ), and so on.
In view of Theorem 4, for l ∈ {18, 20, 22}, though F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ) is not perfect, after joining
one Cn,4

k onto Cn,l
k ∨Cn,4

k ∨Cn,4
k to produce Cn,l

k ∨Cn,4
k ∨Cn,4

k ∨Cn,4
k , using a method similar to Theorem 4,

we obtain the following (see Figure 1(8)):
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Corollary 1. If l ≤ 22, l ∈ N0, then F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ∨ Cn,4

k ) is perfect.

Proof. Motivated by the consideration of (a)–(f) suggested in the proof of Theorem 3, we can consider
the following several cases. Though there are many kinds of k-continuous self-maps f of it, regarding
F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ∨ Cn,4
k ), it is sufficient to consider only the maps f such that

(a) f |Cn,4
k
(x) = x; or

(b) f |Cn,l
k
(x) = x; or

(c) f |Cn,l
k ∨Cn,4

k
(x) = x; or

(d) f |Cn,4
k ∨Cn,4

k
(x) = x; or

(e) f |Cn,l
k ∨Cn,4

k ∨Cn,4
k
(x) = x; or

(f) f |Cn,4
k ∨Cn,4

k ∨Cn,4
k
(x) = x; or

(g) f (Cn,l
k ) ( Cn,l

k and f (Cn,4
k ) ( Cn,4

k ; or

(h) f does not support any fixed point of it, i.e., there is no x ∈ Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ∨ Cn,4

k such that
f (x) = x.

Then, using a method similar to the formulas in (10)–(14), we obtain that if l ≤ 22, l ∈ N0, then the
proof is completed.

Corollary 2. If l ∈ {24, 26, 28}, while F(Cn,l
k ∨Cn,4

k ∨Cn,4
k ∨Cn,4

k ) is not 2-connected, F(Cn,l
k ∨Cn,4

k ∨Cn,4
k ∨

Cn,4
k ∨ Cn,4

k ) is perfect.

Specifically, Corollary 2 implies that if l ≥ 24, while F(Cn,l
k ∨ Cn,4

k ∨ Cn,4
k ∨ Cn,4

k ) is not 2-connected,
if l ≤ 28, then F(Cn,l

k ∨ Cn,4
k ∨ Cn,4

k ∨ Cn,4
k ∨ Cn,4

k ) is perfect.

Proof. Using the methods of the proofs of Theorem 3 and Corollary 1, the proof is completed.

4. Non-Perfectness of F(Cn,l
k ∨ Cn,6

k ), l ≥ 6 and perfectness of
F(Cn,l

k ∨ Cn,6
k ∨ Cn,4

k ), l ∈ {4, 6, · · · , 18, 20}

As mentioned in Sections 1 and 3, owing to the certain significant importance of Cn,6
k from the

viewpoint of digital topology, this section mainly focuses on investigating some digital topological
properties of F(Cn,l

k ∨ Cn,6
k ), F(Cn,l

k ∨ Cn,6
k ∨ Cn,4

k ), and so forth. Regarding this study, as proposed in
Section 1 with (Q6) and (Q7), we examine if F(Cn,l

k ∨Cn,6
k ) is perfect. Moreover, we find some condition

that makes F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ) perfect. Indeed, while Cn,l

k ∨ Cn,6
k , l ≥ 6, is not 2-connected, we find a

certain condition that F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ) is perfect. This section, hereafter, mainly investigates some

topological properties of F(Cn,l
k ∨Cn,6

k ) and perfectness of it depending on the number l. One important
consideration is that we need to remind that if l ≥ 6, then the k-fundamental group of Cn,l

k ∨ Cn,6
k is a

free group with two generators of which each of them has an infinite order.

Theorem 5. (1) If l ≥ 6, then F(Cn,l
k ∨ Cn,6

k ) is not perfect.
(2) If l ∈ {6, 8, 10, 12, 14}, then F(Cn,l

k ∨ Cn,6
k ) has two components.

(3) If ≥ 6, then l + 4 /∈ F(Cn,l
k ∨ Cn,6

k ).

Proof. Let us consider any k-continuous self-map f of Cn,l
k ∨ Cn,6

k . Indeed, though there are many kind
of k-continuous maps f , regarding F(Cn,l

k ∨ Cn,6
k ), it is sufficient to consider only the maps f such that

(a) f |Cn,6
k
(x) = x; or

(b) f |Cn,l
k
(x) = x; or
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(c) f (Cn,l
k ) ( Cn,l

k and f (Cn,6
k ) ( Cn,6

k ; or

(d) f does not support any fixed point of it, i.e., there is no point x ∈ Cn,l
k ∨ Cn,6

k such that f (x) = x,

where f |A means the restriction function f to the given set A.
First, from (a) above, since Cn,l

k ∨ Cn,6
k has the cardinality l + 5, we obtain

[6, 6 +
l
2
]Z ∪ {l + 5} ⊂ F(Cn,l

k ∨ Cn,6
k ). (15)

Second, from (b) above, we have

[l, l + 3]Z ∪ {l + 5} ⊂ F(Cn,l
k ∨ Cn,6

k ). (16)

Third, from (c)–(d) above, we obtain

[0,
l
2
+ 4]Z ⊂ F(Cn,l

k ∨ Cn,6
k ). (17)

After comparing the four numbers 6 + l
2 , l, l + 3, and l

2 + 4 from (15)–(17), we conclude that

F(Cn,l
k ∨ Cn,6

k ) = [0, 6 +
l
2
]Z ∪ [l, l + 3]Z ∪ {l + 5}, (18)

Owing to the property (18), for any Cn,l
k , it is obvious that the element

l + 4 /∈ F(Cn,l
k ∨ Cn,6

k ).

Specifically, for any l, l ≥ 6, of Cn,l
k , we always obtain the property

{l + 4} ⊂ [0, l + 5]Z \ F(Cn,l
k ∨ Cn,6

k ).

Moreover, for the number l ∈ {6, 8, 10, 12, 14}, since there is no element between 6 + l
2 and

l in F(Cn,l
k ∨ Cn,6

k ), let us now check the difference between the two numbers 6 + l
2 and l of (18).

Specifically, if l ∈ {6, 8, 10, 12, 14}, then F(Cn,l
k ∨ Cn,6

k ) has two components such as [0, l + 3]Z and the
singleton {l + 5}.

To be specific, with the hypothesis of l ∈ {6, 8, 10, 12, 14}, according to equality of (18), let us
precisely examine F(Cn,l

k ∨ Cn,6
k ) (see Figure 3(1–4)).

(Case 1) If l = 6, then we see that F(Cn,6
k ∨ Cn,6

k ) = [0, 9]Z ∪ {11}.
(Case 2) If l = 8, then it appears that F(Cn,8

k ∨ Cn,6
k ) = [0, 11]Z ∪ {13}.

(Case 3) If l = 10, then we observe that F(Cn,10
k ∨ Cn,6

k ) = [0, 13]Z ∪ {15}.
(Case 4) If l = 12, then we find that F(Cn,12

k ∨ Cn,6
k ) = [0, 15]Z ∪ {17}.

(Case 5) If l = 14, then we see that F(Cn,14
k ∨ Cn,6

k ) = [0, 17]Z ∪ {19}.

At the moment, we need to observe that the set

[0, l + 5]Z \ F(Cn,l
k ∨ Cn,6

k )

has one component up to 2-connectedness.
In view of the equality of (Case 1)–(Case 5) above, it appears that at least the element (Cn,l

k ∨
Cn,6

k )] − 1 does not belong to F(Cn,l
k ∨ Cn,6

k ), which implies that F(Cn,l
k ∨ Cn,6

k ) is not 2-connected so
that it is not perfect either, since F(Cn,l

k ∨ Cn,6
k ) has two components up to 2-connectedness.

Theorem 6. If l ≥ 16, then F(Cn,l
k ∨ Cn,6

k ) has three components up to 2-connectedness.
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Proof. If l ≥ 16, then owing to the difference l
2 − 6 between l and 6+ l

2 from (18), we have the property
that there is at least an element

l − 1 ∈ [0, l + 5]Z \ F(Cn,l
k ∨ Cn,6

k )

since in [0, l + 5]Z \ F(Cn,l
k ∨ Cn,6

k ) the component containing the element l− 1 in F(Cn,l
k ∨ Cn,6

k ) and the
component containing the element l + 4 are disjoint up to 2-connectedness. Hence we concluded that
F(Cn,l

k ∨ Cn,6
k ) has three components. Owing to (18), the volume of the part including the element l − 1

which does not included in F(Cn,l
k ∨ Cn,4

k ) depends on the number l of F(Cn,l
k ∨ Cn,6

k ).
To be specific,

if l = 16, then we see that the numbers 15, 20 do not belong to F(Cn,16
k ∨ Cn,6

k ).

If l = 18, then we see that the numbers 16, 17, 22 do not belong to F(Cn,18
k ∨ Cn,6

k ).

If l = 20, then we see that the numbers 17, 18, 19, 24 do not belong to F(Cn,20
k ∨ Cn,6

k ).

(1) (2)

(4)

(5)

(3)

(0, 0)

(0, 0)

(-7, 0)

(3, 0)

(5, 0)

(0, 0)

(-7, 0)

(0, 0)

Figure 3. In these figures, the dotted arrows indicate 8-continuous self-mappings. (1)–(4) Explanation
of being two components of F(Cn,l

k ∨ Cn,6
k ), l ∈ {8, 10, 12, 14}; (5) Explanation of the perfectness of

F(Cn,l
k ∨Cn,6

k ∨Cn,4
k ) = [0, l + 8]Z, l ∈ {4, 6, 8, 10, 12, 14, 16, 18, 20} (see Theorem 7). In particular, l = 14.

If l ≥ 6, while F(Cn,l
k ∨ Cn,6

k ) is not perfect, we obtain the following:

Theorem 7. If l ≤ 20, then F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ) is perfect.

Proof. Let us consider any k-continuous self-map f of Cn,l
k ∨ Cn,6

k ∨ Cn,4
k (see Figure 3(5)). Indeed,

though there are many kinds of k-continuous maps f , regarding F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ), it is sufficient to

consider only the maps f such that

(a) f |Cn,4
k
(x) = x;

(b) f |Cn,6
k
(x) = x;

(c) f |Cn,l
k
(x) = x;

(d) f |Cn,6
k ∨Cn,4

k
(x) = x:

(e) f |Cn,l
k ∨Cn,6

k
(x) = x;
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(f) f |Cn,l
k ∨Cn,4

k
(x) = x;

(g) f (Cn,l
k ) ( Cn,l

k , f (Cn,6
k ) ( Cn,6

k , and f (Cn,4
k ) ( Cn,4

k (in particular, see Figure 3(5)); and

(h) f does not support any fixed point of it, i.e., there is no point x ∈ Cn,l
k ∨ Cn,6

k ∨ Cn,4
k such that

f (x) = x,

where f |A means the restriction function f to the given set A.
As already mentioned above, though there are indeed so many cases such as the cases (a)–(h)

above for calculating F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ), it is sufficient to consider the above cases from (a)–(h)

exhausting F(Cn,l
k ∨ Cn,6

k ∨ Cn,4
k ).

Using a method similar to the proofs of Theorems 5 and 6, the proof is completed.

Remark 4. Using a method similar to the proof of Theorems 5, 6, and 7, if 6 ≤ l ≤ 12, then F(Cn,l
k ∨ Cn,6

k ∨
Cn,6

k ) is not perfect.

Example 2. In view of Theorem 7, while F(C2,20
8 ∨ C2,6

8 ∨ C2,4
8 ) is perfect, let us show that F(C2,22

8 ∨ C2,6
8 ∨

C2,4
8 ) is not perfect. According to the property (a) of the proof of Theorem 7, we obtain [4, 18]Z ∪ {20} ∪ {30}.

Owing to (b), we have [6, 20]Z ∪ {30}. By (c), we have [22, 28]Z ∪ {30}. By (d), we have [9, 20]Z. Owing to (e),
we have [26, 27]Z. By (f), we have [27, 30]Z. Finally, by (g) and (h), we have [0, 17]Z. In view of this situation,
we obtain F(Cn,22

k ∨ Cn,6
k ∨ Cn,4

k ) = [0, 30]Z \ {21}.

The more generalized cases of Corollaries 1 and 2, and Theorems 5–7 will be dealt in a consecutive
paper shortly.

5. Conclusions and Further Work

We have addressed several issues raised in Section 1, which can facilitate the studies of both
digital topology and fixed point theory. Since there are at least countably many categories of digital
spaces [25,35–37], using many kinds of continuous maps that are involved in the corresponding digital
spaces, we can further study an alignment of homotopy fixed point sets in the categories of KDTC(k)-,
CTC(k)-, and DTC(k), and so on [5]. As a further work, we need to investigate the various properties
of alignments of fixed point sets in the KDTC(k)- or the CTC(k)-setting, and further, to explore some
features of KDTC(k)- or CTC(k)-rigidity. In addition, using an alignment of homotopy fixed point
sets in a KDTC(k)- or a CTC(k)-setting, we can further investigate their digital topological properties.
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