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Abstract: In the literature on modeling commodity futures prices, we find that the stochastic behavior
of the spot price is a response to between one and four factors, including both short- and long-term
components. The more factors considered in modeling a spot price process, the better the fit to
observed futures prices—but the more complex the procedure can be. With a view to contributing
to the knowledge of how many factors should be considered, this study presents a new way of
computing the best number of factors to be accounted for when modeling risk-management of energy
derivatives. The new method identifies the number of factors one should consider in the model and
the type of stochastic process to be followed. This study aims to add value to previous studies which
consider principal components by assuming that the spot price can be modeled as a sum of several
factors. When applied to four different commodities (weekly observations corresponding to futures
prices traded at the NYMEX for WTI light sweet crude oil, heating oil, unleaded gasoline and Henry
Hub natural gas) we find that, while crude oil and heating oil are satisfactorily well-modeled with
two factors, unleaded gasoline and natural gas need a third factor to capture seasonality.
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1. Introduction

Forecasting is not a highly regarded activity for economists and financiers. For some, it evokes
images of speculators, chart analysts and questionable investor newsletters. For others, there are
memories of the grandiose econometric forecasting failures of the 1970’s. Nevertheless, there is a need
for forecasting in risk management. A prudent corporate treasurer or fund manager must have some
way of measuring the risk of earnings, cash flows or returns. Any measure of risk must incorporate
some estimate of the probability distribution of the futures asset prices on which financial performance
depends. Consequently, forecasting is an indispensable element of prudent financial management.

When a company is planning to develop a crude oil or natural gas field, the investment is
significant, and production usually lasts many years. However, there must be an initial investment for
there to be any return (see, for example, [1,2], among others). Assuming that futures values are not
known after a certain date because there is no trade, it makes it difficult to measure the risk of these
projects. Since commodities (crude oil, gas, gasoline, etc.) are physical assets, their price dynamic is
much more complex than financial assets because their prices are affected by storage and transportation
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cost (cost of carry). Due to such complexity, in order to model this price dynamic we need factor
models such as in [3–9]. In addition, in the transport sector [10] and [11] use different factor models for
modeling bulk shipping prices and freight prices.

In order to measure exposure to price risk due to a single underlying asset, it is necessary to
know the dynamics of the term structure of asset prices. Specifically, the value-at-risk (VaR, [12]) of
the underlying asset price, the most widely known measure of market risk [13], is characterized by
knowing the stochastic dynamic of the price, the volatility of the price and the correlation of different
prices at different times. For these reasons, to date, the behavior of commodity prices has been modeled
under the assumption that the spot price and/or the convenience yield of the commodity follow a
stochastic process.

In the literature we find that the spot price is considered as the sum of both short-term and long-term
components (see, for example, [14,15]). Short-term factors account for the mean reverting components
in commodity prices, while long-term factors account for the long-term dynamics of commodity prices,
assuming they follow a random walk. Sometimes a deterministic seasonal component needs to be
added [16].

Following this approach, some multifactor models have been proposed in the literature.
Focusing on the number of factors initially considered, [17] developed a two-factor model to value
oil-linked assets. Later, [14] planned a one-factor model, two-factor model and a three-factor model,
adding stochastic interest rates to the previous factors. This was superseded by a new formulation
which appeared in [15], enhancing the latter article and developing a short-term/long-term model. [18]
added the long-term spot price return as a third risk factor. Finally, [19] offered researchers a general
N-factor model.

At this point, it should be stressed that the decision regarding the number of factors to be used
in the model needs to be made a priori. According to the above literature consulted, the models are
usually planned with two, three or four factors. However, in this study, the need to assume a fixed
number of factors in the model is discounted. We propose a new method that identifies the number of
factors one should consider in the model and the type of stochastic process to be followed. This method
avoids the necessity of inaccurately suggesting a concrete number of factors in the model. This is
very useful for researchers and practitioners because the optimal number of factors could change,
depending on the accuracy needed in each problem. Clearly, if we do not use the optimal number of
factors in modeling the commodity price dynamics, the results will not be optimal.

To the best of our knowledge, there are three previous studies applying principal component
analysis [20] to the modeling of commodity futures price dynamics [21–23]. However, they only model
the futures prices dynamic and ignore the dynamic followed by the spot price and, consequently
carrying the risk of being incoherent, since futures price are the spot price expected value under the
Q measure.

This study aims to add value to previous contributions by assuming that is the spot price can be
modeled as a sum of several factors (long term and short term, seasonality, etc.). Therefore, since it is
widely accepted (see, for example, [24]) that the futures price is the spot price expected value under the
Q measure (Ft,T = E∗[St+T

∣∣∣It]), where St+T is the spot price at time t + T, It is the information available
at time t and E∗[ ] is the expected value under the Q measure.), from the variance–covariance matrix of
the futures prices we can deduce the best structure for modelling the spot prices dynamic.

The remainder of this study is organized as follows. Section 2 presents a general theoretical model
and explains the methodology proposed to set an optimal set of factors. In Section 3, we describe the
datasets used to show the methodology and these results are described. Finally, Section 4 sets out
the conclusions.
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2. Theoretical Model

2.1. Theoretical Model

In the main literature to date (for example, [19]), it is assumed that the commodity log spot price
is the sum of several stochastic factors: St = exp(CXt), t = 0, . . . , n where the vector of state variables
Xt = (x1t, . . . , xNt) follows the process: dXt = Mdt + AXtdt + RdWt, being C, M, A and R vectors’ and
matrices’ parameters.

It is widely accepted that, for the model to be identifiable, some restrictions must be imposed.
This means that if we assume that A is diagonalizable and all its eigenvalues are real (a different
formula is available if some are complex), we can take C = (1, . . . , 1), M

′

= (µ, 0, . . . , 0) and A =
0 0 · · · 0
0 k2 · · · 0
...

...
. . .

...
0 0 · · · kN

, with ki, i = 1, . . . , N the eigenvalues and k1 = 0, by simply changing the state space

basis. Therefore, we already have M, A and C.
It is also easy to prove that as dWt is a N × 1 vector of correlated Brownian motion increments,

R can be assumed as R =


σ1 0 · · · 0
0 σ2 · · · 0
...

...
. . .

...
0 0 · · · σN

. Note that R is not important, but the product RR
′

is what appears in all formulae. In fact, it can be proved that any factorization of RR
′

corresponds
to a different definition of the noise, so we can safely take R as any Choleski factorization of (RR

′

).
In the Black–Scholes world (risk-neutral world), knowing the real dynamics, the risk neutral one is
dXt = M∗dt + AXtdt + RdW∗t where M∗ = M− λ being λ

′

= (λ1,λ2, . . . ,λN) the vector formed from
each state variable’s risk premium).

Following [25], the futures price is given by Ft,T = exp
(
g(T) + CeATXt

)
, where we know explicitly

g(T) = C
∫ T

0 eA(T−s)M∗ds+C
(∫ T

0 eA(T−s)RR′
(
eA(T−s)

)′
ds

)
C′ and where both g(T) and C(T) = eAT are

known deterministic functions independent of t and Xt is a stochastic process with known dynamics.
Defining in a more compact form, we have:{

dXt = (M + AXt)dt + RdWt

Ft,T = exp[δ(T) + φ(T)Xt + ϕ(T)M∗ + εt,T]

2.2. A General Procedure to Determine the Stochastic Factors

In the previous subsection, we have presented the general model for characterizing the commodity
price dynamics based on the assumption that the log commodity spot price is the sum of several factors.
However, to the best of the authors’ knowledge, the optimal number of stochastic factors has not yet
been studied, for these models.

This subsection presents a theoretical procedure to establish the optimal number of factors. It also
presents a way to determine how those factors should be aligned (long-term, short-term, seasonal, etc.).

To address this problem, let us suppose that there are M futures maturities and n observations
of the forward curve, that is, the matrix U = log

(
Ft,Ti

)
, t = 0, . . . , n; i = 1, . . . , M has dimension

M× (n + 1). We further assume, as usual, that n�M. To determine the optimal number of stochastic
factors needed to characterize the commodity price dynamic in the best way, first we must realize that
the number of factors is equal to rank(R) and, from the previous expression, rank(R) has to be equal to
the rank of the variance–covariance matrix of U. If, as usual, the process Xt has a unit root, so it is
non-stationary and the variance and covariances are infinity, we need another matrix to determine the
rank of the variance–covariance matrix of U.
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If we define volatility (instantaneous variance) as σ2
Ti

= lim
h→0

Var
(
log Ft+h,Ti

−log Ft,Ti

)
h , i = 1, . . . , M

and cross-volatility (instantaneous covariance) as σTi,T j = lim
h→0

Cov
(
log Ft+h,Ti

−log Ft,Ti ,log Ft+h,Tj
−log Ft,Tj

)
h ,

i, j = 1, . . . , M (as expected, σ2
Ti
= σTi,T j ), we have the necessary matrix. Although we cannot compute

the limit from the data, we can set h as the shortest time period available and estimate it directly as

σ̂Ti,T j =

 Ĉov
(
log Ft+h,Ti

−log Ft,Ti ,log Ft+h,Tj
−log Ft,Tj

)
h

, where Ĉov is the sample covariance.

We thus define the matrix Θ =
(
Θi j

)
(dim M×M) as Θi j = σTi,T j , i, j = 1, . . . , M. We can estimate

it directly from our database and we can also estimate its rank. Once we have this rank, as stated above
rank(Θ) = rank(R) = N, we know the number of stochastic factors (N) that define the commodity
price dynamics.

From a practical point of view, however, if we follow this procedure as explained above,
unless one futures maturity is a linear combination of the rest (which is not likely), we obtain
rank(Θ) = rank(R) = N. Nevertheless, the weights of these factors are going to be different and most
of them will have an insignificant weight.

Fortunately, from this procedure, we can also estimate the eigenvalues k1, . . . , kN and, from there,
determine the factor weight through the eigenvalues’ relative weight. We can estimate the eigenvalues
of A via a nonlinear search procedure by using the fact that σTi,T j = CeATiRR′

(
eAT j

)′
C′ (see García et

al. 2008) and therefore, Θ can be expressed as Θ = C
(

eAT1 · · · eATM
)
RR′


eAT1

...
eATM


′

C′. σTi,T j is a

linear combination of products of ek1T, . . . , ekNT. In other words, if k1, . . . , kN are the eigenvalues of A,
ek1T, . . . , ekNT must be the eigenvalues of Θ.

Moreover, from the eigenvalues of matrix A, it is also easy to determine the factors. Taking
into account that factors´ Stochastic Differential Equation (SDE) is dXt = Mdt + AXtdt + RdWt, if, for
example, the eigenvalue is k = 0, the factor is a long-term one because the SDE associated with this
factor is a random walk (General Brownian Motion (GBM)): dxit = µidt + σidWit. On the other hand,
if the eigenvalue is k ∈ (−1, 0), the factor is a short-term one because the SDE associated with this
factor is an Ornstein–Uhlenbeck: dxit = λxitdt + σidWit. If the eigenvalue is complex, the factor is a
seasonal one.

From a practical point of view, when we carry out this procedure we get N eigenvalues and we
need to decide how many of them to optimally choose. The way to decide this is through the relative
weight of the eigenvalues. By normalizing the largest one to 1, the smallest eigenvalues represent
negligible factors. This allows us to decide how many factors must be optimally chosen.

In order to clarify concepts, the following example could be useful, if we have M = 9 futures with
maturities at times T1, . . . , T9. The method is as follows.

1. Compute Θ̂i j =

 ˆCov
(
log Ft+h,Ti

−log Ft,Ti ,log Ft+h,Tj
−log Ft,Tj

)
h

.
2. Compute the rank of Θ̂. Let us assume that this is 3.
3. As a result, we have three eigenvalues k1, k2 and k3. It is usual to assume that k1 = 0 as the futures

process is not stationary, but k1 can nevertheless be estimated. If we do assume it, however, we
obtain that σTi,T j is a linear combination of the products of e0T = 1, ek2T and ek3T. Therefore, we

obtain the general equation Θi j = α11 + α12ek2T j + α13ek3T j + α21ek2Ti + α31ek3Ti + α22ek2(Ti+T j) +

α23ek2Ti+k3T j + α23ek2T j+k3Ti + α33ek3(Ti+T j) which can be estimated numerically as:

a. Select an initial estimate of (k2, k3).
b. Regress Θ̂i j and compute the error.
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c. Iteratively select another estimate of (k2, k3) and get back to b.

To the best of the authors’ knowledge, no method has combined the knowledge of this concrete
specification G = Φ(T) with a nonlinear search procedure to identify factors, which is one of the
contributions made by this article.

Once we have determined the optimal number and form of the stochastic factors to characterize
the commodity price dynamics, we can estimate model parameters using standard techniques.
The Kalman filter (see, for example, [26]) uses a complex calibration technique. Other techniques
include approximations such as [18] or [27]. Finally, the recently published option by [28] presents an
optimal way of estimating model parameters by avoiding the use of the Kalman filter. Model parameters
are estimated in the papers and so, for the sake of brevity we do not estimate the parameters in
this study.

3. Data and Main Results

3.1. Data

In this subsection, we briefly describe the datasets used in this study. The datasets include weekly
observations corresponding to futures prices for four commodities: WTI light sweet crude oil, heating
oil, unleaded gasoline (RBOB) and Henry Hub natural gas. These futures were taken into consideration
because they are the most representative and classic among the products. They are futures with many
historical series and futures at many maturities. Therefore, they are considered as ideal for studying
the optimal number of factors that should be chosen.

In this study, two data sets were considered for each commodity. Data set 1 contains less futures
maturities, but more years of observations considered while data set 2 contains more futures maturities,
but less years of observations. For dataset 1 (Table 1A), related to WTI crude oil, it comprised contracts
from 4 September 1989 to 3 June 2013 (1240 weekly observations) for futures maturities from F1 to
F17, F1 being the contract for the month closest to maturity, F2 the contract for the second-closest
month to maturity, etc. In the case of heating oil, it contained contracts from 21 January 1991 to 3 June
2013 (1168 weekly observations) for futures maturities from F1 to F15. Meanwhile, RBOB gasoline
first data set comprised contracts from 3 October 2005 to 3 June 2013 (401 weekly observations) for
futures maturities from F1 to F12 and in the case of Henry Hub natural gas, it contained contracts from
27 January 1992 to 3 June 2013 (1115 weekly observations) for futures maturities from F1 to F16.

Looking at the dataset 2 (Table 1B), in the case of WTI crude oil, it comprised contracts from 18
September 1995 to 3 June 2013 (925 weekly observations) for futures maturities from F1 to F28 and
in the case of heating oil it comprised contracts from 9 September 1996 to 3 June 2013 (874 weekly
observations) for futures maturities from F1 to F18. In the meantime, RBOB gasoline comprised
contracts from 2 February 2007 to 3 June 2013 (330 weekly observations) for futures maturities from F1
to F36 and, to end with, in the case of Henry Hub natural gas, dataset 2 (Table 1B) contained contracts
from 24 March 1997 to 3 June 2013 (856 weekly observations) for futures maturities from F1 to F36.

Table 1 shows the main descriptive statistics of the futures, particularly the mean and volatility,
for each dataset. It is interesting to note that the lack of low-cost transportation and the limited
storability of natural gas made its supply unresponsive to seasonal variation in demand. Thus, natural
gas prices were strongly seasonal [3]. The unleaded gasoline was also seasonal.
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Table 1. Descriptive statistics.

(A) Dataset 1

WTI Crude Oil Gasoline Natural Gas Heating Oil

Mean
($/bbl)

Volatility
(%)

Mean
($/bbl)

Volatility
(%)

Mean
($/MMBtu)

Volatility
(%)

Mean
($/bbl)

Volatility
(%)

F1 43.1 30% 96.7 32% 4.2 45% 63.6 28%
F2 43.3 27% 96.5 30% 4.3 40% 63.8 26%
F3 43.3 25% 96.4 29% 4.3 36% 64.0 24%
F4 43.4 24% 96.3 27% 4.4 32% 64.1 23%
F5 43.3 23% 96.1 27% 4.4 29% 64.1 22%
F6 43.3 22% 95.9 26% 4.4 27% 64.2 21%
F7 43.3 21% 95.7 25% 4.5 26% 64.2 20%
F8 43.2 20% 95.6 26% 4.5 24% 64.1 19%
F9 43.2 20% 95.6 25% 4.5 24% 64.1 19%
F10 43.1 19% 95.4 26% 4.5 22% 64.1 18%
F11 43.1 19% 95.5 25% 4.5 22% 64.1 18%
F12 43.0 18% 95.5 25% 4.5 21% 64.0 17%
F13 43.0 18% 4.5 20% 63.7 17%
F14 42.9 18% 4.5 20% 63.4 17%
F15 42.9 17% 4.5 20% 63.0 17%
F16 42.8 17% 4.5 20%
F17 42.8 17%

(B) Dataset 2

WTI Crude Oil Gasoline Natural Gas Heating oil

Mean
($/bbl)

Volatility
(%)

Mean
($/bbl)

Volatility
(%)

Mean
($/MMBtu)

Volatility
(%)

Mean
($/bbl)

Volatility
(%)

F1 50.9 30% 101.1 32% 4.9 45% 53.3 30%
F2 51.2 28% 100.6 30% 5.0 40% 53.5 28%
F3 51.3 26% 100.3 30% 5.1 38% 53.6 26%
F4 51.3 25% 100.1 28% 5.1 33% 53.7 25%
F5 51.3 24% 99.8 28% 5.2 31% 53.7 24%
F6 51.3 23% 99.6 27% 5.2 28% 53.7 23%
F7 51.3 22% 99.3 26% 5.3 27% 53.7 22%
F8 51.3 21% 99.2 26% 5.3 26% 53.7 21%
F9 51.2 21% 99.1 25% 5.3 25% 53.7 21%
F10 51.2 20% 99.1 27% 5.3 24% 53.6 20%
F11 51.1 20% 99.1 26% 5.3 22% 53.6 19%
F12 51.1 19% 99.1 26% 5.3 21% 53.5 19%
F13 51.0 19% 99.1 26% 5.3 21% 53.3 19%
F14 50.9 19% 99.0 25% 5.3 21% 53.0 19%
F15 50.8 18% 98.9 25% 5.3 21% 53.0 18%
F16 50.8 18% 98.8 23% 5.3 20% 53.5 18%
F17 50.7 18% 98.5 24% 5.3 20% 55.4 18%
F18 50.7 18% 98.3 23% 5.3 19% 58.4 18%
F19 50.6 17% 98.1 23% 5.3 20%
F20 50.5 17% 98.0 23% 5.3 19%
F21 50.5 17% 98.0 23% 5.3 19%
F22 50.4 17% 97.9 24% 5.3 20%
F23 50.4 17% 97.9 23% 5.2 18%
F24 50.3 17% 97.9 24% 5.2 18%
F25 50.3 16% 97.9 24% 5.2 18%
F26 50.2 16% 97.8 23% 5.2 18%
F27 50.2 16% 97.8 24% 5.2 18%
F28 50.1 16% 97.7 23% 5.2 18%
F29 97.6 23% 5.2 18%
F30 97.5 22% 5.2 18%
F31 97.4 22% 5.2 18%
F32 97.4 23% 5.2 19%
F33 97.3 22% 5.2 18%
F34 97.1 23% 5.2 19%
F35 97.0 23% 5.2 18%
F36 97.0 23% 5.2 17%
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3.2. Main Results

We now present the results after applying the method proposed to the 4 commodities (2 datasets
per commodity) described above in order to select the number of factors to model the behavior of
commodity prices. The results correspond to the eigenvalues in decreasing order, the percentage of the
overall variability that they explain and the cumulative proportion of explained variance. These are
reported in Tables 2–5.

Table 2. Eigenvalues for both datasets of the WTI light sweet crude oil.

Dataset 1 Dataset 2

Eigenvalues Percentage of
Total Variance

Cumulative
Variance (%) Eigenvalues Percentage of

Total Variance
Cumulative
Variance (%)

100 99.6713 99.6713 100 99.5448 99.5448
0.3202 0.3191 99.9904 0.4428 0.4408 99.9855
0.0084 0.0084 99.9988 0.0126 0.0125 99.9980
0.0010 0.0010 99.9998 0.0017 0.0017 99.9997
0.0001 0.0001 99.9999 0.0002 0.0002 99.9998

2.9905 × 10−5 2.9806 × 10−5 100 0.0001 0.0001 99.9999
1.2209 × 10−5 1.2169 × 10−5 100 3.7318 × 10−5 3.7148 × 10−5 100
5.4907 × 10−6 5.4727 × 10−6 100 1.6898 × 10−5 1.6821 × 10−5 100
2.7838 × 10−6 2.7746 × 10−6 100 8.7477 × 10−6 8.7079 × 10−6 100
1.5250 × 10−6 1.5200 × 10−6 100 4.4713 × 10−6 4.4509 × 10−6 100
7.5290 × 10−7 7.5043 × 10−7 100 3.0355 × 10−6 3.0217 × 10−6 100
4.3460 × 10−7 4.3317 × 10−7 100 2.3004 × 10−6 2.2899 × 10−6 100
3.3010 × 10−7 3.2901 × 10−7 100 1.3628 × 10−6 1.3566 × 10−6 100
1.8100 × 10−7 1.8041 × 10−7 100 8.7940 × 10−7 8.7540 × 10−7 100
1.1490 × 10−7 1.1452 × 10−7 100 4.7100 × 10−7 4.6886 × 10−7 100
1.0350 × 10−7 1.0316 × 10−7 100 3.6450 × 10−7 3.6284 × 10−7 100
3.9300 × 10−8 3.9171 × 10−8 100 2.3880 × 10−7 2.3771 × 10−7 100

1.8840 × 10−7 1.8754 × 10−7 100
1.4180 × 10−7 1.4115 × 10−7 100
1.1480 × 10−7 1.1428 × 10−7 100
1.0070 × 10−7 1.0024 × 10−7 100
7.7800 × 10−8 7.7446 × 10−8 100
5.4200 × 10−8 5.3953 × 10−8 100
4.7800 × 10−8 4.7582 × 10−8 100
3.8600 × 10−8 3.8424 × 10−8 100
2.3000 × 10−8 2.2895 × 10−8 100
2.1600 × 10−8 2.1502 × 10−8 100
8.9000 × 10−9 8.8595 × 10−9 100

As a general rule, we can consider that the first factor, which corresponds to the first eigenvalue,
was clearly dominant in the sense that it can explain a percentage of the total variance ranging between
95.2% and 99.7%, depending on the commodity. It captures qualitative long-run effects. However, it is
always necessary to consider a second factor capable of taking up short-term effects. Both the first and
second factors explain a cumulative proportion of overall variance between 97.5% and 99.9%, depending
on the case under study. In WTI light sweet crude oil, these two factors explain more than a 99.99% of
the total variance is explained, while in heating oil case studies, these percentages were approximately
99.88% and in unleaded gasoline and Henry Hub natural gas, they were approximately 97–98%.

Consequently, in the first commodity (crude oil) it is recommended that just the first two factors
are considered. The reason is that a third factor will impose a larger estimating effort and a minimum
reduction in terms of error measures. The first factor will capture long-term effects, such as world
economic events, which significantly impact on commodity prices. The second factor will capture the
nature of short-term components such as temporary issues and unforeseen situations. The third and



Mathematics 2020, 8, 973 8 of 12

following stochastic factors can be considered as seasonal factors [28] and, as we know, crude oil is a
non-seasonal commodity. This matter reinforces the idea that it is suitable to consider a model with
only the first two factors.

The next commodity, heating oil, presents some seasonal behavior, which could be captured by a
third factor. The fact that the gain in the percentage of cumulative proportion of overall variance goes
from 99.88 to 99.94 and from 99.90 to 99.94 in its respective datasets suggest the inclusion of a third
factor was not necessary.

Table 3. Eigenvalues for both datasets of the heating oil.

Dataset 1 Dataset 2

Eigenvalues Percentage of
Total Variance

Cumulative
Variance (%) Eigenvalues Percentage of

Total Variance
Cumulative
Variance (%)

100 99.6133 99.6133 100 99.5365 99.5365
0.2698 0.2687 99.8820 0.3666 0.3649 99.9014
0.0658 0.0655 99.9475 0.0475 0.0472 99.9486
0.0474 0.0472 99.9947 0.0448 0.0446 99.9932
0.0028 0.0028 99.9975 0.0037 0.0037 99.9969
0.0013 0.0013 99.9988 0.0012 0.0012 99.9981
0.0009 0.0008 99.9997 0.0011 0.0011 99.9992
0.0001 0.0001 99.9998 0.0005 0.0005 99.9997
0.0001 0.0001 99.9999 0.0001 0.0001 99.9998

4.7937 × 10−5 4.7752 × 10−5 99.9999 0.0001 0.0001 99.9999
1.9734 × 10−5 1.9658 × 10−5 100 4.1450 × 10−5 4.1257 × 10−5 99.9999
1.1626 × 10−5 1.1581 × 10−5 100 2.8767 × 10−5 2.8633 × 10−5 99.9999
1.0482 × 10−5 1.0441 × 10−5 100 1.5784 × 10−5 1.5711 × 10−5 100
9.6273 × 10−6 9.5901 × 10−6 100 1.3478 × 10−5 1.3416 × 10−5 100
6.3346 × 10−6 6.3101 × 10−6 100 9.3425 × 10−6 9.2992 × 10−6 100

7.9877 × 10−6 7.9507 × 10−6 100
6.1859 × 10−6 6.1572 × 10−6 100
5.7507 × 10−6 5.7240 × 10−6 100

Conversely, for the unleaded gasoline and Henry hub natural gas, at least a third factor seemed
to be necessary. Both were seasonal commodities (see, for example, [3]). They were characterized by
very limited storability and their prices were highly dependent on the commodity demand. Third and
fourth factors will acknowledge this behavior. It seems necessary to capture more than long-term and
short-term dynamics. Depending on the cumulative variance, if we would like to explain (98–99%),
we need to consider at least a third factor or two more. In the unleaded gasoline case, the inclusion of
a third factor would increase the cumulative proportion of overall variance from 98.48% to 99.73%
and from 97.49% to 98.73%. However, with a fourth factor, we would reach 99.86% and 99.76%,
respectively. When we apply the methodology proposed to Henry Hub natural gas datasets, we also
verify the need to consider a third and even a fourth factor to explain 99.80% and 99.65% of the total
variance, respectively.
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Table 4. Eigenvalues for both datasets of the unleaded gasoline (RBOB).

Dataset 1 Dataset 2

Eigenvalues Percentage of
Total Variance

Cumulative
Variance (%) Eigenvalues Percentage of

Total Variance
Cumulative
Variance (%)

100 96.8591 96.8591 100 95.2473 95.2473
1.6748 1.6222 98.4813 2.3570 2.2450 97.4924
1.2901 1.2496 99.7308 1.3050 1.2429 98.7353
0.1334 0.1292 99.8600 1.0762 1.0250 99.7603
0.0558 0.0540 99.9140 0.0639 0.0608 99.8212
0.0386 0.0374 99.9515 0.0599 0.0570 99.8782
0.0217 0.0210 99.9724 0.0437 0.0416 99.9198
0.0156 0.0151 99.9876 0.0217 0.0206 99.9405
0.0093 0.0090 99.9966 0.0208 0.0198 99.9602
0.0022 0.0022 99.9988 0.0171 0.0163 99.9765
0.0009 0.0009 99.9997 0.0074 0.0070 99.9835
0.0003 0.0003 100 0.0049 0.0047 99.9882

0.0030 0.0029 99.9910
0.0025 0.0024 99.9935
0.0019 0.0018 99.9953
0.0012 0.0011 99.9964
0.0008 0.0008 99.9972
0.0006 0.0006 99.9978
0.0004 0.0004 99.9982
0.0004 0.0003 99.9986
0.0003 0.0003 99.9989
0.0003 0.0003 99.9991
0.0002 0.0002 99.9993
0.0001 0.0001 99.9995
0.0001 0.0001 99.9996
0.0001 0.0001 99.9997
0.0001 0.0001 99.9997
0.0001 0.0001 99.9998
0.0001 0.0000 99.9999

3.8439 × 10−5 3.6612 × 10−5 99.9999
2.8300 × 10−5 2.6955 × 10−5 99.9999
2.4205 × 10−5 2.3055 × 10−5 99.9999
1.9530 × 10−5 1.8602 × 10−5 100
1.5016 × 10−5 1.4303 × 10−5 100
1.2694 × 10−5 1.2091 × 10−5 100
9.9475 × 10−6 9.4747 × 10−6 100

These results are coherent with the patterns shown in the futures contracts of each commodity.
By considering seasonality as a stochastic factor instead of a deterministic one, we can choose from
two- to four-factor models to better model the behavior of commodity prices. It should be noted that
the long-term and short-term effects, captured by the first two factors, are clearly dominant in terms of
their eigenvalues’ relative weight. However, the seasonality should be considered if necessary.

It is important to bear in mind that the distinction between long term and short term is not always
direct. It is related to the eigenvalue of the factor, which, as we have stated, is always in the form ek

with k ≤ 0 (a positive k would mean an explosive process, which is clearly not observed in the data).
If k = 0, we have a long-term effect (a unit root). The more negative k is, the shorter the effect.

Therefore, k = −1 means a much shorter effect than k = −0.01, for example.
Explanation capacities of each factor are measured according to their (relative) contribution to the

global variance. For example, if there is a unique factor related to eigenvalue k = 0 that gives 90% of
variance, we would conclude that long term dynamics explain 90% of the variance.
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Table 5. Eigenvalues for both datasets of the henry hub natural gas.

Dataset 1 Dataset 2

Eigenvalues Percentage of
Total Variance

Cumulative
Variance (%) Eigenvalues Percentage of

Total Variance
Cumulative
Variance (%)

100 97.8179 97.8179 100 95.8957 95.8957
1.1564 1.1311 98.9491 2.7972 2.6824 98.5782
0.4785 0.4681 99.4172 0.5993 0.5747 99.1529
0.3960 0.3874 99.8046 0.5221 0.5007 99.6535
0.0839 0.0821 99.8867 0.1178 0.1130 99.7665
0.0730 0.0714 99.9580 0.0993 0.0952 99.8617
0.0223 0.0218 99.9798 0.0782 0.0750 99.9367
0.0052 0.0050 99.9849 0.0166 0.0159 99.9527
0.0039 0.0038 99.9887 0.0074 0.0071 99.9598
0.0031 0.0030 99.9917 0.0070 0.0067 99.9665
0.0027 0.0027 99.9944 0.0060 0.0057 99.9722
0.0023 0.0023 99.9967 0.0051 0.0049 99.9772
0.0012 0.0012 99.9979 0.0048 0.0046 99.9818
0.0010 0.0010 99.9988 0.0038 0.0037 99.9854
0.0007 0.0007 99.9995 0.0032 0.0031 99.9886
0.0005 0.0005 100 0.0024 0.0023 99.9908

0.0020 0.0019 99.9927
0.0018 0.0017 99.9944
0.0017 0.0016 99.9961
0.0013 0.0012 99.9973
0.0010 0.0009 99.9983
0.0006 0.0006 99.9988
0.0003 0.0003 99.9991
0.0002 0.0002 99.9993
0.0002 0.0002 99.9995
0.0001 0.0001 99.9996
0.0001 0.0001 99.9997
0.0001 0.0001 99.9998
0.0001 0.0001 99.9998
0.0001 0.0001 99.9999

3.2345 × 10−5 3.1018 × 10−5 99.9999
2.8128 × 10−5 2.6974 × 10−5 100
1.5565 × 10−5 1.4926 × 10−5 100
1.2489 × 10−5 1.1977 × 10−5 100
9.3473 × 10−6 8.9637 × 10−6 100
7.6972 × 10−6 7.3813 × 10−6 100

It should be noted that this article focuses on the econometric theory and identifies the optimal
number of factors to characterize the dynamics of commodity prices. Apart from this econometric
approach, where each factor represents a component—long term, short term, seasonal, etc.—these
factors may also capture economic forces [29–31]. In other words, there are economic forces that are
being captured by these factors, such as technology effects (long term) or the functioning of the market
(short term). Following [15], we argue that the long-term factor reflects expectations of the exhaustion
of the existing supply, improvements in technology for the production and discovery of the commodity,
inflation, as well as political and regulatory effects. The short-term factor reflects short-term changes in
demand or intermittent supply disruptions. An interpretation of seasonal factors can be found in [3].

This method provides a new selection criterion for obtaining the optimal number of factors. It is
always important to keep in mind the purpose of modeling such commodity prices. If we need more
accuracy because, for example, we are designing investment strategies, the consideration of more
factors is understandable. We could also use fewer factors in a different case.

This is important because, on one hand, if we use too many factors the model will be too complex
and parameter estimation may not be accurate. On the other hand, if we use too few factors the model
will not be acceptable because it will not capture all the characteristic of the price dynamics that we
need to consider in order to solve our problem.
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We believe our findings to be very useful for researchers and practitioners. Based on our findings,
a researcher who needs to model a commodity price dynamic can use our method to identify the
number and the characteristics of the factors to be included in the model. Moreover, a practitioner who
is investing or measuring risk can also use our methodology in order to identify the optimal number of
factors needed and their characteristics.

Finally, as stated above, we have chosen to order the factors according to their relative (joint)
contribution to variance because it is a direct and simple way to interpret the results. We are aware
that collinearity and, in general, correlation structures can modify the results. However, since the
first eigenvalue explains around 95% of variance, it seems unlikely that results are going to change
substantially by a more refined analysis.

4. Summary and Conclusions

In this article, we propose a novel methodology for choosing the optimal number of stochastic
factors to be included in a model of the term structure of futures commodity prices. With this method,
we add to the research related to the way we characterize commodity price dynamics.

The procedure is based on the eigenvalues of the variance–covariance matrix. Moreover, in deciding
how many of them to choose, we propose using the relative weight of the eigenvalues and the percentage
of the total variance explained by them and balancing this with the effort of estimating more parameters.

In this article, we applied our method to eight datasets, corresponding with four different
commodities: crude oil, heating oil, unleaded gasoline and natural gas. Results indicate that to
model the first two commodity prices two factors are suitable, which corresponds with the two
biggest eigenvalues, since they are sufficient to account for both long-term and short-term structures.
Nevertheless, in the case of unleaded gasoline and natural gas, a third or even fourth factor is needed.
We think that, in accordance with the literature, this is related to their seasonal behavior.

Our results support the notion that including too many or too few factors or factors with
characteristics which are not optimal in a model for commodity prices could lead to results which may
not be as accurate as they should be.
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