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Abstract: In almost contact metric manifolds, we consider two kinds of submanifolds: pointwise slant,
pointwise semi-slant. On these submanifolds of cosymplectic, Sasakian and Kenmotsu manifolds,
we obtain characterizations and study their topological properties and distributions. We also give
their examples. In particular, we obtain some inequalities consisting of a second fundamental form, a
warping function and a semi-slant function.
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1. Introduction

Given a Riemannian manifold (N, g) with some additional structures, there are several kinds of
submanifolds:

Almost complex submanifolds ([1-4]), totally real submanifolds ([5-8]), CR submanifolds ([9-12]), QR
submanifolds ([13-16]), slant submanifolds (([17-22]), pointwise slant submanifolds ([23-25]), semi-slant
submanifolds ([26-29]), pointwise semi-slant submanifolds [30], pointwise almost h-slant submanifolds
and pointwise almost h-semi-slant submanifolds [31], etc.

As a generalization of almost complex submanifolds and totally real submanifolds of an almost
Hermitian manifold, B. Y. Chen [17] introduced a slant submanifold of an almost Hermitian manifold
in 1990. After that, many geometers studied slant submanifolds ([18-22,32], etc.).

As a generalization of CR-submanifolds and slant submanifolds of an almost Hermitian manifold,
N. Papaghiuc [28] defined the notion of semi-slant submanifolds of an almost Hermitian manifold in
1994. After that, many geometers investigated semi-slant submanifolds ([26,27,29,33,34], etc.).

In 1998, F. Etayo [24] defined pointwise slant submanifolds. In 2012, B. Y. Chen and O. ]. Garay [23]
investigate pointwise slant submanifolds. In 2013, B. Sahin [30] gives the notion of pointwise semi-slant
submanifolds. In 2014, on an almost quaternionic Hermitian manifold the author in [31] obtains some
properties of pointwise almost h-slant submanifolds and pointwise almost h-semi-slant submanifolds.

As a generalization of slant submanifolds and semi-slant submanifolds of an almost contact
metric manifold, we will define the notions of pointwise slant submanifolds and pointwise semi-slant
submanifolds of an almost contact metric manifold. Throughout the paper, we will see the similarity
and the difference among cosymplectic manifolds, Sasakian manifolds and Kenmotsu manifolds.

We organize the paper as follows. In Section 2 we deal with some necessary notions. In Section 3
we recall some basic notions in almost contact metric manifolds. In Section 4 we define pointwise slant
submanifolds of an almost contact metric manifold and deal with their properties. In Section 5 we
investigate their topological properties. In Section 6 we give their examples. In Section 7 we define
pointwise semi-slant submanifolds of an almost contact metric manifold. In Section 8 we consider
distributions and totally umbilic submanifolds in cosymplectic, Sasakian and Kenmotsu manifolds.
In Section 9 we have the non-existence of warped product submanifolds and investigate their properties.
In Section 10 we obtain inequalities consisting of a second fundamental form, a warping function and a
semi-slant function in cosymplectic, Sasakian and Kenmotsu manifolds. Finally, we give their examples.

Mathematics 2020, 8, 985; d0i:10.3390/math8060985 www.mdpi.com/journal/mathematics


http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0002-6539-6216
http://dx.doi.org/10.3390/math8060985
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/6/985?type=check_update&version=2

Mathematics 2020, 8, 985 2 of 33

2. Preliminaries

Let (N, g) be a Riemannian manifold, where N is a n-dimensional C*®-manifold and g is a
Riemannian metric on N. Let M be a m-dimensional submanifold of (N, g).

Denote by TM+* the normal bundle of M in N.

Denote by V and V the Levi-Civita connections of M and N, respectively.

Then the Gauss and Weingarten formulas are given by

VxY = VxY+h(X,Y), (1)
VxZ = —AzX+DxZ, )

respectively, for tangent vector fields X, Y € T'(TM) and a normal vector field Z € T(TM*), where h
denotes the second fundamental form, D the normal connection and A the shape operator of M in N.
The second fundamental form and the shape operator are related by

(AzX,Y) = (h(X,Y),Z), ®)

where (, ) denotes the induced metric on M as well as the Riemannian metric g on N.

Choose a local orthonormal frame {ey,- - - ,e, } of TN such thatey, - - - , e, are tangent to M and
em+1, - - ,en are normal to M.

Then the mean curvature vector H is defined by

H:= l1‘raceh _1 ih(e- e;) 4)
L m - m = it

and the squared mean curvature is given by H? := (H, H).
The squared norm of the second fundamental form # is defined by

m

|12 ==} (h(ei e)), heisep)). ®)

ij=1

Let (B, gg) and (F, gr) be Riemannian manifolds, where gg and g are Riemannian metrics on
manifolds B and F, respectively. Let f be a positive C*-function on B. Consider the product manifold
B x F with the natural projections 711 : B x F +— Band 73 : B x F + F. The warped product manifold
M =B x¢ F is the product manifold B x F equipped with the Riemannian metric ¢ such that

[1XI[2 = [drmi X[ + 2 (1 (x) | [d 2 X | |2 (®)

for any tangent vector X € T, M, x € M.

Hence,

gm = 88 + f785-

We call the function f the warping function of the warped product manifold M [35].

If the warping function f is constant, then the warped product manifold M is called trivial.

Given vector fields X € T(TB) and Y € I'(TF), we get their natural horizontal lifts X, Y € I'(TM)
such that d71; X = X and dmY =Y.

For convenience, we will identify X and Y with X and Y, respectively.

Choose a local orthonormal frame {ej, - ,en} of the tangent bundle TM of M such that
e1, -+ ,em; € I(TB) and ey, 41, - ,em € T(TF).

Then we have

Af= izz«veie»f 29 )

Given unit vector fields X, Y € T(TM) such that X € T(TB) and Y € I'(TF), we obtain
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VxY =VyX = (XInf)Y, ®)
where V is the Levi-Civita connection of (M, gu).
Thus,
K(X N Y) = <VyVXX —VxVyX, Y> 9)
1
= FVxXf - Xf),
where K(X A'Y) denotes the sectional curvature of the plane < X,Y > spanned by X and Y over R.
Hence,
A il
ff = ;K(ei AN E]) (10)

foreachj=m;+1,---,m.
Throughout this paper, we will use the above notations.

3. Almost Contact Metric Manifoldsn

In this section, we remind some notions in almost contact metric manifolds and we will use them later.
Let N be a (21 + 1)-dimensional C*®-manifold with a tensor field ¢ of type (1,1), a vector field ¢
and a 1-form 7 such that

¢*=-I+n®¢ 1@ =1 (11)
where I denotes the identity endomorphism of TN. Then we have [36]
¢ =0, no¢=0. (12)

We call (¢, ¢, ) an almost contact structure and (N, ¢, &, 77) an almost contact manifold. If there is
a Riemannian metric g on N such that

g(PX, ¢Y) = g(X,Y) —n(X)n(Y) (13)

for any vector fields X,Y € I'(TN), then we call (¢, ¢, 7, g) an almost contact metric structure and
(N,¢,¢,1,g) an almost contact metric manifold. The metric g is called a compatible metric. By
replacing Y by ¢ at (13), we obtain

1(X) = 8(X,8). (14)

Define ®(X,Y) := g(X, ¢Y) for vector fields X, Y € T(TN). Since ¢ is anti-symmetric with respect
to g, the tensor @ is a 2-form on N and is called the fundamental 2-form of the almost contact metric
structure (¢, ¢, 1,g). We can also choose a local orthonormal frame {Xj,- - -, Xy, ¢Xq,- -+ ,¢Xn, §} of
TN and we call it a ¢-frame. An almost contact metric manifold (N, ¢, ¢, 77, g) is said to be a contact
metric manifold (or almost Sasakian manifold) [37] if it satisfies

P =dy. (15)
It is easy to check that given a contact metric manifold (N, ¢, ¢, 7, g), we get
(dn)" A #0. (16)
The Nijenhuis tensor of a tensor field ¢ is defined by
N(X,Y) := ¢*[X, Y] + [pX, ¢Y] — 99X, Y] — ¢[X, ¢Y] (17)

for any vector fields X, Y € T'(TN). We call the almost contact metric structure (¢, ¢, 77, g) normal if
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N(X,Y) +2d5(X,Y)E =0 (18)

for any vector fields X,Y € I'(TN).

A contact metric manifold (N, ¢, ¢, 7, g) is said to be a K-contact manifold if the characteristic
vector field ¢ is Killing. It is well-known that for a contact metric manifold (N, ¢, &, 7, g), ¢ is Killing if
and only if the tensor h:= %Lgcp vanishes, where L denotes the Lie derivative [36].

Given a contact metric manifold N = (N, ¢, ¢, 17, g), we know that (i) hisa symmetric operator, (ii)
Vxé = —¢X — ¢phX for X € T(TN), where V is the Levi-Civita connection of N, (iii) / anti-commutes
with ¢ and trace(h) = 0 [36]. Using the above three properties, A. Lotta proved Theorem 2 [20].

An almost contact metric manifold (N, ¢, &, 7, g) is called a Sasakian manifold if it is contact and
normal. Given an almost contact metric manifold (N, ¢, &, 1, ), we know that it is Sasakian if and
only if

(Vx9)Y = g(X,Y)E - y(Y)X (19)

for X,Y € T(TN) [36]. If an almost contact metric manifold (N, ¢, , 77, ) is Sasakian, then we have
Vx& = —¢X (20)

for X € T(TN) [36].
Moreover, a Sasakian manifold is a K-contact manifold [36].
An almost contact metric manifold (N, ¢, ¢, 77, g) is said to be a Kenmotsu manifold if it satisfies

(Vx9)Y = 8(¢X,Y)T = n(Y)9pX (1)

for X,Y € T(TN) [36]. From (21), by replacing Y by ¢, we easily obtain
Vx¢=X-n(X)¢ (22)

for X e T(TN) [36].

An almost contact metric manifold (N, ¢, &, 7, g) is called an almost cosymplectic manifold if 7
and @ are closed. An almost cosymplectic manifold (N, ¢, &, 1, g) is said to be a cosymplectic manifold
if it is normal [37]. Given an almost contact metric manifold (N, ¢, ¢, 7, <), we also know that it is
cosymplectic if and only if ¢ is parallel (i.e., V¢ = 0) [36].

Given a cosymplectic manifold (N, ¢, ¢, 1,), we easily get

V¢ =0, V=0, and V¢ = 0. (23)
Throughout this paper, we will use the above notations.

4. Pointwise Slant Submanifolds
In this section we define the notion of pointwise slant submanifolds of an almost contact metric

manifold and study its properties.

Definition 1. Let N = (N, ¢,¢,1,8) be a (2n + 1)-dimensional almost contact metric manifold and M a
submanifold of N. The submanifold M is called a pointwise slant submanifold if at each given point p € M
the angle 6 = 0(X) between ¢X and the space M is constant for nonzero X € M,, where M, := {X €

TyM|[g(X,¢(p)) = 0}
We call the angle 6 a slant function as a function on M.
Remark 1.

1. In other papers ([19,20], etc.), the slant angle 0 of a submanifold M in an almost contact metric manifold
(N,¢,¢&,1,8) is defined in a little bit different way as follows:
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Assume that { € T(TM). Given a point p € M, if the angle 6 = 6(X) between ¢pX and T, M is constant
for nonzero X € T,M — {&(p)}, then we call the angle 6 a slant angle.

Two definitions for the slant angle of a submanifold in an almost contact metric manifold are essentially
same when ¢ € T'(TM). Our definition has some advantages as follows: First of all, our definition does not
depend on whether the vector field ¢ is tangent to M or the vector field ¢ is normal to M. Secondly, we
have more simple form like this (See Lemma 1): T>X = — cos® 6X for X € M,, which is the same form

with the case of an almost Hermitian manifold, etc..
2. If6: M [0,7%), then by using Theorem 3.3 of [20], we obtain that either ¢ is tangent to M or { is

normal to M.
3. Like examples of Section 6, we need to deal with our notion both when ¢ is tangent to M and when ¢ is

normal to M so that by (1), our definition is more favorite.

Remark 2.

1. If the slant function 6 is constant on M, then we call M a slant submanifold.
If 0 = 0 on M, (which implies ¢(TM) C TM), then we call M an invariant submanifold.
3. If0 = % on M, (which implies ¢(TM) C TM), then we call M an anti-invariant submanifold.

o

Let M be a pointwise slant submanifold of an almost contact metric manifold (N, ¢, ¢, 77, g) with
the slant function 6.
For X € T(TM), we write
$pX =TX+FX, (24)

where TX € T(TM) and FX € T(TM%).
For Z € T(TM™'), we obtain
¢Z =1tZ+fZ, (25)

where tZ € T(TM) and fZ € T(TM™).
LetT'M:= |J M, = |J {XeT,M|g(X&(p) =0}
peEM pEM
Then we get

Lemma 1. Let M be a submanifold of an almost contact metric manifold N = (N, $,&,1,8). Then M is a
pointwise slant submanifold of N if and only if T> = — cos? 6 - I on T' M for some function  : M + R.

Proof. Suppose that M is a pointwise slant submanifold of N with the slant function 6 : M — R.
Given a point p € M, if 6(p) = 7, then trivial! If (p) # 7, then for any nonzero X € M, we have

_ 80X, TX) _||ITX|
XTI TTX]] ~ [1X]]

cosO(p) (26)

so that cos? 0(p)g(X, X) = g(TX, TX) = —g(T?X, X). Replacing X by X + Y, Y € M,, we obtain
g((T? + cos?0(p) )X, Y) + g(X, (T? + cos®8(p)I)Y) = 0.
T2 + cos? 6(p)I is also symmetric so that
(T? + cos?8(p) )X = 0. 27)

Conversely, if T?> = — cos? §I on T' M for some function 6 : M + R, then we have g(TX, TX) =
—g(T?X, X) = cos® 8(p)g(X, X) for any nonzero X € My, p € M so that

g(TX, TX)

cos? 8(p) = S(X,X)

(28)

which implies that arccos(| cos 8(p)|) is a slant function on M.
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Hence, M is a pointwise slant submanifold of N. [
Remark 3. Let M be a pointwise slant submanifold of an almost contact metric manifold (N, ¢, &, 1, g) with
the slant function 0. By using Lemma 1, we easily get
g(TX,TY) = cos?0g(X,Y), (29)

g(FX,FY) = sin?0g(X,Y), (30)

for X,Y € T(T'M). At each given point p € M with 0 < 6(p) < %, by using (29) we can choose an
orthonormal basis {X1,sec0TXy, - - - , Xy, sec 0T X} of M.

Using Lemma 1, we obtain

Corollary 1. Let M be a pointwise slant submanifold of an almost contact metric manifold (N, ¢, &, 1, g) with
the nonconstant slant function 6 : M — R. Then M is even-dimensional.

In a similar way to Proposition 2.1 of [24], we have

Proposition 1. Let M be a 2-dimensional submanifold of an almost contact metric manifold (N, $, ¢, 1, g).
Then M is a pointwise slant submanifold of N.

Proof. Given a point p € M, we consider it at two cases.
If & ¢ I'(T,M"), then since dim M, = 1 and g(¢X, X) = 0 for X € M,, we immediately obtain
—_x

0(p) = 3.
If ¢ € T(T, M), then we choose an orthonormal basis {X, Y} of T,M. Let « := g(X, ¢Y). Given
any nonzero vector Z = aX +bY € T,M, a,b € R, we get

TZ =g(¢Z, X)X +8(¢Z,Y)Y = bg(X,¢Y)X —ag(X,¢Y)Y = baX — anY

so that

¢(02,72)  ||TZ]]
cosf(Z) = = = |af,
@) = T{ipzITTz = Tz =

which means the result. [
Remark 4. Proposition 1 gives us a kind of examples for pointwise slant submanifolds.
In a similar way to Theorem 2.4 of [24], we obtain

Theorem 1. Let M be a pointwise slant connected totally geodesic submanifold of a cosymplectic manifold
(N,¢,¢,1,8). Then M is a slant submanifold of N.

Proof. Given any two points p,q € M, we choose a C*®-curve c : [0,1] — M such that ¢(0) = p and
c(1) = g. For nonzero X € M, we take a parallel transport Z(t) along the curve c in M such that
Z(0) = X and Z(1) = Y. Then since M is totally geodesic,

0=VoZ(t) = VuZ(t), (31)

where V and V are the Levi-Civita connections of M and N, respectively. By the uniqueness of parallel
transports, Z(t) is also a parallel transport in N. Since ¢ is parallel (see (23)), we have

%g(z(t),ff) =g(VeZ(t),8) +g(Z(t), V&) =0 and g(Z(0),¢) =0 (32)
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so that
0=g(2(1),5) =g(Y,%),

which implies Y € M,.
By (23),
VedZ(t) = (Vo) Z(t) + 9V Z(t) = 0

so that ¢Z(t) becomes a parallel transport along ¢ in N such that $Z(0) = ¢X and ¢pZ(1) = ¢Y.

Defineamap 7 : T,N — T,Nby t(U) = V for U € TyN and V € T;N, where W(t) is the parallel
transport along ¢ in N such that W(0) = U and W(1) = V. Then 7 is surely isometry. It is easy to
check that T(T,M) = TyM and T(T,M~) = T,M= so that T(¢X) = ¢Y means T(TX) = TY.

Hence,

Ty 7Yl
cos8(p) =g = vy~ <sf@)

where 6 is the slant function on M.
Therefore, the result follows. [

Using Proposition 1 and Theorem 1, we get

Corollary 2. Let M be a 2-dimensional connected totally geodesic submanifold of a cosymplectic manifold
(N,¢,&,1,8). Then M is a slant submanifold of N.

Remark 5. Corollary 2 gives us a kind of examples for slant submanifolds.

Now, we need to mention A. Lotta’s result [20], which is the generalization of the well-known
result of K. Yano and M. Kon [38].

Theorem 2 ([20]). Let M be a submanifold of a contact metric manifold N = (N, $,&,1,8). If & is normal to
M, then M is a anti-invariant submanifold of N.

Remark 6.

1.  As we know, Theorem 2 is very strong and it implies that there do not exist submanifolds M with
¢ € T(TM?') in a contact metric manifold (N, ¢,&,1,8) such that either {X,pX} C M, for some
nonzero X € My, p € Mor2dimM > dim N + 1.

2. If N is either cosymplectic or Kenmotsu, then Theorem 2 is not true (see Examples 2 and 3) and we easily
check that the arqument of the proof of Theorem 2 at [20] does not give any information anymore.

3. In the view point of (1) and (2), we may think that Sasakian manifolds are somewhat different from
cosymplectic manifolds and Kenmotsu manifolds (see Sections 8—10).

In the same way to Proposition 2.1 of [23], we can obtain

Proposition 2. Let M be a submanifold of an almost contact metric manifold (N, ¢,&,1,8). Then M is a
pointwise slant submanifold of N if and only if

g(TX,TY) = 0 whenever g(X,Y) = 0for X,Y € My,p € M. (33)
Considering slant functions as conformal invariant, we easily derive

Proposition 3. Let M be a pointwise slant submanifold of an almost contact metric manifold (N, ¢, ¢, 1,8)
with the slant function 0 : M — R. Then for any given C*®-function f : N — R, M is also a pointwise slant
submanifold of an almost contact metric manifold (N, ¢, e~/ & efy1,e*f ¢) with the same slant function 6.
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Theorem 3. Let M be a slant submanifold of an almost contact metric manifold N = (N, ¢, ¢, 1, §) with the
slant angle 0. Assume that N is one of the following three manifolds: cosymplectic, Sasakian, Kenmotsu. Then
we have

ApxTX = AprxX  for X € T(T'M). (34)

Proof. We will only give its proof when N is Sasakian. For the other cases, we can show them in a
similar way. If § = %, then done! Assume that 0 < 6 < %. Given a unit vector field X € T(T'M),
we have

TX = cosf - X* (35)
for some unit vector field X* € T(T'M) with g(X, X*) = 0. Then for any Y € I['(TM), by using (1), (2)
and (19), we obtain

Vy(¢pX) = Vy(cosf-X*)+ VyFX (36)
= cosf-VyX* +cosOh(Y,X*)— ApxY + DyFX

and

Vy(¢X) = (Vy¢)X+9VyX (37)
= (Y, X)E —(X)Y + TVyX + FVyX
+th(Y, X) + fr(Y, X)
= g(Y,X)&+ TVyX + FVyX + th(Y, X) + fh(Y, X).

Thus, by taking the inner product of right hand sides of (36) and (37) with X*, we derive
e(—ApxY, X") = g(th(Y, X), X¥),
which gives
g(Apr*, Y) = g(AFX* X, Y)
Therefore, the result follows. [

5. Topological Properties of Pointwise Slant Submanifolds of a Cosymplectic Manifold

In this section we investigate the topological properties of pointwise slant submanifolds of a
cosymplectic manifold. A pointwise slant submanifold M of an almost contact metric manifold
(N,¢,¢,1,8) is said to be proper if the slant function 6 of M in N is given by 6 : M — [0, 7).

Let M be a pointwise slant submanifold of an almost contact metric manifold (N, ¢, ¢, 7, g). Given
X,Y € T(TM), we define

(VxT)Y := Vx(TY) — TVxY, (38)
(DxF)Y := Dx(FY) — FVxY. (39)

We call the tensors T and F parallel if VT = 0 and VF = 0, respectively. Then in a similar way to
Lemma 3.8 of [31], we easily obtain

Lemma 2. Let M be a pointwise slant submanifold of a cosymplectic manifold (N, ¢,&, 4, ). Then we get
1.

(VxT)Y = Apy X + th(X,Y), (40)
(DxF)Y = —h(X,TY) + fh(X,Y) 41)
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for X,Y e T(TM).

~TAzX +tDxZ = Vx(tZ) — As7X, (42)
—FAzX + fDxZ = h(X,tZ) + Dx(fZ) (43)

for X € T(TM) and Z € T(TM™).

Let M be a proper pointwise slant submanifold of a cosymplectic manifold (N, ¢, ¢, 7, ).
Define
Q(X,Y):=g(X, TY) forX,Y e I[(TM). (44)

Then Q) is a 2-form on M, which is non-degenerate on TIM ([23], [31]).

Theorem 4. Let M be a proper pointwise slant submanifold of a cosymplectic manifold (N, ¢, ¢, 1,g). Then
the 2-form () is closed.

Proof. Given X,Y,Z € T(TM), we get

3dQ(X, Y, Z) = XQ(Y, Z) — YQ(X, Z) + ZQ(X, Y)
—Q([X,Y],Z2) + Q([X, Z],Y) — Q([Y, Z], X)

so that

3d0(X, Y, Z) = g(VxY, TZ) + g(Y,VxTZ) — g(VyX, TZ)
— g(X,VyTZ) + g(VzX,TY) + g(X, VzTY)
—g(VxY = VyX,TZ) + §(VxZ — VzX,TY) — g(VyZ — V7Y, TX)
=8(Y,(VxT)Z) — g(X, (VyT)Z) + g(X, (V2T)Y).

Using Lemma 2 and (3), we obtain

3d0(X,Y,Z) = g(Y, Apz X + th(X, Z)) — §(X, ApzY + th(Y, Z))
+ 8(X, ApyZ +th(Z,Y))

g(Y,th(X,Z)) - g(Z, th(Y, X))

(X,th(Y,Z)) + g(Z,th(X,Y))

(X,th(Z,Y)) —g(Y,th(X, Z))

8
+8
0

Therefore, the result follows. [

Consider the restriction of the 1-form 7 to M. We also denote it by 7.

Denote by [Q2] and [#] the de Rham cohomology classes of 2-form () and 1-form 17 on M, respectively.
As we know, a cosymplectic manifold is locally a Riemannian product of a Kihler manifold and an
interval and the cosymplectic condition (i.e., V¢ = 0) naturally corresponds to the Kéhler condition
(V] = 0) (See [37]).

Hence, in a similar way to Theorem 5.1 of [23] and to Theorem 5.2 of [31], by using Theorem 4,
we obtain

Theorem 5. Let M be a 2m-dimensional compact proper pointwise slant submanifold of a (2n + 1)-dimensional
cosymplectic manifold (N, ¢, , 1, g) such that ¢ is normal to M.
Then [Q] € H?(M, R) is non-vanishing.
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Proof. Since TM = T'M, by the definition of 0, Q) is non-degenerate on M.
Therefore, the result follows. O

Remark 7. By the proof of Theorem 5, we have
dim H*(M,R) >1 for0<i<m. (45)

Theorem 6. Let M be a (2m + 1)-dimensional compact proper pointwise slant submanifold of a (2n 4 1)-
dimensional cosymplectic manifold (N, ¢, &, 4, ) such that ¢ is tangent to M.
Then both [y7] € H'(M,R) and [Q] € H?(M,R) are non-vanishing.

Proof. Using (29), we can choose a local orthonormal frame {¢, Xy,sec0TXy, - - - , X;u,sec 0T X, } of TM.
Thus,
nANQ" =y Ag(,T)" # 0 at each point of M (46)

so that it gives a volume form on M.
Hence, both [7] and [Q)] are never vanishing. [

Remark 8. By the proof of Theorem 6, we get
dim H'(M,R) >1 for0<i<2m+1. (47)
By using (45) and (47), we obtain

Corollary 3. Every m-sphere S™, m > 3, cannot be immersed in a cosymplectic manifold as a proper pointwise
slant submanifold.

Corollary 4. Any m-dimensional real projective space RP™, m > 3, cannot be immersed in a cosymplectic
manifold as a proper pointwise slant submanifold.

Remark 9. For 2-sphere S? and 2-torus T2, they satisfy the condition (45). By Proposition 1, they are pointwise
slant submanifolds of a cosymplectic manifold (N, ¢, &, 1, g) if they are just submanifolds of N.

6. Examples

In this section we give some examples of pointwise slant submanifolds.
Example 1. Defineamapi:R3 — R by
i(x1,x2,x3) = (Y1,Y2,¥3, Ya, t) = (x1,5inx2,0, cos x3, x3).

Let M := {(x1,x2,x3) € R¥ |0 < xp < £}
We define (¢, &,1,g) on R? as follows:

J o) J)\ J J J J
Plargy, + o F gy Tasy) = —tagy g, — GGy asg,,
E=2, n:=dt,; eR1<i<5,

g is the Euclidean metric on R?. It is easy to check that (¢, ¢, 7, 8) is an almost contact metric structure on RS,
Then M is a pointwise slant submanifold of an almost contact metric manifold (R, ¢, &, 1,) with the
slant function k(x1, xp, x3) = xp such that & is tangent to M.

Example 2. Define a map i : R? — R by
i(x1,%2) = (y1,¥2,Y3, ¥4, t) = (0,cos x1, x2,8in x1, 0).

Let M := {(x1,x2) € R? | 0 < x1 < F}.
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We define (¢, &,1,g) on R? as follows:

J o) J)\ J J J J
Plargy, + o F gy Tasy) = —tag +aig, — GGy +asg,,
g=2, n:=dt, ;; eR1<i<5,

g is the Euclidean metric on R?. It is easy to check that (¢,¢,7,8) is an almost contact metric structure on RS,
We also know that (R%, ¢, &, 1, 8) is a cosymplectic manifold.
Then M is a pointwise slant submanifold of a cosymplectic manifold (R, ¢, &, 1, g) with the slant function
k(x1,x2) = xq1 such that ¢ is normal to M.

Example 3. Let t be a coordinate of R and (y1,V2,Y3,Y4) coordinates of R*. Let N := R X R* be a warped

product manifold of the Euclidean space R and the Euclidean space R* with the natural projections r; : N — R

and 75 : N +— R* such that the warping function f(t) = e.

Let R* = (R%, g, ]), where § is the Euclidean metric on R* and | is a complex structure on R* defined by
9 9\ 9 9 9 9
](“1@ t +“4m) =~y T g, — a5, tasg,-

Then R* is obviously Kihler.
We define (¢, ¢, 1, 8) on N as follows:

p(a150- + -+ asge Fas ) = (g + - Faag),
¢= %, n = dt,
§(Z,W) = n(Z)y(W) + f(1)’3(dma(Z), drra (W)

for ZZW e€T(TN),a; e R, 1 <i<5.
We easily check that (¢, &, 1, g) is an almost contact metric structure on N.
Furthermore, by Proposition 3 of [39], (N, ¢, ¢, 1, ) is a Kenmotsu manifold.
Let M:={(x1,x) e R?2 |0 < x; < F}.
Define a map i : R> — R* C N by

i(x1,%2) = (Y1, ¥2,¥3,ya) = (x2,sinx1,1972, cos x1).

Then M is a pointwise slant submanifold of a Kenmotsu manifold (N, $,¢,n,8) with the slant function
k(x1,x2) = x1 such that ¢ is normal to M.

Example 4. Let M be a submanifold of a hyperkihler manifold (M, J1, 2, J3, ) such that M is complex with
respect to the complex structure [; (i.e., J{(TM) = TM) and totally real with respect to the complex structure
J2 (ie., J,(TM) C TM™) [40]. Let f : M — [0, %] be a C®-function and N := M x R with the natural
projections 7t : N — Mand 75 : N — R.

We define (¢, &, 1, 8) on N as follows:

P(X+ h%) :=cos(f o)1 X —sin(f o 1) 2 X,
¢:= %, n :=dt,
§(Z, W) :=g(dmZ,dmW)+n(Z) - n(W)

for X e T(TM), h € C®°(N), Z,W € T(TN) and t is a coordinate of R.

1t is easy to show that (¢, ,n, ) is an almost contact metric structure on N.

Then M is a pointwise slant submanifold of an almost contact metric manifold (N, ¢, &, 1, §) with the slant
function f o 7ty such that ¢ is normal to M.
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Example 5. Given a Euclidean space R® = R* x R with coordinates (y1,- -+ ,y4,t), we consider complex
structures Jy and J, on R* as follows:

]1(%) = % J1 (aiyz) = aylfh(ﬁ) = &,h(a%) = —%,
haay) = s o) = — g o) = =g o) =

Let f : R® — [0, F] be a C®-function.
We define (¢, &, 1, ) on R? as follows:

4)(X+hdt) i=cosf -1 X —sinf- X,
g.: E, 7’]: dt,

g is the Euclidean metric on RS, X € T(TR*) and h € C*(R5).
We can easily check that (¢, &,1,g) is an almost contact metric structure on RS,
Define a map i : R? — RS by

i(x1/x2> - (]/1/]/2/]/3/]/4/ t) - (e/ —7T,X2,X1, \/E)

Then R? is a pointwise slant submanifold of an almost contact metric manifold (R>, ¢, &, 11, g) with the slant
function f such that & is normal to R?.

Example 6. With all the conditions of Example 5, define a function f : R% — [0, Z] by f(y1,- -+ ,ya,t) =

arctan(|y1 + y2 + Y3 + yal).
Then R? is a pointwise slant submanifold of an almost contact metric manifold (R%,$, &, 1,¢) with the
slant function (f oi)(x1,xp) = arctan(|e — 7t + x1 + x2|) such that & is normal to R?,

7. Pointwise Semi-Slant Submanifolds

In this section we introduce the notion of pointwise semi-slant submanifolds of an almost contact
metric manifold and obtain a characterization of pointwise semi-slant submanifolds.

Definition 2. Let (N, ¢, ¢, 1,8) be an almost contact metric manifold and M a submanifold of N. The submanifold
M is called a pointwise semi-slant submanifold if there is a distribution D1 C TM on M such that

TM=D18D, ¢(D1)C Dy,

and at each given point p € M the angle 8 = 0(X) between ¢ X and the space (D), is constant for nonzero
X € (D,)p, where D, is the orthogonal complement of Dy in TM.

We call the angle 6 a semi-slant function as a function on M.

Remark 10. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, &, 1,8)
with the semi-slant function 6.

1. Givenapoint p € M, if §(p) € TyM, then {(p) should belong to (D), (ie., &(p) € (D1)p).
If not, we can induce contradiction as follows:

Assume that (p) = X +Y for some X € (D1)p and some nonzero Y € (D,)p. Then 0 = ¢&(p) =

¢X + ¢Y with pX € (D1)p and ¢pY € (D), @ Tle so that X = 0and ¢Y = 0. Since g(X,Y) =0

and ker ¢ =< & >, we must have X = 0and Y = {(p). 0(Y) = 0(E(p)) is not defined, contradiction.
2. Let (D1)p :={X € (D1)p | 8(X,(p)) = 0} for p € M.

Then we have either (D1), = (D1)p or (D1)p, =< &(p) > ®(D1),.

We can check this as follows:
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Since ¢(Dy) C Dy, we get

¢((D1)p) C (D1)p and g(¢((D1),),5(p)) =0

so that ¢((D1)p) C (D1)p implies ¢((D1)p) = (D1)p. Thus, we can choose an orthonormal basis
{21,921, , Zk, Zi} of (D1)p. Assume that (Dy), # (D1)p. Then there is a vector Z = al(p) +
X € (D1)p witha # 0and g(&(p), X) = 0. We know ¢Z = ¢pX € (D1)p and g(¢X,¢(p)) = 0 so that

k
¢X € (D1)p implies pX = Y (a;Z; + ar.i9pZ;) for some a; € R, 1 < i < 2k.
i=1

k
Hence, =X = ¢°X = Y _(—ayiZ;i + aipZ;) € (D1)p C (D1)p, which implies 1(Z — X) = &(p) €

i=1
(D1)p- Therefore, the result follows. o o o
3. From (2), we have either D1 = D1 or D1 =< & > ®D1, where D1 := U (D1)p.
peM

If not, then we can choose a C®-curve ¢ : (—e€,€) — M for sufficiently small € > 0 such that either
(D1)co) = (D1)e(o) and (D1)e(ry =< §(c(t)) > @(D1)eqp) for t € (—€,€) = {0} or (Dy) o) =<
¢(c(0)) > @(D1)e(o) and (D1)(r) = (Dr)eqr) for t € (—€,€) = {0}.

Take an orthonormal frame {X1(t), Xa(t),- -+, X;(t)} of Dy along c. At the first case, we obtain

I
&e(t)) = Y ai(t)Xi(t) (48)
i=1

forsome a;(t) e R, 1 <i<I,te (—ee)—{0}. Since ¢ is a C*-vector field on N, we can obtain the
I
C*-extension of right hand side of (48) along c. §(c(0)) & (D1)c(oy and Y a;(0)X;(0) € (D1)c(o) with
i=1

a;(0) := }ir% a;(t), 1 <i <1, contradiction. In a similar way, we can also induce contradiction at the
H

second case.
From (1), we get §(p) & (Dy)p forany p € M.
5. If6: M (0,7%), then M is said to be proper.

b

Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, &, 7, g).
Then there is a distribution D; C TM on M such that

TM=D,&D,, ¢(D;1)CDy,

and at each given point p € M the angle § = (X) between ¢X and the space (D,), is constant for
nonzero X € (Dy),, where D, is the orthogonal complement of D; in TM.
For X € T(TM), we write

X = PX + QX, (49)
where PX € I'(D7) and QX € I'(D;).
For X € T(TM), we have
¢X = TX + FX, (50)
where TX € I'(TM) and FX € T(TM™").
For Z € T(TM™), we get
$Z =tZ+fZ, (51)

where tZ € T(TM) and fZ € T(TM").
Denote by (TN)|y the restriction of TN to M (i.e., (TN)|y = TM @ TM™4).
For U € T((TN)|m), we write
U=HU+ VU, (52)
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where HU € T(TM) and VU € T(TM™).

Hence,
T(Dy) C D1, F(D1) = 0,T(Dy) C Dy, t(TMY) C Dy, (53)
T2 +tF = 1+ @H(&) and FT + fF = 1 @ V(&) on TM (54)
Tt+tf =@ H(E) and Ft + f2 = —I+ 7@ V(&) on TM* (55)
Then we obtain
TML =FD, @y, (56)

where 1 is the orthogonal complement of FD; in TM*.
For X,Y € T(TM), we define

(VxT)Y = Vx(TY) - TVXY, (57)
(DxF)Y := Dx(FY) — FVxY. (58)

The tensors T and F are called parallel if VT = 0 and VF = 0, respectively.
In the same way to Lemma 2, we have

Lemma 3. Let M be a pointwise semi-slant submanifold of a cosymplectic manifold (N, ¢, ¢, 1, ). Then we obtain

1.
(VxT)Y = Apy X + th(X,Y), (59)
(DxF)Y = —h(X,TY) + fh(X,Y) (60)
for X,Y e I(TM).
2.
—TAzX +tDxZ = Vx(tZ) *Asz, (61)
—FAzX + fDxZ = h(X,tZ)+ Dx(fZ) (62)

for X € T(TM) and Z € T(TM™).

Proposition 4. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, &, 1, ).
Assume that either Dy C kery or u C kery.
Then y is ¢-invariant (i.e., oy C p).

Proof. Given Y € T'(y) and X € I'(TM) with X = X1 + Xy, X1 € T(D1), X, € (D), we have

(X, 9Y) = —g(¢X,Y) = —g(¢X1 + ¢Xp,Y) =0

so that
o C TM*, (63)

GivenY € I'(u) and X € I'(FD,) with X = FX' for some X’ € I'(D,), by using (54) and the hypothesis, we get

(X, 0Y) = —g(¢X,Y) = —g(fFX,Y)
=g(FTX = n(X")V(§),Y)

=—n(X")-y(Y) =0.
with (63), it implies ¢pp C p. O

In a similar way to Proposition 3.9 of [31], we have
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Lemma 4. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, ¢, 1,8)
with the semi-slant function 6.
Then
g((T* +cos?0(I =y @ &))(X),Y) =0 for X,Y € T(Ds). (64)

Proof. We will prove this at each point of M.
Gven a point p € M, if X € (D), is vanishing, then done! Given a nonzero X € (D), we obtain

g(pX, TX)  ||TX]|
9 ) _ 65
cos6(p) X ||ITX]|  ||¢X]| -

so that cos? 0(p)g(¢X, pX) = g(TX, TX) = —g(T?X, X). Substituting X by X + Y, Y € (D,),, at the
above equation, we induce

g((T? +cos®6(1 — 7 @ §))(X),Y) + g(X, (T? + cos* (I — 1 @ &) )(Y)) = 0. (66)
T2 + cos? (I — @ &) is also symmetric so that
g((T? +cos® (I — 1 ® €))(X),Y) = 0.
O

Remark 11. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, ¢, 1,8)
with the semi-slant function 6. Assume that either ¢ is tangent to M or ¢ is normal to M.

1. By using (64) and Remark 10 (1), we get

T2X = —cos?0-X for X € T(Dy). (67)

2. By (67), we obtain
g(TX,TY) = cos?0g(X,Y), (68)
¢(FX,FY) = sin?6g(X,Y), (69)

for X, Y € T(Dy).
3. At each given point p € M with 0 < 0(p) < Z, by using (68), we can choose an orthonormal basis
{X1,5ec0TXy, - -+, Xg,5ecO0T X} of (D2)p.

8. Distributions

In this section we consider distributions D; and D, and deal with the notion of totally umbilic
submanifolds.

Notice thatif N = (N, ¢, &, 7, g) is Sasakian, then from Theorem 2, there does not exist a proper
pointwise semi-slant submanifold M of N such that ¢ is normal to M.

Lemma 5. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, &, 1, g)-
Assume that ¢ is tangent to M and N is one of the following three manifolds: cosymplectic, Sasakian, Kenmotsu.
Then the distribution D1 is integrable if and only if

g(h(X,¢Y) —h(Y,¢X),FZ) =0 (70)
for X,Y € I'(Dq) and Z € T(Dy).

Proof. We will only give its proof when N is Sasakian. For the other cases, we can show them in the
same way.
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Given X,Y € T(D;) and Z € T(D;), by using Remark 10 and (19), we obtain

8([X,Y],2)
= 8(P[X, Y], 9Z) +1([X,Y])3(2Z)
(gb(?XY VyX), TZ + FZ)

—¢(VxY —VyX,T*Z + FTZ)
g( (X, 9Y) = h(Y,¢X) — (&(X,Y)E —n(Y)X = g(Y, X)& +n(X)Y),FZ)
= cos?0g([X, Y], Z) + g(h(X,¢Y) — h(Y,$pX),FZ)
so that
sin?0g([X, Y], Z) = g(h(X,$Y) — h(Y,¢X),FZ).
Therefore, we get the result. O

In the same way to Lemma 5, we obtain

Lemma 6. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, ¢, 1, ).
Assume that ¢ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
Then the distribution D is integrable if and only if

g(h(X,¢Y) —h(Y,¢X),FZ) =0 (71)
for X,Y € I'(Dq) and Z € T(Dy).

Lemma 7. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, &, 1, §)-
Assume that ¢ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
Then the distribution D is integrable if and only if

S(ArtwZ — AprzW, X) = g(ArwZ — ApzW, ¢X) (72)
fOT’ X e F(D]) and Z,W € r(Dz)

Proof. We only give its proof when N is Kenmotsu.
Given X € I'(Dy) and Z, W € T(D;), by using (21) and Remark 11, we get

8([Z, W], X)
8(P[Z, W], ¢X) +5([Z, W)n(X)
=g(p(VzW —ViwZ),¢X)
=g(Vz(TW + FW) — VW (TZ + FZ),$X)
—8(8(¢Z, W)E —n(W)pZ — g(¢W, Z)C + 1 (Z)pW, pX)
= —g(Vz(T*W + FTW) — VW (T?Z + FTZ), X)
+8(8(9Z, TW)G — n(TW)PZ — g(¢W, TZ)E + n(TZ)pW, X)
+8(ApzW — ArwZ, ¢X)
= cos?0g([Z, W], X) + §(ArtwZ — AprzW, X) + §(ApzW — ApwZ, ¢X)

so that
sin2 Qg([Z, W],X) = g(ApTWZ - AFTzw, X) + g(Apzw - prz, (PX)

Therefore, the result follows. [

Lemma 8. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, ¢, 1, §)-
Assume that ¢ is tangent to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
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Then the distribution D, is integrable if and only if

S(ArtwZ — AprzW, X) = §(ArwZ — ApzW, ¢X) (73)
for X e T(Dy) and Z,W € T(D,).

Proof. We will show it when N is Kenmotsu.
Given X € I'(Dq) and Z, W € T(D;), from the proof of Lemma 7, we have

sin®0g([Z, W], X) = yn([Z,W)n(X) + 8(ArrwZ — ArrzW, X) (74)
-I—g(ApZW — prz, (PX)

Replacing X by ¢ at (74), by using (3) and (22), we get

—cos? 0y ([Z, W)

g(h(Z,¢8), FTW) — g(h(W, ), FTZ)
(Vzgr FTW) - g(vwgf FTZ)
(Z—=n(2)5, FTW) —g(W —n(W)¢, FTZ)

|
S 0q 09

so that([Z,W]) = 0.
Hence, the result follows. [

Remark 12. For the case when both N is Sasakian and ¢ is tangent to M, confer Proposition 5.4 of [26].

Theorem 7. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢, ¢, 1, g).
Assume that ¢ is tangent to M and N is one of the following three manifolds: cosymplectic, Sasakian, Kenmotsu.
Then the distribution Dy defines a totally geodesic foliation if and only if

§(Arz¢pX — AprzX,Y) =0 (75)
for X,Y € T(Dy) and Z € T(Dy).

Proof. We will give its proof when N is Kenmotsu.
Given X,Y € I'(D;) and Z € IT'(D;), by using Remark 10, (21) and Remark 11, we obtain

8(VyX,Z)
= 8(¢pVyX,9Z) +1n(VyX)y(Z)
= ¢(¢pVyX, TZ + FZ)
= —¢(VyX,T?Z + FTZ)
+8(Vy¢X — (g(¢Y, X)¢ — n(X)¢Y), FZ)
= cos?09(VyX, Z) — g(ArrzX,Y) + g(ApzX,Y)

so that
sinz 9g(VyX,Z) = g(AFZ¢X — AFTZXr Y)

Therefore, we obtain the result. [

In the same way to Theorem 7, we get

Theorem 8. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢,&,1, g).
Assume that ¢ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
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Then the distribution D1 defines a totally geodesic foliation if and only if
S(Apz¢pX — AprzX,Y) =0 (76)
for X,Y € I'(Dq) and Z € T(Dy).

Theorem 9. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold
(N,¢,&,1,8). Assume that & is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
Then the distribution D, defines a totally geodesic foliation if and only if

S(Arz¢pX — AprzX,W) =0 (77)
fOT’ X e F(D]) and Z,W € r(Dz)

Proof. We give its proof when N is Kenmotsu.
Given X € I'(Dy) and Z, W € T(D;), by using (21) and Remark 11, we get

s(VwZ,X)

= 8(¢VwZ, ¢X) +1(VwZ)n(X)

= 8(Vw(TZ +FZ) — (g(¢W, 2)E — n(Z)¢W), $X)

= —8(Vw(T?Z + FTZ) — ($(¢W, TZ)& — 1(TZ)pW), X) — g(Apz W, ¢X)
= cos?0g(ViwZ, X) + g(ArrzW, X) — g(Apz W, ¢X)

so that
sin 0g(ViwZ, X) = g(ArrzX — Apz¢pX, W).

Therefore, the result follows. [

In a similar way, we have

Theorem 10. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold
(N,¢,&,1,8). Assume that & is tangent to M

1. If N is one of the following two manifolds: cosymplectic, Sasakian, then D, defines a totally geodesic
foliation if and only if
8(Arz¢X — AprzX, W) =0 (78)

for X € T(Dy) and Z,W € I'(D,).
2. If N is Kenmotsu, then Dy defines a totally geodesic foliation if and only if

S(Apz¢pX — Aprz X, W) + sin? 057 (X)g(W, Z) = 0 (79)
for X € T(Dy) and Z, W € T(D,).

Proof. We only give its proof when N is Sasakian. For the other cases, we can show them in the same way.
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Given X € I'(Dy) and Z, W € T(D;), by using (19) and Remark 11, we obtain

8(VwZ, X)

=g(@VwZ,¢X) +n(VwZ)n(X)

=8(VwW(TZ+FZ) — (§(W, Z)¢ — 1(Z)W), ¢X) +3(VwZ)1(X)
= —g(Vw(T*Z +FTZ) — (§(W, TZ)§ — n(TZ)W), X)

— 8(ApzW, 9X) +1(VwZ)n(X)

= cos”03(VwZ, X) + g(ArrzW, X) + g(W, TZ)5(X)

— 8(ApzW, ¢X) +n(VwZ)n(X)

so that

sin?0g(ViwZ,X) = g(ArrzX — Apz¢pX, W) (80)
+8(W, TZ)n(X) +n(VwZ)y(X).
Replacing X by ¢ at (80), we get
sin? 0(VwZ) = g(h(W, &), ETZ) +g(W,TZ) + n(ViwZ)

so that by using (20) and Remark 11,

—cos?0n(VwZ) = g(Vwé& FTZ) + g(W,TZ)
= ¢(—¢W,FTZ) +g(W,TZ)
= —sin®0g(W, TZ) + g(W, TZ)
= cos?0g(W, TZ),

which implies (ViwZ) = —¢(W, TZ).
Hence, from (79),
sin?0g(VwZ, X) = g(AprzX — ApzpX, W).

Therefore, the result follows. [

Using Theorem 7 and Theorem 10, we obtain

Corollary 5. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢,,1,8).
Assume that ¢ is tangent to M and N is one of the following two manifolds: cosymplectic, Sasakian.
Then M is locally a Riemannian product manifold of My and M, if and only if

Apz¢pX = AprzX (81)
for X € T(Dy) and Z € T(Dy), where My and My are integral manifolds of Dy and Dy, respectively.
Using Theorems 8 and 9, we also obtain

Corollary 6. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold
(N,¢,&,1,8). Assume that & is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
Then M is locally a Riemannian product manifold of My and M, if and only if

Apz¢pX = AprzX (82)
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for X € T(Dy) and Z € T(Dy), where My and My are integral manifolds of Dy and D, respectively.

Let M be a submanifold of a Riemannian manifold (N, g). We call M a totally umbilic submanifold
of (N,g) if
h(X,Y)=g(X,Y)H forX,Y e T(TM), (83)
where H is the mean curvature vector field of M in N.
Lemma 9. Let M be a pointwise semi-slant totally umbilic submanifold of an almost contact metric manifold
(N,¢,&,1,8). Assume that § is tangent to M and N is one of the following three manifolds: cosymplectic,
Sasakian, Kenmotsu.

Then
H € T(FDy). (84)

Proof. We give its proof when N is Kenmotsu.
Since ¢ is tangent to M, by Proposition 4, u is ¢-invariant (i.e., ¢(u) = u). Given X, Y € I'(D;)
and Z € T'(u), we have

Vx¢Y + h(X,(PY)

= V)«PY

= 8(¢X,Y)E — n(Y)pX + ¢VxY

= g((])X, Y)E—n(Y)pX+TVxY + FVxY +th(X,Y) +fh(X, Y)

so that by taking the inner product of both sides with Z,

8(h(X,9Y),Z) = g(fh(X,Y),Z). (85)

From (85), by (83) we obtain

8(X,9Y)g(H,Z) = —g(X,Y)g(H, ¢pZ). (86)

Interchanging the role of X and Y,

8(Y,¢X)g(H,2) = —g(Y, X)g(H, $Z). (87)
Comparing (86) with (87), we have
§(X,Y)g(H, ¢Z) =0,
which means H € T(FD,). O

Using Lemma 9, we immediately obtain

Corollary 7. Let M be a pointwise semi-slant totally umbilic submanifold of an almost contact metric manifold
(N, ¢,¢,n,g) with the semi-slant function 6. Assume that ¢ is tangent to M and N is one of the following three
manifolds: cosymplectic, Sasakian, Kenmotsu.

If6 = 0 on M, then M is a totally geodesic submanifold of N.

9. Warped Product Submanifolds

In this section we consider the non-existence of some type of warped product pointwise
semi-slant submanifolds and investigate the properties of some warped product pointwise semi-slant
submanifolds.
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Theorem 11. Let N = (N, ¢,¢,1,g) be an almost contact metric manifold and M = B x s F a nontrivial
warped product submanifold of N. Assume that ¢ is normal to M and N is one of the following three manifolds:
cosymplectic, Sasakian, Kenmotsu.

Then there does not exist a proper pointwise semi-slant submanifold M of N such that D; = TF and
Dy, =TB.

Proof. If N is Sasakian, then by Theorem 2, it is obviously true.

We will prove it when N is Kenmotsu. For the case of N to be cosymplectic, we can prove it in the
same way.

Suppose that there exists a proper pointwise semi-slant submanifold M = B x s F of N such that
Dy = TF and D, = TB. We will induce contradiction.

Given X,Y € I'(TF) and Z € T'(TB), by using (8), (21) and Remark 11, we get

Z(Inf)g(X,Y)

=g(VxZ,Y)

= 8(¢VxZ,¢Y) +1(VxZ)y(Y)

=g(Vx(TZ+FZ) — ((¢X, 2)¢ — n(Z)¢X), ¢Y)
=9(Vx(TZ+FZ),¢Y)

= —8(Vx(T’Z + FTZ) — (8(¢X, TZ)& — n(TZ)$X),Y) + g(VxFZ,§Y)
= cos?0g(VxZ,Y) +g(h(X,Y),FTZ) — g(h(X,¢Y),FZ)

so that
sin?0Z(In f)g(X,Y) = g(h(X,Y),FTZ) — g(h(X,¢Y),FZ). (88)

Interchanging the role of X and Y, we have
sin0Z(In f)g(Y, X) = g(h(Y, X),FTZ) — g(h(Y, $X),FZ). (89)
Comparing (88) with (89), we obtain
8(h(X,9Y),FZ) = g(h(Y, ¢X), FZ). (90)
On the other hand,

g(h(X,¢Y),FZ)

= g(ArzX, ¢Y)

= g(=VxFZ,$Y)

= 8(~Vx(¢pZ —TZ),¢Y)

= —8(8(¢X, Z)¢ — (Z)¢pX + §VXZ,¢Y) + g(VXTZ, ¢Y)
= —8(VxZ,Y) +1(VxZ)n(Y) +g(VxTZ,¢Y)
=—Z(Inf)g(X,Y)+TZ(In f)g(X, pY).

From (90), by using the above result, we obtain
TZ(In f)g(X, pY) = 0. 1)
Replacing Z by ¢Z and X by ¢ X at (91), by Remark 11 we get
cos?0Z(In f)g(X,Y) =0,

which implies Z(In f) = 0 so that f is constant, contradiction. [
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Theorem 12. Let N = (N, ¢,¢,1,g) be an almost contact metric manifold and M = B x s F a nontrivial
warped product submanifold of N. Assume that ¢ is tangent to M and N is one of the following three manifolds:
cosymplectic, Sasakian, Kenmotsu.

Then there does not exist a proper pointwise semi-slant submanifold M of N such that D; = TF and
Dy, =TB.

Proof. We will only give its proof when N is Sasakian. For the other cases, we can show them in the
same way.

Suppose that there exists a proper pointwise semi-slant submanifold M = B x ¢ F of N such that
D1 = TF and D, = TB. We will also induce contradiction.

Given X,Y € I'(TF) and Z € T(TB), by using (8), (19), Remarks 10 and 11, we have

Z(Inf)g(X,Y)

=38(VxZ,Y)

= 8(VxZ,9Y) +11(VxZ)y(Y)

=8(Vx(TZ+FZ) - (8(X, Z)¢ —1(2)X),9Y) + Z(In f)n(X)n(Y)

= 8(Vx(TZ+FZ),¢Y) + Z(In f)n(X)n(Y)

= —g(Vx(T*Z + FTZ) — (§(X, TZ)§ — (TZ)X),Y)

+8(VxFZ,¢Y) + Z(In f)n(X)n(Y)

= c0s”0g(VxZ,Y) +g(h(X,Y),FTZ) — g(h(X,$Y), FZ) + Z(In f)(X)5(Y)

so that

sin® 0Z(Infg(X,Y) = gh(X,Y) FTZ)—-g(h(X,¢Y),FZ) (92)
+Z(In f)n(X)n(Y).

Replacing X and Y by ¢ at (92), by using (20) we obtain

cos?*0Z(In f) = —g(h(¢,&),FTZ)

= —g(—¢¢,FTZ)
=0,

which implies Z(In f) = 0 so that f is constant, contradiction. [

Now, we will study nontrivial warped product pointwise semi-slant submanifold M = B x s F of
an almost contact metric manifold N = (N, ¢, ¢, 7,g) such that D; = TB and D, = TF.

Lemma 10. Let M = B X F be a nontrivial warped product proper pointwise semi-slant submanifold of an
almost contact metric manifold N = (N, ¢, &, 1, g) such that D1 = TB and Dy = TF. Assume that N is one
of the following three manifolds: cosymplectic, Sasakian, Kenmotsu.
Then we get
8(ArzW, X) = g(ArwZ, X) (93)

for X € T(TB) and Z,W € T(TF).

Proof. We give its proof when N is Kenmotsu.
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Given X € I['(TB) and Z, W € I'(TF), by using (21), (53) and (8), we obtain

8(ApzW, X)

=g(ApzX, W)

= —8(Vx(¢Z —~TZ),W)

—8(8(9X, 2)T —n(Z2)pX + pVxZ, W) +g(VxTZ, W)
(VXZ TW +FW) +g(VxTZ,W)

=g(X(Inf)Z, TW) + g(ArwZ, X) + g(X(In f)TZ, W)
(APWZ X).

O

23 of 33

Lemma 11. Let M = B x ¢ F be a nontrivial warped product proper pointwise semi-slant submanifold of an

almost contact metric manifold N = (N, ¢, &, 1, ) such that D1 = TB and Dy, = TF

1. If N is cosymplectic, then

$(ArtzW, X) = —¢X(In f)g(W, TZ) — cos? 0X(In f)g(W, Z

and

8(ApzW, ¢X) = (X = (X)¢)(In f)g(W, Z) — ¢X(In f)g(TW, Z)

for X € T(TB) and Z,W € T(TF).
2. If N is Sasakian, then

g(ArrzW, X) = —n(X)g(TZ,W) — ¢X(In f)g(W, TZ)
—cos?0X(In f)g(W, Z)

and

8(ApzW, ¢X) = (X = (X)¢)(In f)g(W, Z) — ¢X(In f)g(TW, Z)

for X € T(TB) and Z,W € T(TF).
3. If N is Kenmotsu, then

§(ArrzW,X) = cos?0y(X)(8(Z, W) —n(Z)n(W))
—¢X(In f)g(W,TZ) — cos? 8X (In f)g(W

and

8(ApzW, ¢X) = (X = (X)¢)(In f)g(W, Z) — ¢X(In f)g(TW, Z)

for X € T(TB) and Z,W € T(TF).

Proof. We only give its proof when N is Kenmotsu.

Given X € ['(TB) and Z, W € I'(TF), by using Lemma 10, (21), Lemma 4 and (8), we have

S(ArrzW, X)

= g(ArwTZ,X)

= —8(Vrz(¢W — TW), X)

= —8(8(@TZ,W)E —n(W)PTZ + ¢V 1z W, X) + g(V1zTW, X)
= cos” 0n(X)8(Z = (Z)5, W) + g(V1zW, $X) — g(TW, V1zX)

= cos® 05 (X) (g(Z, W) —(Z)n(W)) — ¢pX(In f)g(W, TZ) — cos® 6X(In f)g(W, Z

(94)

(95)

(96)

(97)

(98)

(99)
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Replacing TZ and X by Z and ¢X, respectively,

8(ApzW, 9X) = (X = 5(X)¢)(In f)g(W, Z) — ¢X(In f)g(TW, Z).
O

To obtain some inequalities on nontrivial warped product proper pointwise semi-slant submanifolds
of cosymplectic, Sasakian, Kenmotsu manifolds in the next section, we need to have

Lemma 12. Let M = B Xy F be a nontrivial warped product proper pointwise semi-slant submanifold of an
almost contact metric manifold N = (N, ¢, &,1,¢) such that D1 = TB and D, = TF.

1. If N is cosymplectic, then

g(h(X,Y),FZ) =0 (100)

and
g(h(X,W),FZ) = —¢X(In f)g(W, Z) + (X — n(X)&)(In f)g(W, TZ) (101)

for X,Y € T(TB) and Z, W € T(TF).
2. If N is Sasakian, then

§(h(X,Y),FZ) = n(Z)g(X,Y) (102)

and
§(M(X,W),FZ) = —n(X)g(FW,FZ) —¢X(Inf)g(W,Z) (103)

+(X =7(X)¢)(In f)g(W, TZ)

for X,Y € T(TB) and Z, W € T(TF).
3. If N is Kenmotsu, then
g(h(X,Y),FZ) = n(Z)8(¢X,Y) (104)

and

(X, W), FZ) = —n(X)n(W)n(FZ) — ¢X(In f)g(W, Z) (105)
+(X =7(X)¢)(In f)g(W, TZ)

for X,Y € T(TB) and Z, W € T(TF).

Proof. We will give its proof when N is Sasakian.
Given X,Y € T(TB) and Z,W € T(TF), by using (19) and (8), we get

g(h(X,Y),FZ)

=g(VxY,¢Z - TZ)

= —g(¢VxY,Z) —g(VxY, TZ)

= —g(Vx¢Y — (8(X,Y)& —1(Y)X),Z) +g(Y, VxTZ)
=g(@Y, X(Inf)Z) +n(Z)g(X,Y) + (Y, X(In f)TZ)
=n(2)8(X,Y),

which gives (102).
Replacing X by ¢X at (97), we obtain

g(h(X, W), FZ) = n(X)y(ApzW) — 9X(In f)g(W, Z) + (X - y(X)Z) (In f)g(W, TZ).
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By using (3) and (20),

ArzW, Q)
h(W,¢),FZ)
Vwé, FZ)
—$W,FZ)
= —§(FW,FZ),

n(ApzW) =g

[
N NN

which gives (103). O

10. Inequalities

We will consider inequalities for the squared norm of the second fundamental form in terms
of a warping function and a semi-slant function for a warped product submanifold in cosymplectic
manifolds, Sasakian manifolds and Kenmotsu manifolds.

Let M = B x F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (21 4 1)-dimensional almost contact metric manifold (N, ¢, {, 7, ) with the semi-slant
function 6 such that D; = TB, D, = TF and ¢ is tangent to M.

Then by using Remark 11 we can choose a local orthonormal frame {e,ep, -, €y, +1, 71,

Uy, W1, Woy, U, -+ -, Upy } of TN such that {e1, -+ ,eppm,+1} C T(D1), {v1,--+ ,02m,} C
[(Dy), {wy,- - ,wom, } CT(FDy), {uy, -+ ,uz} C IT'(n) with the following conditions:

em1+i = 47@1‘, 1 S i S my, €2m1+1 = gl
Upyti = sec0Tv;, 1 < i < mp,

w; = cscOFv;, 1 <i < 2my,

Upp; = Qu;, 1 <i <r.

=L

We have m = 2my +2my + 1 and n = mq + 2my + 1.
Using the above notations, we obtain

Theorem 13. Let M = B Xy F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional Sasakian manifold (N, ¢, &, 1, g) with the semi-slant function 6 such
that Dy = TB, D, = TF and ¢ is tangent to M.
Assume that n = mq + 2my.
Then we have
||1][? > 4my(csc® 8 + cot? 8)||¢pV (In f)||* + 4my sin” 6 (106)

with equality holding if and only if g(h(Z, W), V) = 0 for Z,W € T(TF) and V € T(TM™).

Proof. Since y =0, we get

e 2my+1 2y
|| || /]21 g ez/ ezr + ’]Zlg Uz/ UuU]))
2y +1 2my
+2 Z Zg (ei,v;),h(ei, v}))
2m1+1 Zmz 2my 2my
Z Zg elle] , W) 24+ 2 Zg Uzrv] )
ij=1 k= i,j=1k=
2m1+1 2my

2 ). ) glhle,v),we)

i=1 jk=1
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By using Lemma 12 and Remark 10, we obtain

211’[2
nl? = 3 (o)), we)? (107)

i,jk=1
2m1+1 2my

+2csc? 0 Z Y (—n(ei)g(Fuj, Fog)
i=1 jk=1

—¢ei(In £)g(vj, o) + (e; — 1(e;)E) (In f)g(v;, Toy) )?

21112

= Y g(h(v;,0)), wy)?

ijk=1
2m1 27?12

+2esc?0 Y Y (—¢ei(Inf)ou + e;(In f)g(vj, Toy))?
i=1jk=1
211’!2

+2csc? 0 ) (—sin? 95]‘k)2
k=1

21112

= ) 8(h(vi,v),wy)

i,jk=1
2m1 21112

+2csc?0 Y Y ((¢ei(Inf))? Sk + (ei(In f)g (Z)],Tvk))2
i=1jk=1

—2¢e;i(In f)dj - ei(In f)g(v ,Tvk))+4mzsin26,

where §j is the Kronecker delta for 1 < j, k < 2mj.

But
2mq 2my
;(cpei(lnf))z = Zg ¢e;, V(In £))? (108)
Zml
= ;g(ezvsbv(lnf))z
= g(¢V(Inf),¢V(Inf))
¢V (In f)| [,
2mq 2my
;(ei(lnf))2 = del (Inf))> (109)
= g(V(Inf),V(Inf)) - (1(V(nf)))?
= g(¢V(Inf),¢V(Inf))
= oV (Inf)|f,

5]'kg(?)]', T?Jk) =0, (110)
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By Remark 11,

2m2

Y 8(vj, Top)? (111)

jk=1

my 21’?12 my Zmz

= Y Y (0, Toe)* + Y. Y g(0, T, k)
=121 =1 =1

my 13
= Y g(secOToy, Top)* + Y g(vx, secd(— cos? 8)vy)?
k=1 k=1

ny ny
= Z sec?0 - cos* 6 + ZCOSZG
k=1 k=1

= 2my cos? 6.

Applying (108), (109), (110), (111) to (107), we have

21112

11> =Y g(h(vi, ), wr)? +2csc? 0(2ma ||V (In £ |
i,jk=1

+ 215 cos? 6|V (In f)|[?) + 4my sin® 6

so that
||1][? > 4my(csc® 8 + cot? 0)||¢V (In £)||*> + 4my sin” 6

with equality holding if and only if g(h(v;, v;), wy) = 0 for 1 <, j, k < 2my.
Therefore, the result follows. [

In the same way, we get

Theorem 14. Let M = B Xy F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional cosymplectic manifold (N, ¢, ¢, n, §) with the semi-slant function 6 such
that D1 = TB, D, = TF and & is tangent to M.
Assume that n = mq + 2m.
Then we have
[|2][* > 4my(csc® 0 4 cot? 0)||¢pV (In £) || (112)

with equality holding if and only if g(h(Z, W), V) = 0 for Z,W € T(TF) and V € T(TM™).

Theorem 15. Let M = B Xy F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional Kenmotsu manifold (N, ¢, &, 1, g) with the semi-slant function 0 such
that D1 = TB, D, = TF and & is tangent to M.
Assume that n = mq + 2m.
Then we have
[|2][* > 4my(csc® 0 4 cot? 0) ||¢V (In £) |2 (113)

with equality holding if and only if g(h(Z, W), V) = 0 for Z,W € T(TF) and V € T(TM™).

Let M = B x F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (21 4 1)-dimensional almost contact metric manifold (N, ¢, ¢, 7, ) with the semi-slant
function 6 such that D; = TB, D, = TF and ¢ is normal to M with & € T'(u).

Then by Propositin 4, y is ¢-invariant.

Using Remark 11, we can choose a local orthonormal frame {ej,ep,- - -, €2y, V1,7 * 5 U2y, W1,

© W2y, U1, ,M2r+1} of TN such that {61,' .- ,eZml} C F(Dl), {‘01, SR rUZmz} C F(Dz),
{wy, - ,wom,} CT(FDy), {u1,- - ,uzr41} C T () with the following conditions:
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emy+i = Pei, 1 < i <my,

Upyti = sec0Tv;, 1 < i < my,
w; = cscOFv;, 1 <i<2my,

Uppi = u;, 1 <0 <1, upppq =G

=L

We have m = 2mq 4+ 2myp and n = mq + 2my + 1.

Notice that if N is Sasakian, then from Theorem 2, there does not exist such a proper pointwise
semi-slant submanifold M of N.

Using these notations, in a similar way, we obtain

Theorem 16. Let M = B x ¢ F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional Kenmotsu manifold (N, ¢, &, 1, g) with the semi-slant function 0 such
that D1 = TB, D, = TF and & is normal to M with & € T (p).

Assume that n = mq + 2my.

Then we have
||| [> > 4my(csc® @ 4 cot? 0) ||V (In f)| > + 2m (114)

with equality holding if and only if g(h(Z, W), V) =0 for Z, W € T(TF) and V € T(TM™).

Proof. Since y =< ¢ >, we obtain

2my 2my
||n|* = '; g(h(ei ), h(ei ) + 4; g(h(v;,v)), h(v;,v;))

’]2m12m2 !

+2 Zl Zg (e, v el/U]))
i=1j=
2my 2my
21 ng eirej), wi)” + (1(h(eief)))?)
ij
2my  2my

+21ng v;,v)),wr)* + (7(h(v;,7)))?)
]2m1 2my

+2) (Y glhle,v)), we)* + ((h(ei, 0))))?).
i=1 jk=1

Using (22), we can easily check that 77(h(e;, ej)) = —d;; and 17(h(e;, v)) = 0 for 1 < i,j < 2my and
1 <k < 2mj so that by using Lemma 12,

27712 21112

|[1]]> = 2my + 21 ng (01,07), wi)* + ((h(v3,0))))?)
ij

27111 211’!2

+2esc?0Y Y (- ;)11 (Fog)
i=1jk=1
— gei(In f)g(v;,vk) + (e — 17(e:)&) (In f)g (v}, Tvg))?

21112 sz

=2m+ Y ( Zg (vi, ), wi)* + (1 (h(v;,0})))?)

ij=1 k=1

27711 2m2

+2esc?0 ) ) ((¢ei(in £))%05 + (e;(In f)g (v, Tog))?

i=1jk=1

—2¢ei(In f)dj - ei(In f)g(vj, Tvg)).
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In a similar way to the proof of Theorem 13, we also derive the following;:

2my

Z‘%(qﬁ—’i(lnf))2 =||V(nf)[]?
2my

Y (e(in )y = [V I,
2my

Y (g(vj, Tog))* = 2my cos® 6,
jl=1

o8 (vj, Tog) =0
so that
||| > > 2my 4 4my(csc® @ 4 cot? 6) ||V (In £)] |2
with equality holding if and only if g((v;, v;), wi) = 0 and g(h(v;,v;),&) = 0for 1 <i,j,k < 2mj.

Therefore, the result follows. [

In the same way, we get

Theorem 17. Let M = B X F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional cosymplectic manifold (N, ¢, &, 1, g) with the semi-slant function 0 such
that Dy = TB, D, = TF and ¢ is normal to M with & € T(u).
Assume that n = mq + 2my.
Then we have
|[1]|? > 4ma(csc® 6 + cot® 0) ||V (In f)|[? (115)

with equality holding if and only if g(h(Z,W),V) = 0 for Z,W € T(TF) and V € T(TM").
11. Examples

Example 7. Define a map i : R* — R by

i(x1,%2,x3,%4) = (Y1,Y2,- - , Y10, 1) = (xpsinxg, xq sin x3,

X7 8in Xy, X1 SN X4, X3 COS X3, X1 COS X3, X COS X4, X1 COS X4, X3, X4, 0)

Let M := {(x1,x2,x3,%3) €ER* |0 < x1,xp <1, 0 < x3,x4 < 7}
We define (¢, &, 1, ) on R as follows:

Mo

Il
_

9 3 9y . _ 9 .9
‘P(ala BRI Vo +angg) =) (—ay s T R2i-1 Byzi)'

Ei=2%,n:=dt, ;; eR, 1<i<1l,

g is the Euclidean metric on R!1.
We easily check that (¢,&,1,8) is an almost contact metric structure on R\, Then M is a pointwise

semi-slant submanifold of R with the semi-slant function k(x1, x2, x3, x4) = arccos( ) such that

x2+x3+1
¢ is normal to M and

Di=< sinx;;% —i—cosx;;% + sinx4% +cosx4a;%,

sinm% —i—cosm% + sinm% + cosm% >,
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_ 9 9 4 90 _ i 9 _ i 9
Dy = < xp cos X33, + X1 cos x3 s + ay; — X2sinXz g — xpsinxsg -,

+x2cosx4a +x1cosx4ay xzsinx4§j9—xlsinx4a%0 > .
Notice that (RY, ¢, &, 1, ¢) is cosymplectic.
Example 8. Definea mapi: R — R” by

i(xll'xZI e ,XS) = (]/1/]/2/' o /]/6/t)
= (X3, X1,X5,Sil‘1 X4, 0, cos X4, XZ).

Let M := {(x1,xp,- -+ ,x5) ER° | 0 < xy < F}.
We define (¢, &,1,8) on R as follows:

3

) .9 i
(o Y1 T T gy, a]/é 4758 at 21 D23y T2 9Yai )
1=

ij—at,n =dt,q; €R, 1 <i<7,

g is the Euclidean metric on R7. It is easy to check that (¢,¢,7,8) is an almost contact metric structure on R”.
Then M is a pointwise semi-slant submanifold of R” with the semi-slant function k(xy,- -+ ,xs5) = x4
such that ¢ is tangent to M and

Dy <ay1’3y2 >

__ 9 9 g 9
D, =< ay3,cosx48y4 sin x4 3, - > .

Example 9. Let (N, ¢, ¢, 1, gn) be an almost contact metric manifold. Let M be a submanifold of a hyperkihler
manifold (M, 1, J2, I3, Sp) such that M is complex with respect to the complex structure J; (i.e., J{(TM) =
TM) and totally real with respect to the complex structure 5 (i.e., J,(TM) C TM™L) [40]. Let f : M — [0, %]
be a C®~function. Let N := M x N with the natural projections 7ty : N — Mand 71y : N — N.

We define (¢, &,7,) on N as follows:

(Z, W) = gﬁ(dﬂ’l (Z),d7T1(W)) +gN(d7T2(Z),d7T2(W))

for X eT(TM),Y € T(TN), Z, W € T(TN).

Here, ¢ is exactly the horizontal lift of & along 71y and 7j(Z) := 1(dma(Z)). Conveniently, we identify a
vector field on M (or on N) with its horizontal lift.

We can easily check that (¢,&,7, %) is an almost contact metric structure on N.

Then M x N is a pointwise semi-slant submanifold of an almost contact metric manifold (N, ¢,&,7,3)
with the semi-slant function f o 7ty such that ¢ is tangent to M x N and Dy = TN, Dy = TM.

Example 10. Define (¢,&,1,8) on R as follows:

5

0 ] 9y — 9 9
Plargy; +- -+ a0z, +ougy) = ;(_“21%,-,1 +t2i15,-),

Q’—at,iy—dt g, €R,1<i<11,

g is the Euclidean metric on R'. Then we know that R = (RY, ¢, &, 4, ) is a cosymplectic manifold.
Let -
M= {(x1,x,u,0) |0<x;<1,i=1,2, 0<u,v<5}.
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Take two points Py, Py in the unit sphere S* such that

P; = (ayj,a9), i=1,2,
a11a12 + anaz =0,

—anay +ayapp # 0.

We define amapi: M C R* — R by

i(xl/xZI u, U) = (]/1/ _1/2/ e /]/10/ t)
= (X1 COS U, X3 COS U, X1 COST, X3 COST,
X1 sinu, xp sinu, x1 sinv, X sin o,

ay U + a1p0,ax1u + a»o, 2020)
Then the tangent bundle TM is spanned by X1, X2, Y1, Yo, where

X = cosu% +cosv% +sinu% + sinva%,
X, = cos u% + Cosv& + sinu& + sinvaa%,
Y =—x1 sinu% — X2 sinu% + x1 cos u%
+x2cosu& —i—an% +a21$310,

Y, = —xq sinvaa% — X2 sinvaiy4 + x1 cos U%
+X2COSU% —|—ﬂ1238% +azzayiw.

We can easily check that M is a proper pointwise semi-slant submanifold of a 11-dimensional cosymplectic

manifold RU = (RH,(]), &,n,8) such that D1 =< X1,Xp >, Dy =< Y1,Ys >, the semi-slant functions
0 with

| — ay1a20 + axia1;|
1+ x2 + x3

cosf =

4

¢ is normal to M with & € T(u).

We see that the distributions Dy, D, are integrable. Denote by B, F the integral manifolds of Dy, D,,
respectively.

Then we see that M = (M, g) is a non-trivial warped product Riemannian submanifold of R' such that
M=B Xf F,
g = 2(dx? 4+ dx3) + (14 22 + x3) (du® + dv?),
the warping function f = \/1+ x3 + x3.

Hence, M is a non-trivial warped product proper pointwise semi-slant submanifold of (R, ¢,&, 7, ¢).
By Theorem 17, we obtain

(14 x% + x3)% + (—a11a22 + 21412)

171> > 4(
(1+x3 +x3)% — (—anaxn + anarn)

2
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