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Abstract: In almost contact metric manifolds, we consider two kinds of submanifolds: pointwise slant,
pointwise semi-slant. On these submanifolds of cosymplectic, Sasakian and Kenmotsu manifolds,
we obtain characterizations and study their topological properties and distributions. We also give
their examples. In particular, we obtain some inequalities consisting of a second fundamental form, a
warping function and a semi-slant function.
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1. Introduction

Given a Riemannian manifold (N, g) with some additional structures, there are several kinds of
submanifolds:

Almost complex submanifolds ([1–4]), totally real submanifolds ([5–8]), CR submanifolds ([9–12]), QR
submanifolds ([13–16]), slant submanifolds (([17–22]), pointwise slant submanifolds ([23–25]), semi-slant
submanifolds ([26–29]), pointwise semi-slant submanifolds [30], pointwise almost h-slant submanifolds
and pointwise almost h-semi-slant submanifolds [31], etc.

As a generalization of almost complex submanifolds and totally real submanifolds of an almost
Hermitian manifold, B. Y. Chen [17] introduced a slant submanifold of an almost Hermitian manifold
in 1990. After that, many geometers studied slant submanifolds ([18–22,32], etc.).

As a generalization of CR-submanifolds and slant submanifolds of an almost Hermitian manifold,
N. Papaghiuc [28] defined the notion of semi-slant submanifolds of an almost Hermitian manifold in
1994. After that, many geometers investigated semi-slant submanifolds ([26,27,29,33,34], etc.).

In 1998, F. Etayo [24] defined pointwise slant submanifolds. In 2012, B. Y. Chen and O. J. Garay [23]
investigate pointwise slant submanifolds. In 2013, B. Sahin [30] gives the notion of pointwise semi-slant
submanifolds. In 2014, on an almost quaternionic Hermitian manifold the author in [31] obtains some
properties of pointwise almost h-slant submanifolds and pointwise almost h-semi-slant submanifolds.

As a generalization of slant submanifolds and semi-slant submanifolds of an almost contact
metric manifold, we will define the notions of pointwise slant submanifolds and pointwise semi-slant
submanifolds of an almost contact metric manifold. Throughout the paper, we will see the similarity
and the difference among cosymplectic manifolds, Sasakian manifolds and Kenmotsu manifolds.

We organize the paper as follows. In Section 2 we deal with some necessary notions. In Section 3
we recall some basic notions in almost contact metric manifolds. In Section 4 we define pointwise slant
submanifolds of an almost contact metric manifold and deal with their properties. In Section 5 we
investigate their topological properties. In Section 6 we give their examples. In Section 7 we define
pointwise semi-slant submanifolds of an almost contact metric manifold. In Section 8 we consider
distributions and totally umbilic submanifolds in cosymplectic, Sasakian and Kenmotsu manifolds.
In Section 9 we have the non-existence of warped product submanifolds and investigate their properties.
In Section 10 we obtain inequalities consisting of a second fundamental form, a warping function and a
semi-slant function in cosymplectic, Sasakian and Kenmotsu manifolds. Finally, we give their examples.
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2. Preliminaries

Let (N, g) be a Riemannian manifold, where N is a n-dimensional C∞-manifold and g is a
Riemannian metric on N. Let M be a m-dimensional submanifold of (N, g).

Denote by TM⊥ the normal bundle of M in N.
Denote by ∇ and ∇ the Levi–Civita connections of M and N, respectively.
Then the Gauss and Weingarten formulas are given by

∇XY = ∇XY + h(X, Y), (1)

∇XZ = −AZX + DXZ, (2)

respectively, for tangent vector fields X, Y ∈ Γ(TM) and a normal vector field Z ∈ Γ(TM⊥), where h
denotes the second fundamental form, D the normal connection and A the shape operator of M in N.

The second fundamental form and the shape operator are related by

〈AZX, Y〉 = 〈h(X, Y), Z〉, (3)

where 〈 , 〉 denotes the induced metric on M as well as the Riemannian metric g on N.
Choose a local orthonormal frame {e1, · · · , en} of TN such that e1, · · · , em are tangent to M and

em+1, · · · , en are normal to M.
Then the mean curvature vector H is defined by

H :=
1
m

trace h =
1
m

m

∑
i=1

h(ei, ei) (4)

and the squared mean curvature is given by H2 := 〈H, H〉.
The squared norm of the second fundamental form h is defined by

||h||2 :=
m

∑
i,j=1
〈h(ei, ej), h(ei, ej)〉. (5)

Let (B, gB) and (F, gF) be Riemannian manifolds, where gB and gF are Riemannian metrics on
manifolds B and F, respectively. Let f be a positive C∞-function on B. Consider the product manifold
B× F with the natural projections π1 : B× F 7→ B and π2 : B× F 7→ F. The warped product manifold
M = B× f F is the product manifold B× F equipped with the Riemannian metric gM such that

||X||2 = ||dπ1X||2 + f 2(π1(x))||dπ2X||2 (6)

for any tangent vector X ∈ Tx M, x ∈ M.
Hence,

gM = gB + f 2gF.

We call the function f the warping function of the warped product manifold M [35].
If the warping function f is constant, then the warped product manifold M is called trivial.
Given vector fields X ∈ Γ(TB) and Y ∈ Γ(TF), we get their natural horizontal lifts X̃, Ỹ ∈ Γ(TM)

such that dπ1X̃ = X and dπ2Ỹ = Y.
For convenience, we will identify X̃ and Ỹ with X and Y, respectively.
Choose a local orthonormal frame {e1, · · · , em} of the tangent bundle TM of M such that

e1, · · · , em1 ∈ Γ(TB) and em1+1, · · · , em ∈ Γ(TF).
Then we have

4 f =
m1

∑
i=1

((∇ei ei) f − e2
i f ). (7)

Given unit vector fields X, Y ∈ Γ(TM) such that X ∈ Γ(TB) and Y ∈ Γ(TF), we obtain
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∇XY = ∇YX = (X ln f )Y, (8)

where ∇ is the Levi–Civita connection of (M, gM).
Thus,

K(X ∧Y) = 〈∇Y∇XX−∇X∇YX, Y〉 (9)

=
1
f
((∇XX) f − X2 f ),

where K(X ∧Y) denotes the sectional curvature of the plane < X, Y > spanned by X and Y over R.
Hence,

4 f
f

=
m1

∑
i=1

K(ei ∧ ej) (10)

for each j = m1 + 1, · · · , m.
Throughout this paper, we will use the above notations.

3. Almost Contact Metric Manifoldsn

In this section, we remind some notions in almost contact metric manifolds and we will use them later.
Let N be a (2n + 1)-dimensional C∞-manifold with a tensor field φ of type (1, 1), a vector field ξ

and a 1-form η such that
φ2 = −I + η ⊗ ξ, η(ξ) = 1, (11)

where I denotes the identity endomorphism of TN. Then we have [36]

φξ = 0, η ◦ φ = 0. (12)

We call (φ, ξ, η) an almost contact structure and (N, φ, ξ, η) an almost contact manifold. If there is
a Riemannian metric g on N such that

g(φX, φY) = g(X, Y)− η(X)η(Y) (13)

for any vector fields X, Y ∈ Γ(TN), then we call (φ, ξ, η, g) an almost contact metric structure and
(N, φ, ξ, η, g) an almost contact metric manifold. The metric g is called a compatible metric. By
replacing Y by ξ at (13), we obtain

η(X) = g(X, ξ). (14)

Define Φ(X, Y) := g(X, φY) for vector fields X, Y ∈ Γ(TN). Since φ is anti-symmetric with respect
to g, the tensor Φ is a 2-form on N and is called the fundamental 2-form of the almost contact metric
structure (φ, ξ, η, g). We can also choose a local orthonormal frame {X1, · · · , Xn, φX1, · · · , φXn, ξ} of
TN and we call it a φ-frame. An almost contact metric manifold (N, φ, ξ, η, g) is said to be a contact
metric manifold (or almost Sasakian manifold) [37] if it satisfies

Φ = dη. (15)

It is easy to check that given a contact metric manifold (N, φ, ξ, η, g), we get

(dη)n ∧ η 6= 0. (16)

The Nijenhuis tensor of a tensor field φ is defined by

N(X, Y) := φ2[X, Y] + [φX, φY]− φ[φX, Y]− φ[X, φY] (17)

for any vector fields X, Y ∈ Γ(TN). We call the almost contact metric structure (φ, ξ, η, g) normal if
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N(X, Y) + 2dη(X, Y)ξ = 0 (18)

for any vector fields X, Y ∈ Γ(TN).
A contact metric manifold (N, φ, ξ, η, g) is said to be a K-contact manifold if the characteristic

vector field ξ is Killing. It is well-known that for a contact metric manifold (N, φ, ξ, η, g), ξ is Killing if
and only if the tensor h̄ := 1

2 Lξ φ vanishes, where L denotes the Lie derivative [36].
Given a contact metric manifold N = (N, φ, ξ, η, g), we know that (i) h̄ is a symmetric operator, (ii)

∇Xξ = −φX− φh̄X for X ∈ Γ(TN), where∇ is the Levi–Civita connection of N, (iii) h̄ anti-commutes
with φ and trace(h̄) = 0 [36]. Using the above three properties, A. Lotta proved Theorem 2 [20].

An almost contact metric manifold (N, φ, ξ, η, g) is called a Sasakian manifold if it is contact and
normal. Given an almost contact metric manifold (N, φ, ξ, η, g), we know that it is Sasakian if and
only if

(∇Xφ)Y = g(X, Y)ξ − η(Y)X (19)

for X, Y ∈ Γ(TN) [36]. If an almost contact metric manifold (N, φ, ξ, η, g) is Sasakian, then we have

∇Xξ = −φX (20)

for X ∈ Γ(TN) [36].
Moreover, a Sasakian manifold is a K-contact manifold [36].
An almost contact metric manifold (N, φ, ξ, η, g) is said to be a Kenmotsu manifold if it satisfies

(∇Xφ)Y = g(φX, Y)ξ − η(Y)φX (21)

for X, Y ∈ Γ(TN) [36]. From (21), by replacing Y by ξ, we easily obtain

∇Xξ = X− η(X)ξ (22)

for X ∈ Γ(TN) [36].
An almost contact metric manifold (N, φ, ξ, η, g) is called an almost cosymplectic manifold if η

and Φ are closed. An almost cosymplectic manifold (N, φ, ξ, η, g) is said to be a cosymplectic manifold
if it is normal [37]. Given an almost contact metric manifold (N, φ, ξ, η, g), we also know that it is
cosymplectic if and only if φ is parallel (i.e., ∇φ = 0) [36].

Given a cosymplectic manifold (N, φ, ξ, η, g), we easily get

∇φ = 0, ∇η = 0, and ∇ξ = 0. (23)

Throughout this paper, we will use the above notations.

4. Pointwise Slant Submanifolds

In this section we define the notion of pointwise slant submanifolds of an almost contact metric
manifold and study its properties.

Definition 1. Let N = (N, φ, ξ, η, g) be a (2n + 1)-dimensional almost contact metric manifold and M a
submanifold of N. The submanifold M is called a pointwise slant submanifold if at each given point p ∈ M
the angle θ = θ(X) between φX and the space Mp is constant for nonzero X ∈ Mp, where Mp := {X ∈
Tp M | g(X, ξ(p)) = 0}.

We call the angle θ a slant function as a function on M.

Remark 1.

1. In other papers ([19,20], etc.), the slant angle θ of a submanifold M in an almost contact metric manifold
(N, φ, ξ, η, g) is defined in a little bit different way as follows:
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Assume that ξ ∈ Γ(TM). Given a point p ∈ M, if the angle θ = θ(X) between φX and Tp M is constant
for nonzero X ∈ Tp M− {ξ(p)}, then we call the angle θ a slant angle.

Two definitions for the slant angle of a submanifold in an almost contact metric manifold are essentially
same when ξ ∈ Γ(TM). Our definition has some advantages as follows: First of all, our definition does not
depend on whether the vector field ξ is tangent to M or the vector field ξ is normal to M. Secondly, we
have more simple form like this (See Lemma 1): T2X = − cos2 θX for X ∈ Mp, which is the same form
with the case of an almost Hermitian manifold, etc..

2. If θ : M 7→ [0, π
2 ), then by using Theorem 3.3 of [20], we obtain that either ξ is tangent to M or ξ is

normal to M.
3. Like examples of Section 6, we need to deal with our notion both when ξ is tangent to M and when ξ is

normal to M so that by (1), our definition is more favorite.

Remark 2.

1. If the slant function θ is constant on M, then we call M a slant submanifold.
2. If θ = 0 on M, (which implies φ(TM) ⊂ TM), then we call M an invariant submanifold.
3. If θ = π

2 on M, (which implies φ(TM) ⊂ TM⊥), then we call M an anti-invariant submanifold.

Let M be a pointwise slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g) with
the slant function θ.

For X ∈ Γ(TM), we write
φX = TX + FX, (24)

where TX ∈ Γ(TM) and FX ∈ Γ(TM⊥).
For Z ∈ Γ(TM⊥), we obtain

φZ = tZ + f Z, (25)

where tZ ∈ Γ(TM) and f Z ∈ Γ(TM⊥).
Let T1M :=

⋃
p∈M

Mp =
⋃

p∈M
{X ∈ Tp M | g(X, ξ(p)) = 0}.

Then we get

Lemma 1. Let M be a submanifold of an almost contact metric manifold N = (N, φ, ξ, η, g). Then M is a
pointwise slant submanifold of N if and only if T2 = − cos2 θ · I on T1M for some function θ : M 7→ R.

Proof. Suppose that M is a pointwise slant submanifold of N with the slant function θ : M 7→ R.
Given a point p ∈ M, if θ(p) = π

2 , then trivial! If θ(p) 6= π
2 , then for any nonzero X ∈ Mp we have

cos θ(p) =
g(φX, TX)

||φX|| ||TX|| =
||TX||
||X|| (26)

so that cos2 θ(p)g(X, X) = g(TX, TX) = −g(T2X, X). Replacing X by X + Y, Y ∈ Mp, we obtain

g((T2 + cos2 θ(p)I)X, Y) + g(X, (T2 + cos2 θ(p)I)Y) = 0.

T2 + cos2 θ(p)I is also symmetric so that

(T2 + cos2 θ(p)I)X = 0. (27)

Conversely, if T2 = − cos2 θ I on T1M for some function θ : M 7→ R, then we have g(TX, TX) =

−g(T2X, X) = cos2 θ(p)g(X, X) for any nonzero X ∈ Mp, p ∈ M so that

cos2 θ(p) =
g(TX, TX)

g(X, X)
, (28)

which implies that arccos(| cos θ(p)|) is a slant function on M.
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Hence, M is a pointwise slant submanifold of N.

Remark 3. Let M be a pointwise slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g) with
the slant function θ. By using Lemma 1, we easily get

g(TX, TY) = cos2 θg(X, Y), (29)

g(FX, FY) = sin2 θg(X, Y), (30)

for X, Y ∈ Γ(T1M). At each given point p ∈ M with 0 ≤ θ(p) < π
2 , by using (29) we can choose an

orthonormal basis {X1, sec θTX1, · · · , Xk, sec θTXk} of Mp.

Using Lemma 1, we obtain

Corollary 1. Let M be a pointwise slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g) with
the nonconstant slant function θ : M 7→ R. Then M is even-dimensional.

In a similar way to Proposition 2.1 of [24], we have

Proposition 1. Let M be a 2-dimensional submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Then M is a pointwise slant submanifold of N.

Proof. Given a point p ∈ M, we consider it at two cases.
If ξ /∈ Γ(Tp M⊥), then since dim Mp = 1 and g(φX, X) = 0 for X ∈ Mp, we immediately obtain

θ(p) = π
2 .

If ξ ∈ Γ(Tp M⊥), then we choose an orthonormal basis {X, Y} of Tp M. Let α := g(X, φY). Given
any nonzero vector Z = aX + bY ∈ Tp M, a, b ∈ R, we get

TZ = g(φZ, X)X + g(φZ, Y)Y = bg(X, φY)X− ag(X, φY)Y = bαX− aαY

so that

cos θ(Z) =
g(φZ, TZ)
||φZ|| ||TZ|| =

||TZ||
||Z|| = |α|,

which means the result.

Remark 4. Proposition 1 gives us a kind of examples for pointwise slant submanifolds.

In a similar way to Theorem 2.4 of [24], we obtain

Theorem 1. Let M be a pointwise slant connected totally geodesic submanifold of a cosymplectic manifold
(N, φ, ξ, η, g). Then M is a slant submanifold of N.

Proof. Given any two points p, q ∈ M, we choose a C∞-curve c : [0, 1] 7→ M such that c(0) = p and
c(1) = q. For nonzero X ∈ Mp, we take a parallel transport Z(t) along the curve c in M such that
Z(0) = X and Z(1) = Y. Then since M is totally geodesic,

0 = ∇c′Z(t) = ∇c′Z(t), (31)

where∇ and∇ are the Levi–Civita connections of M and N, respectively. By the uniqueness of parallel
transports, Z(t) is also a parallel transport in N. Since ξ is parallel (see (23)), we have

d
dt

g(Z(t), ξ) = g(∇c′Z(t), ξ) + g(Z(t),∇c′ξ) = 0 and g(Z(0), ξ) = 0 (32)
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so that
0 = g(Z(1), ξ) = g(Y, ξ),

which implies Y ∈ Mq.
By (23),

∇c′φZ(t) = (∇c′φ)Z(t) + φ∇c′Z(t) = 0

so that φZ(t) becomes a parallel transport along c in N such that φZ(0) = φX and φZ(1) = φY.
Define a map τ : TpN 7→ TqN by τ(U) = V for U ∈ TpN and V ∈ TqN, where W(t) is the parallel

transport along c in N such that W(0) = U and W(1) = V. Then τ is surely isometry. It is easy to
check that τ(Tp M) = Tp M and τ(Tp M⊥) = Tp M⊥ so that τ(φX) = φY means τ(TX) = TY.

Hence,

cos θ(p) =
||TX||
||X|| =

||TY||
||Y|| = cos θ(q),

where θ is the slant function on M.
Therefore, the result follows.

Using Proposition 1 and Theorem 1, we get

Corollary 2. Let M be a 2-dimensional connected totally geodesic submanifold of a cosymplectic manifold
(N, φ, ξ, η, g). Then M is a slant submanifold of N.

Remark 5. Corollary 2 gives us a kind of examples for slant submanifolds.

Now, we need to mention A. Lotta’s result [20], which is the generalization of the well-known
result of K. Yano and M. Kon [38].

Theorem 2 ([20]). Let M be a submanifold of a contact metric manifold N = (N, φ, ξ, η, g). If ξ is normal to
M, then M is a anti-invariant submanifold of N.

Remark 6.

1. As we know, Theorem 2 is very strong and it implies that there do not exist submanifolds M with
ξ ∈ Γ(TM⊥) in a contact metric manifold (N, φ, ξ, η, g) such that either {X, φX} ⊂ Mp for some
nonzero X ∈ Mp, p ∈ M or 2 dim M > dim N + 1.

2. If N is either cosymplectic or Kenmotsu, then Theorem 2 is not true (see Examples 2 and 3) and we easily
check that the argument of the proof of Theorem 2 at [20] does not give any information anymore.

3. In the view point of (1) and (2), we may think that Sasakian manifolds are somewhat different from
cosymplectic manifolds and Kenmotsu manifolds (see Sections 8–10).

In the same way to Proposition 2.1 of [23], we can obtain

Proposition 2. Let M be a submanifold of an almost contact metric manifold (N, φ, ξ, η, g). Then M is a
pointwise slant submanifold of N if and only if

g(TX, TY) = 0 whenever g(X, Y) = 0 for X, Y ∈ Mp, p ∈ M. (33)

Considering slant functions as conformal invariant, we easily derive

Proposition 3. Let M be a pointwise slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g)
with the slant function θ : M 7→ R. Then for any given C∞-function f : N 7→ R, M is also a pointwise slant
submanifold of an almost contact metric manifold (N, φ, e− f ξ, e f η, e2 f g) with the same slant function θ.
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Theorem 3. Let M be a slant submanifold of an almost contact metric manifold N = (N, φ, ξ, η, g) with the
slant angle θ. Assume that N is one of the following three manifolds: cosymplectic, Sasakian, Kenmotsu. Then
we have

AFXTX = AFTXX for X ∈ Γ(T1M). (34)

Proof. We will only give its proof when N is Sasakian. For the other cases, we can show them in a
similar way. If θ = π

2 , then done! Assume that 0 ≤ θ < π
2 . Given a unit vector field X ∈ Γ(T1M),

we have
TX = cos θ · X∗ (35)

for some unit vector field X∗ ∈ Γ(T1M) with g(X, X∗) = 0. Then for any Y ∈ Γ(TM), by using (1), (2)
and (19), we obtain

∇Y(φX) = ∇Y(cos θ · X∗) +∇Y FX (36)

= cos θ · ∇YX∗ + cos θh(Y, X∗)− AFXY + DY FX

and

∇Y(φX) = (∇Yφ)X + φ∇YX (37)

= g(Y, X)ξ − η(X)Y + T∇YX + F∇YX

+th(Y, X) + f h(Y, X)

= g(Y, X)ξ + T∇YX + F∇YX + th(Y, X) + f h(Y, X).

Thus, by taking the inner product of right hand sides of (36) and (37) with X∗, we derive

g(−AFXY, X∗) = g(th(Y, X), X∗),

which gives
g(AFXX∗, Y) = g(AFX∗X, Y).

Therefore, the result follows.

5. Topological Properties of Pointwise Slant Submanifolds of a Cosymplectic Manifold

In this section we investigate the topological properties of pointwise slant submanifolds of a
cosymplectic manifold. A pointwise slant submanifold M of an almost contact metric manifold
(N, φ, ξ, η, g) is said to be proper if the slant function θ of M in N is given by θ : M 7→ [0, π

2 ).
Let M be a pointwise slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g). Given

X, Y ∈ Γ(TM), we define

(∇XT)Y := ∇X(TY)− T∇XY, (38)

(DX F)Y := DX(FY)− F∇XY. (39)

We call the tensors T and F parallel if ∇T = 0 and ∇F = 0, respectively. Then in a similar way to
Lemma 3.8 of [31], we easily obtain

Lemma 2. Let M be a pointwise slant submanifold of a cosymplectic manifold (N, φ, ξ, η, g). Then we get

1.

(∇XT)Y = AFYX + th(X, Y), (40)

(DX F)Y = −h(X, TY) + f h(X, Y) (41)
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for X, Y ∈ Γ(TM).
2.

−TAZX + tDXZ = ∇X(tZ)− A f ZX, (42)

−FAZX + f DXZ = h(X, tZ) + DX( f Z) (43)

for X ∈ Γ(TM) and Z ∈ Γ(TM⊥).

Let M be a proper pointwise slant submanifold of a cosymplectic manifold (N, φ, ξ, η, g).
Define

Ω(X, Y) := g(X, TY) for X, Y ∈ Γ(TM). (44)

Then Ω is a 2-form on M, which is non-degenerate on T1M ([23], [31]).

Theorem 4. Let M be a proper pointwise slant submanifold of a cosymplectic manifold (N, φ, ξ, η, g). Then
the 2-form Ω is closed.

Proof. Given X, Y, Z ∈ Γ(TM), we get

3dΩ(X, Y, Z) = XΩ(Y, Z)−YΩ(X, Z) + ZΩ(X, Y)

−Ω([X, Y], Z) + Ω([X, Z], Y)−Ω([Y, Z], X)

so that

3dΩ(X, Y, Z) = g(∇XY, TZ) + g(Y,∇XTZ)− g(∇YX, TZ)

− g(X,∇YTZ) + g(∇ZX, TY) + g(X,∇ZTY)

− g(∇XY−∇YX, TZ) + g(∇XZ−∇ZX, TY)− g(∇YZ−∇ZY, TX)

= g(Y, (∇XT)Z)− g(X, (∇YT)Z) + g(X, (∇ZT)Y).

Using Lemma 2 and (3), we obtain

3dΩ(X, Y, Z) = g(Y, AFZX + th(X, Z))− g(X, AFZY + th(Y, Z))

+ g(X, AFYZ + th(Z, Y))

= g(Y, th(X, Z))− g(Z, th(Y, X))

− g(X, th(Y, Z)) + g(Z, th(X, Y))

+ g(X, th(Z, Y))− g(Y, th(X, Z))

= 0.

Therefore, the result follows.

Consider the restriction of the 1-form η to M. We also denote it by η.
Denote by [Ω] and [η] the de Rham cohomology classes of 2-form Ω and 1-form η on M, respectively.

As we know, a cosymplectic manifold is locally a Riemannian product of a Kähler manifold and an
interval and the cosymplectic condition (i.e., ∇φ = 0) naturally corresponds to the Kähler condition
(∇J = 0) (See [37]).

Hence, in a similar way to Theorem 5.1 of [23] and to Theorem 5.2 of [31], by using Theorem 4,
we obtain

Theorem 5. Let M be a 2m-dimensional compact proper pointwise slant submanifold of a (2n+ 1)-dimensional
cosymplectic manifold (N, φ, ξ, η, g) such that ξ is normal to M.

Then [Ω] ∈ H2(M,R) is non-vanishing.
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Proof. Since TM = T1M, by the definition of Ω, Ω is non-degenerate on M.
Therefore, the result follows.

Remark 7. By the proof of Theorem 5, we have

dim H2i(M,R) ≥ 1 for 0 ≤ i ≤ m. (45)

Theorem 6. Let M be a (2m + 1)-dimensional compact proper pointwise slant submanifold of a (2n + 1)-
dimensional cosymplectic manifold (N, φ, ξ, η, g) such that ξ is tangent to M.

Then both [η] ∈ H1(M,R) and [Ω] ∈ H2(M,R) are non-vanishing.

Proof. Using (29), we can choose a local orthonormal frame {ξ, X1, sec θTX1, · · · , Xm, sec θTXm} of TM.
Thus,

η ∧Ωm = η ∧ g( , T)m 6= 0 at each point of M (46)

so that it gives a volume form on M.
Hence, both [η] and [Ω] are never vanishing.

Remark 8. By the proof of Theorem 6, we get

dim Hi(M,R) ≥ 1 for 0 ≤ i ≤ 2m + 1. (47)

By using (45) and (47), we obtain

Corollary 3. Every m-sphere Sm, m ≥ 3, cannot be immersed in a cosymplectic manifold as a proper pointwise
slant submanifold.

Corollary 4. Any m-dimensional real projective space RPm, m ≥ 3, cannot be immersed in a cosymplectic
manifold as a proper pointwise slant submanifold.

Remark 9. For 2-sphere S2 and 2-torus T2, they satisfy the condition (45). By Proposition 1, they are pointwise
slant submanifolds of a cosymplectic manifold (N, φ, ξ, η, g) if they are just submanifolds of N.

6. Examples

In this section we give some examples of pointwise slant submanifolds.

Example 1. Define a map i : R3 7→ R5 by

i(x1, x2, x3) = (y1, y2, y3, y4, t) = (x1, sin x2, 0, cos x2, x3).

Let M := {(x1, x2, x3) ∈ R3 | 0 < x2 < π
2 }.

We define (φ, ξ, η, g) on R5 as follows:

φ(a1
∂

∂y1
+ · · ·+ a4

∂
∂y4

+ a5
∂
∂t ) = −a2

∂
∂y1

+ a1
∂

∂y2
− a4

∂
∂y3

+ a3
∂

∂y4
,

ξ := ∂
∂t , η := dt, ai ∈ R, 1 ≤ i ≤ 5,

g is the Euclidean metric on R5. It is easy to check that (φ, ξ, η, g) is an almost contact metric structure on R5.
Then M is a pointwise slant submanifold of an almost contact metric manifold (R5, φ, ξ, η, g) with the

slant function k(x1, x2, x3) = x2 such that ξ is tangent to M.

Example 2. Define a map i : R2 7→ R5 by

i(x1, x2) = (y1, y2, y3, y4, t) = (0, cos x1, x2, sin x1, 0).

Let M := {(x1, x2) ∈ R2 | 0 < x1 < π
2 }.
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We define (φ, ξ, η, g) on R5 as follows:

φ(a1
∂

∂y1
+ · · ·+ a4

∂
∂y4

+ a5
∂
∂t ) = −a2

∂
∂y1

+ a1
∂

∂y2
− a4

∂
∂y3

+ a3
∂

∂y4
,

ξ := ∂
∂t , η := dt, ai ∈ R, 1 ≤ i ≤ 5,

g is the Euclidean metric on R5. It is easy to check that (φ, ξ, η, g) is an almost contact metric structure on R5.
We also know that (R5, φ, ξ, η, g) is a cosymplectic manifold.
Then M is a pointwise slant submanifold of a cosymplectic manifold (R5, φ, ξ, η, g) with the slant function

k(x1, x2) = x1 such that ξ is normal to M.

Example 3. Let t be a coordinate of R and (y1, y2, y3, y4) coordinates of R4. Let N := R× f R4 be a warped
product manifold of the Euclidean space R and the Euclidean space R4 with the natural projections π1 : N 7→ R
and π2 : N 7→ R4 such that the warping function f (t) = et.

Let R4 = (R4, ḡ, J), where ḡ is the Euclidean metric on R4 and J is a complex structure on R4 defined by

J(a1
∂

∂y1
+ · · ·+ a4

∂
∂y4

) = −a2
∂

∂y1
+ a1

∂
∂y2
− a4

∂
∂y3

+ a3
∂

∂y4
.

Then R4 is obviously Kähler.
We define (φ, ξ, η, g) on N as follows:

φ(a1
∂

∂y1
+ · · ·+ a4

∂
∂y4

+ a5
d
dt ) := J(a1

∂
∂y1

+ · · ·+ a4
∂

∂y4
),

ξ := d
dt , η := dt,

g(Z, W) := η(Z)η(W) + f (t)2 ḡ(dπ2(Z), dπ2(W))

for Z, W ∈ Γ(TN), ai ∈ R, 1 ≤ i ≤ 5.
We easily check that (φ, ξ, η, g) is an almost contact metric structure on N.
Furthermore, by Proposition 3 of [39], (N, φ, ξ, η, g) is a Kenmotsu manifold.
Let M := {(x1, x2) ∈ R2 | 0 < x1 < π

2 }.
Define a map i : R2 7→ R4 ⊂ N by

i(x1, x2) = (y1, y2, y3, y4) = (x2, sin x1, 1972, cos x1).

Then M is a pointwise slant submanifold of a Kenmotsu manifold (N, φ, ξ, η, g) with the slant function
k(x1, x2) = x1 such that ξ is normal to M.

Example 4. Let M be a submanifold of a hyperkähler manifold (M, J1, J2, J3, ḡ) such that M is complex with
respect to the complex structure J1 (i.e., J1(TM) = TM) and totally real with respect to the complex structure
J2 (i.e., J2(TM) ⊂ TM⊥) [40]. Let f : M 7→ [0, π

2 ] be a C∞-function and N := M×R with the natural
projections π1 : N 7→ M and π2 : N 7→ R.

We define (φ, ξ, η, g) on N as follows:

φ(X + h d
dt ) := cos( f ◦ π1)J1X− sin( f ◦ π1)J2X,

ξ := d
dt , η := dt,

g(Z, W) := ḡ(dπ1Z, dπ1W) + η(Z) · η(W)

for X ∈ Γ(TM), h ∈ C∞(N), Z, W ∈ Γ(TN) and t is a coordinate of R.
It is easy to show that (φ, ξ, η, g) is an almost contact metric structure on N.
Then M is a pointwise slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g) with the slant

function f ◦ π1 such that ξ is normal to M.
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Example 5. Given a Euclidean space R5 = R4 ×R with coordinates (y1, · · · , y4, t), we consider complex
structures J1 and J2 on R4 as follows:

J1(
∂

∂y1
) = ∂

∂y2
, J1(

∂
∂y2

) = − ∂
∂y1

, J1(
∂

∂y3
) = ∂

∂y4
, J1(

∂
∂y4

) = − ∂
∂y3

,

J2(
∂

∂y1
) = ∂

∂y3
, J2(

∂
∂y2

) = − ∂
∂y4

, J2(
∂

∂y3
) = − ∂

∂y1
, J2(

∂
∂y4

) = ∂
∂y2

,

Let f : R5 7→ [0, π
2 ] be a C∞-function.

We define (φ, ξ, η, g) on R5 as follows:

φ(X + h d
dt ) := cos f · J1X− sin f · J2X,

ξ := d
dt , η := dt,

g is the Euclidean metric on R5, X ∈ Γ(TR4) and h ∈ C∞(R5).
We can easily check that (φ, ξ, η, g) is an almost contact metric structure on R5.
Define a map i : R2 7→ R5 by

i(x1, x2) = (y1, y2, y3, y4, t) = (e,−π, x2, x1,
√

2).

Then R2 is a pointwise slant submanifold of an almost contact metric manifold (R5, φ, ξ, η, g) with the slant
function f such that ξ is normal to R2.

Example 6. With all the conditions of Example 5, define a function f : R5 7→ [0, π
2 ] by f (y1, · · · , y4, t) =

arctan(|y1 + y2 + y3 + y4|).
Then R2 is a pointwise slant submanifold of an almost contact metric manifold (R5, φ, ξ, η, g) with the

slant function ( f ◦ i)(x1, x2) = arctan(|e− π + x1 + x2|) such that ξ is normal to R2.

7. Pointwise Semi-Slant Submanifolds

In this section we introduce the notion of pointwise semi-slant submanifolds of an almost contact
metric manifold and obtain a characterization of pointwise semi-slant submanifolds.

Definition 2. Let (N, φ, ξ, η, g) be an almost contact metric manifold and M a submanifold of N. The submanifold
M is called a pointwise semi-slant submanifold if there is a distribution D1 ⊂ TM on M such that

TM = D1 ⊕D2, φ(D1) ⊂ D1,

and at each given point p ∈ M the angle θ = θ(X) between φX and the space (D2)p is constant for nonzero
X ∈ (D2)p, where D2 is the orthogonal complement of D1 in TM.

We call the angle θ a semi-slant function as a function on M.

Remark 10. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g)
with the semi-slant function θ.

1. Given a point p ∈ M, if ξ(p) ∈ Tp M, then ξ(p) should belong to (D1)p (i.e., ξ(p) ∈ (D1)p).

If not, we can induce contradiction as follows:

Assume that ξ(p) = X + Y for some X ∈ (D1)p and some nonzero Y ∈ (D2)p. Then 0 = φξ(p) =

φX + φY with φX ∈ (D1)p and φY ∈ (D2)p ⊕ Tp M⊥ so that φX = 0 and φY = 0. Since g(X, Y) = 0
and ker φ =< ξ >, we must have X = 0 and Y = ξ(p). θ(Y) = θ(ξ(p)) is not defined, contradiction.

2. Let (D1)p := {X ∈ (D1)p | g(X, ξ(p)) = 0} for p ∈ M.

Then we have either (D1)p = (D1)p or (D1)p =< ξ(p) > ⊕(D1)p.

We can check this as follows:
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Since φ(D1) ⊂ D1, we get

φ((D1)p) ⊂ (D1)p and g(φ((D1)p), ξ(p)) = 0

so that φ((D1)p) ⊂ (D1)p implies φ((D1)p) = (D1)p. Thus, we can choose an orthonormal basis
{Z1, φZ1, · · · , Zk, φZk} of (D1)p. Assume that (D1)p 6= (D1)p. Then there is a vector Z = aξ(p) +
X ∈ (D1)p with a 6= 0 and g(ξ(p), X) = 0. We know φZ = φX ∈ (D1)p and g(φX, ξ(p)) = 0 so that

φX ∈ (D1)p implies φX =
k

∑
i=1

(aiZi + ak+iφZi) for some ai ∈ R, 1 ≤ i ≤ 2k.

Hence, −X = φ2X =
k

∑
i=1

(−ak+iZi + aiφZi) ∈ (D1)p ⊂ (D1)p, which implies 1
a (Z − X) = ξ(p) ∈

(D1)p. Therefore, the result follows.
3. From (2), we have either D1 = D1 or D1 =< ξ > ⊕D1, where D1 :=

⋃
p∈M

(D1)p.

If not, then we can choose a C∞-curve c : (−ε, ε) 7→ M for sufficiently small ε > 0 such that either
(D1)c(0) = (D1)c(0) and (D1)c(t) =< ξ(c(t)) > ⊕(D1)c(t) for t ∈ (−ε, ε)− {0} or (D1)c(0) =<

ξ(c(0)) > ⊕(D1)c(0) and (D1)c(t) = (D1)c(t) for t ∈ (−ε, ε)− {0}.
Take an orthonormal frame {X1(t), X2(t), · · · , Xl(t)} of D1 along c. At the first case, we obtain

ξ(c(t)) =
l

∑
i=1

ai(t)Xi(t) (48)

for some ai(t) ∈ R, 1 ≤ i ≤ l, t ∈ (−ε, ε)− {0}. Since ξ is a C∞-vector field on N, we can obtain the

C∞-extension of right hand side of (48) along c. ξ(c(0)) /∈ (D1)c(0) and
l

∑
i=1

ai(0)Xi(0) ∈ (D1)c(0) with

ai(0) := lim
t→0

ai(t), 1 ≤ i ≤ l, contradiction. In a similar way, we can also induce contradiction at the

second case.
4. From (1), we get ξ(p) /∈ (D2)p for any p ∈ M.
5. If θ : M 7→ (0, π

2 ), then M is said to be proper.

Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Then there is a distribution D1 ⊂ TM on M such that

TM = D1 ⊕D2, φ(D1) ⊂ D1,

and at each given point p ∈ M the angle θ = θ(X) between φX and the space (D2)p is constant for
nonzero X ∈ (D2)p, where D2 is the orthogonal complement of D1 in TM.

For X ∈ Γ(TM), we write
X = PX + QX, (49)

where PX ∈ Γ(D1) and QX ∈ Γ(D2).
For X ∈ Γ(TM), we have

φX = TX + FX, (50)

where TX ∈ Γ(TM) and FX ∈ Γ(TM⊥).
For Z ∈ Γ(TM⊥), we get

φZ = tZ + f Z, (51)

where tZ ∈ Γ(TM) and f Z ∈ Γ(TM⊥).
Denote by (TN)|M the restriction of TN to M (i.e., (TN)|M = TM⊕ TM⊥).
For U ∈ Γ((TN)|M), we write

U = HU + VU, (52)
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whereHU ∈ Γ(TM) and VU ∈ Γ(TM⊥).
Hence,

T(D1) ⊂ D1, F(D1) = 0, T(D2) ⊂ D2, t(TM⊥) ⊂ D2, (53)

T2 + tF = −I + η ⊗H(ξ) and FT + f F = η ⊗ V(ξ) on TM (54)

Tt + t f = η ⊗H(ξ) and Ft + f 2 = −I + η ⊗ V(ξ) on TM⊥ (55)

Then we obtain
TM⊥ = FD2 ⊕ µ, (56)

where µ is the orthogonal complement of FD2 in TM⊥.
For X, Y ∈ Γ(TM), we define

(∇XT)Y := ∇X(TY)− T∇XY, (57)

(DX F)Y := DX(FY)− F∇XY. (58)

The tensors T and F are called parallel if ∇T = 0 and ∇F = 0, respectively.
In the same way to Lemma 2, we have

Lemma 3. Let M be a pointwise semi-slant submanifold of a cosymplectic manifold (N, φ, ξ, η, g). Then we obtain

1.

(∇XT)Y = AFYX + th(X, Y), (59)

(DX F)Y = −h(X, TY) + f h(X, Y) (60)

for X, Y ∈ Γ(TM).
2.

−TAZX + tDXZ = ∇X(tZ)− A f ZX, (61)

−FAZX + f DXZ = h(X, tZ) + DX( f Z) (62)

for X ∈ Γ(TM) and Z ∈ Γ(TM⊥).

Proposition 4. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that either D2 ⊂ ker η or µ ⊂ ker η.

Then µ is φ-invariant (i.e., φµ ⊂ µ).

Proof. Given Y ∈ Γ(µ) and X ∈ Γ(TM) with X = X1 + X2, X1 ∈ Γ(D1), X2 ∈ Γ(D2), we have

g(X, φY) = −g(φX, Y) = −g(φX1 + φX2, Y) = 0

so that
φµ ⊂ TM⊥. (63)

Given Y ∈ Γ(µ) and X ∈ Γ(FD2) with X = FX′ for some X′ ∈ Γ(D2), by using (54) and the hypothesis, we get

g(X, φY) = −g(φX, Y) = −g( f FX′, Y)

= g(FTX′ − η(X′)V(ξ), Y)

= −η(X′) · η(Y) = 0.

with (63), it implies φµ ⊂ µ.

In a similar way to Proposition 3.9 of [31], we have



Mathematics 2020, 8, 985 15 of 33

Lemma 4. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g)
with the semi-slant function θ.

Then
g((T2 + cos2 θ(I − η ⊗ ξ))(X), Y) = 0 for X, Y ∈ Γ(D2). (64)

Proof. We will prove this at each point of M.
Gven a point p ∈ M, if X ∈ (D2)p is vanishing, then done! Given a nonzero X ∈ (D2)p, we obtain

cos θ(p) =
g(φX, TX)

||φX|| ||TX|| =
||TX||
||φX|| (65)

so that cos2 θ(p)g(φX, φX) = g(TX, TX) = −g(T2X, X). Substituting X by X + Y, Y ∈ (D2)p, at the
above equation, we induce

g((T2 + cos2 θ(I − η ⊗ ξ))(X), Y) + g(X, (T2 + cos2 θ(I − η ⊗ ξ))(Y)) = 0. (66)

T2 + cos2 θ(I − η ⊗ ξ) is also symmetric so that

g((T2 + cos2 θ(I − η ⊗ ξ))(X), Y) = 0.

Remark 11. Let M be a pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g)
with the semi-slant function θ. Assume that either ξ is tangent to M or ξ is normal to M.

1. By using (64) and Remark 10 (1), we get

T2X = − cos2 θ · X for X ∈ Γ(D2). (67)

2. By (67), we obtain
g(TX, TY) = cos2 θg(X, Y), (68)

g(FX, FY) = sin2 θg(X, Y), (69)

for X, Y ∈ Γ(D2).
3. At each given point p ∈ M with 0 ≤ θ(p) < π

2 , by using (68), we can choose an orthonormal basis
{X1, sec θTX1, · · · , Xk, sec θTXk} of (D2)p.

8. Distributions

In this section we consider distributions D1 and D2 and deal with the notion of totally umbilic
submanifolds.

Notice that if N = (N, φ, ξ, η, g) is Sasakian, then from Theorem 2, there does not exist a proper
pointwise semi-slant submanifold M of N such that ξ is normal to M.

Lemma 5. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is tangent to M and N is one of the following three manifolds: cosymplectic, Sasakian, Kenmotsu.

Then the distribution D1 is integrable if and only if

g(h(X, φY)− h(Y, φX), FZ) = 0 (70)

for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. We will only give its proof when N is Sasakian. For the other cases, we can show them in the
same way.
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Given X, Y ∈ Γ(D1) and Z ∈ Γ(D2), by using Remark 10 and (19), we obtain

g([X, Y], Z)

= g(φ[X, Y], φZ) + η([X, Y])η(Z)

= g(φ(∇XY−∇YX), TZ + FZ)

= −g(∇XY−∇YX, T2Z + FTZ)

+ g(h(X, φY)− h(Y, φX)− (g(X, Y)ξ − η(Y)X− g(Y, X)ξ + η(X)Y), FZ)

= cos2 θg([X, Y], Z) + g(h(X, φY)− h(Y, φX), FZ)

so that
sin2 θg([X, Y], Z) = g(h(X, φY)− h(Y, φX), FZ).

Therefore, we get the result.

In the same way to Lemma 5, we obtain

Lemma 6. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.

Then the distribution D1 is integrable if and only if

g(h(X, φY)− h(Y, φX), FZ) = 0 (71)

for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).

Lemma 7. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.

Then the distribution D2 is integrable if and only if

g(AFTW Z− AFTZW, X) = g(AFW Z− AFZW, φX) (72)

for X ∈ Γ(D1) and Z, W ∈ Γ(D2).

Proof. We only give its proof when N is Kenmotsu.
Given X ∈ Γ(D1) and Z, W ∈ Γ(D2), by using (21) and Remark 11, we get

g([Z, W], X)

= g(φ[Z, W], φX) + η([Z, W])η(X)

= g(φ(∇ZW −∇W Z), φX)

= g(∇Z(TW + FW)−∇W(TZ + FZ), φX)

− g(g(φZ, W)ξ − η(W)φZ− g(φW, Z)ξ + η(Z)φW, φX)

= −g(∇Z(T2W + FTW)−∇W(T2Z + FTZ), X)

+ g(g(φZ, TW)ξ − η(TW)φZ− g(φW, TZ)ξ + η(TZ)φW, X)

+ g(AFZW − AFW Z, φX)

= cos2 θg([Z, W], X) + g(AFTW Z− AFTZW, X) + g(AFZW − AFW Z, φX)

so that
sin2 θg([Z, W], X) = g(AFTW Z− AFTZW, X) + g(AFZW − AFW Z, φX).

Therefore, the result follows.

Lemma 8. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is tangent to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
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Then the distribution D2 is integrable if and only if

g(AFTW Z− AFTZW, X) = g(AFW Z− AFZW, φX) (73)

for X ∈ Γ(D1) and Z, W ∈ Γ(D2).

Proof. We will show it when N is Kenmotsu.
Given X ∈ Γ(D1) and Z, W ∈ Γ(D2), from the proof of Lemma 7, we have

sin2 θg([Z, W], X) = η([Z, W])η(X) + g(AFTW Z− AFTZW, X) (74)

+g(AFZW − AFW Z, φX).

Replacing X by ξ at (74), by using (3) and (22), we get

− cos2 θη([Z, W]) = g(h(Z, ξ), FTW)− g(h(W, ξ), FTZ)

= g(∇Zξ, FTW)− g(∇Wξ, FTZ)

= g(Z− η(Z)ξ, FTW)− g(W − η(W)ξ, FTZ)

= 0

so that η([Z, W]) = 0.
Hence, the result follows.

Remark 12. For the case when both N is Sasakian and ξ is tangent to M, confer Proposition 5.4 of [26].

Theorem 7. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is tangent to M and N is one of the following three manifolds: cosymplectic, Sasakian, Kenmotsu.

Then the distribution D1 defines a totally geodesic foliation if and only if

g(AFZφX− AFTZX, Y) = 0 (75)

for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).

Proof. We will give its proof when N is Kenmotsu.
Given X, Y ∈ Γ(D1) and Z ∈ Γ(D2), by using Remark 10, (21) and Remark 11, we obtain

g(∇YX, Z)

= g(φ∇YX, φZ) + η(∇YX)η(Z)

= g(φ∇YX, TZ + FZ)

= −g(∇YX, T2Z + FTZ)

+ g(∇YφX− (g(φY, X)ξ − η(X)φY), FZ)

= cos2 θg(∇YX, Z)− g(AFTZX, Y) + g(AFZφX, Y)

so that
sin2 θg(∇YX, Z) = g(AFZφX− AFTZX, Y).

Therefore, we obtain the result.

In the same way to Theorem 7, we get

Theorem 8. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.
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Then the distribution D1 defines a totally geodesic foliation if and only if

g(AFZφX− AFTZX, Y) = 0 (76)

for X, Y ∈ Γ(D1) and Z ∈ Γ(D2).

Theorem 9. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold
(N, φ, ξ, η, g). Assume that ξ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.

Then the distribution D2 defines a totally geodesic foliation if and only if

g(AFZφX− AFTZX, W) = 0 (77)

for X ∈ Γ(D1) and Z, W ∈ Γ(D2).

Proof. We give its proof when N is Kenmotsu.
Given X ∈ Γ(D1) and Z, W ∈ Γ(D2), by using (21) and Remark 11, we get

g(∇W Z, X)

= g(φ∇W Z, φX) + η(∇W Z)η(X)

= g(∇W(TZ + FZ)− (g(φW, Z)ξ − η(Z)φW), φX)

= −g(∇W(T2Z + FTZ)− (g(φW, TZ)ξ − η(TZ)φW), X)− g(AFZW, φX)

= cos2 θg(∇W Z, X) + g(AFTZW, X)− g(AFZW, φX)

so that
sin2 θg(∇W Z, X) = g(AFTZX− AFZφX, W).

Therefore, the result follows.

In a similar way, we have

Theorem 10. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold
(N, φ, ξ, η, g). Assume that ξ is tangent to M

1. If N is one of the following two manifolds: cosymplectic, Sasakian, then D2 defines a totally geodesic
foliation if and only if

g(AFZφX− AFTZX, W) = 0 (78)

for X ∈ Γ(D1) and Z, W ∈ Γ(D2).
2. If N is Kenmotsu, then D2 defines a totally geodesic foliation if and only if

g(AFZφX− AFTZX, W) + sin2 θη(X)g(W, Z) = 0 (79)

for X ∈ Γ(D1) and Z, W ∈ Γ(D2).

Proof. We only give its proof when N is Sasakian. For the other cases, we can show them in the same way.
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Given X ∈ Γ(D1) and Z, W ∈ Γ(D2), by using (19) and Remark 11, we obtain

g(∇W Z, X)

= g(φ∇W Z, φX) + η(∇W Z)η(X)

= g(∇W(TZ + FZ)− (g(W, Z)ξ − η(Z)W), φX) + η(∇W Z)η(X)

= −g(∇W(T2Z + FTZ)− (g(W, TZ)ξ − η(TZ)W), X)

− g(AFZW, φX) + η(∇W Z)η(X)

= cos2 θg(∇W Z, X) + g(AFTZW, X) + g(W, TZ)η(X)

− g(AFZW, φX) + η(∇W Z)η(X)

so that

sin2 θg(∇W Z, X) = g(AFTZX− AFZφX, W) (80)

+g(W, TZ)η(X) + η(∇W Z)η(X).

Replacing X by ξ at (80), we get

sin2 θη(∇W Z) = g(h(W, ξ), FTZ) + g(W, TZ) + η(∇W Z)

so that by using (20) and Remark 11,

− cos2 θη(∇W Z) = g(∇Wξ, FTZ) + g(W, TZ)

= g(−φW, FTZ) + g(W, TZ)

= − sin2 θg(W, TZ) + g(W, TZ)

= cos2 θg(W, TZ),

which implies η(∇W Z) = −g(W, TZ).
Hence, from (79),

sin2 θg(∇W Z, X) = g(AFTZX− AFZφX, W).

Therefore, the result follows.

Using Theorem 7 and Theorem 10, we obtain

Corollary 5. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g).
Assume that ξ is tangent to M and N is one of the following two manifolds: cosymplectic, Sasakian.

Then M is locally a Riemannian product manifold of M1 and M2 if and only if

AFZφX = AFTZX (81)

for X ∈ Γ(D1) and Z ∈ Γ(D2), where M1 and M2 are integral manifolds of D1 and D2, respectively.

Using Theorems 8 and 9, we also obtain

Corollary 6. Let M be a proper pointwise semi-slant submanifold of an almost contact metric manifold
(N, φ, ξ, η, g). Assume that ξ is normal to M and N is one of the following two manifolds: cosymplectic, Kenmotsu.

Then M is locally a Riemannian product manifold of M1 and M2 if and only if

AFZφX = AFTZX (82)
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for X ∈ Γ(D1) and Z ∈ Γ(D2), where M1 and M2 are integral manifolds of D1 and D2, respectively.

Let M be a submanifold of a Riemannian manifold (N, g). We call M a totally umbilic submanifold
of (N, g) if

h(X, Y) = g(X, Y)H for X, Y ∈ Γ(TM), (83)

where H is the mean curvature vector field of M in N.

Lemma 9. Let M be a pointwise semi-slant totally umbilic submanifold of an almost contact metric manifold
(N, φ, ξ, η, g). Assume that ξ is tangent to M and N is one of the following three manifolds: cosymplectic,
Sasakian, Kenmotsu.

Then
H ∈ Γ(FD2). (84)

Proof. We give its proof when N is Kenmotsu.
Since ξ is tangent to M, by Proposition 4, µ is φ-invariant (i.e., φ(µ) = µ). Given X, Y ∈ Γ(D1)

and Z ∈ Γ(µ), we have

∇XφY + h(X, φY)

= ∇XφY

= g(φX, Y)ξ − η(Y)φX + φ∇XY

= g(φX, Y)ξ − η(Y)φX + T∇XY + F∇XY + th(X, Y) + f h(X, Y)

so that by taking the inner product of both sides with Z,

g(h(X, φY), Z) = g( f h(X, Y), Z). (85)

From (85), by (83) we obtain

g(X, φY)g(H, Z) = −g(X, Y)g(H, φZ). (86)

Interchanging the role of X and Y,

g(Y, φX)g(H, Z) = −g(Y, X)g(H, φZ). (87)

Comparing (86) with (87), we have
g(X, Y)g(H, φZ) = 0,

which means H ∈ Γ(FD2).

Using Lemma 9, we immediately obtain

Corollary 7. Let M be a pointwise semi-slant totally umbilic submanifold of an almost contact metric manifold
(N, φ, ξ, η, g) with the semi-slant function θ. Assume that ξ is tangent to M and N is one of the following three
manifolds: cosymplectic, Sasakian, Kenmotsu.

If θ = 0 on M, then M is a totally geodesic submanifold of N.

9. Warped Product Submanifolds

In this section we consider the non-existence of some type of warped product pointwise
semi-slant submanifolds and investigate the properties of some warped product pointwise semi-slant
submanifolds.
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Theorem 11. Let N = (N, φ, ξ, η, g) be an almost contact metric manifold and M = B× f F a nontrivial
warped product submanifold of N. Assume that ξ is normal to M and N is one of the following three manifolds:
cosymplectic, Sasakian, Kenmotsu.

Then there does not exist a proper pointwise semi-slant submanifold M of N such that D1 = TF and
D2 = TB.

Proof. If N is Sasakian, then by Theorem 2, it is obviously true.
We will prove it when N is Kenmotsu. For the case of N to be cosymplectic, we can prove it in the

same way.
Suppose that there exists a proper pointwise semi-slant submanifold M = B× f F of N such that

D1 = TF and D2 = TB. We will induce contradiction.
Given X, Y ∈ Γ(TF) and Z ∈ Γ(TB), by using (8), (21) and Remark 11, we get

Z(ln f )g(X, Y)

= g(∇XZ, Y)

= g(φ∇XZ, φY) + η(∇XZ)η(Y)

= g(∇X(TZ + FZ)− (g(φX, Z)ξ − η(Z)φX), φY)

= g(∇X(TZ + FZ), φY)

= −g(∇X(T2Z + FTZ)− (g(φX, TZ)ξ − η(TZ)φX), Y) + g(∇X FZ, φY)

= cos2 θg(∇XZ, Y) + g(h(X, Y), FTZ)− g(h(X, φY), FZ)

so that
sin2 θZ(ln f )g(X, Y) = g(h(X, Y), FTZ)− g(h(X, φY), FZ). (88)

Interchanging the role of X and Y, we have

sin2 θZ(ln f )g(Y, X) = g(h(Y, X), FTZ)− g(h(Y, φX), FZ). (89)

Comparing (88) with (89), we obtain

g(h(X, φY), FZ) = g(h(Y, φX), FZ). (90)

On the other hand,

g(h(X, φY), FZ)

= g(AFZX, φY)

= g(−∇X FZ, φY)

= g(−∇X(φZ− TZ), φY)

= −g(g(φX, Z)ξ − η(Z)φX + φ∇XZ, φY) + g(∇XTZ, φY)

= −g(∇XZ, Y) + η(∇XZ)η(Y) + g(∇XTZ, φY)

= −Z(ln f )g(X, Y) + TZ(ln f )g(X, φY).

From (90), by using the above result, we obtain

TZ(ln f )g(X, φY) = 0. (91)

Replacing Z by φZ and X by φX at (91), by Remark 11 we get

cos2 θZ(ln f )g(X, Y) = 0,

which implies Z(ln f ) = 0 so that f is constant, contradiction.
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Theorem 12. Let N = (N, φ, ξ, η, g) be an almost contact metric manifold and M = B× f F a nontrivial
warped product submanifold of N. Assume that ξ is tangent to M and N is one of the following three manifolds:
cosymplectic, Sasakian, Kenmotsu.

Then there does not exist a proper pointwise semi-slant submanifold M of N such that D1 = TF and
D2 = TB.

Proof. We will only give its proof when N is Sasakian. For the other cases, we can show them in the
same way.

Suppose that there exists a proper pointwise semi-slant submanifold M = B× f F of N such that
D1 = TF and D2 = TB. We will also induce contradiction.

Given X, Y ∈ Γ(TF) and Z ∈ Γ(TB), by using (8), (19), Remarks 10 and 11, we have

Z(ln f )g(X, Y)

= g(∇XZ, Y)

= g(φ∇XZ, φY) + η(∇XZ)η(Y)

= g(∇X(TZ + FZ)− (g(X, Z)ξ − η(Z)X), φY) + Z(ln f )η(X)η(Y)

= g(∇X(TZ + FZ), φY) + Z(ln f )η(X)η(Y)

= −g(∇X(T2Z + FTZ)− (g(X, TZ)ξ − η(TZ)X), Y)

+ g(∇X FZ, φY) + Z(ln f )η(X)η(Y)

= cos2 θg(∇XZ, Y) + g(h(X, Y), FTZ)− g(h(X, φY), FZ) + Z(ln f )η(X)η(Y)

so that

sin2 θZ(ln f )g(X, Y) = g(h(X, Y), FTZ)− g(h(X, φY), FZ) (92)

+Z(ln f )η(X)η(Y).

Replacing X and Y by ξ at (92), by using (20) we obtain

cos2 θZ(ln f ) = −g(h(ξ, ξ), FTZ)

= −g(∇ξξ, FTZ)

= −g(−φξ, FTZ)

= 0,

which implies Z(ln f ) = 0 so that f is constant, contradiction.

Now, we will study nontrivial warped product pointwise semi-slant submanifold M = B× f F of
an almost contact metric manifold N = (N, φ, ξ, η, g) such that D1 = TB and D2 = TF.

Lemma 10. Let M = B× f F be a nontrivial warped product proper pointwise semi-slant submanifold of an
almost contact metric manifold N = (N, φ, ξ, η, g) such that D1 = TB and D2 = TF. Assume that N is one
of the following three manifolds: cosymplectic, Sasakian, Kenmotsu.

Then we get
g(AFZW, X) = g(AFW Z, X) (93)

for X ∈ Γ(TB) and Z, W ∈ Γ(TF).

Proof. We give its proof when N is Kenmotsu.
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Given X ∈ Γ(TB) and Z, W ∈ Γ(TF), by using (21), (53) and (8), we obtain

g(AFZW, X)

= g(AFZX, W)

= −g(∇X(φZ− TZ), W)

= −g(g(φX, Z)ξ − η(Z)φX + φ∇XZ, W) + g(∇XTZ, W)

= g(∇XZ, TW + FW) + g(∇XTZ, W)

= g(X(ln f )Z, TW) + g(AFW Z, X) + g(X(ln f )TZ, W)

= g(AFW Z, X).

Lemma 11. Let M = B× f F be a nontrivial warped product proper pointwise semi-slant submanifold of an
almost contact metric manifold N = (N, φ, ξ, η, g) such that D1 = TB and D2 = TF.

1. If N is cosymplectic, then

g(AFTZW, X) = −φX(ln f )g(W, TZ)− cos2 θX(ln f )g(W, Z) (94)

and
g(AFZW, φX) = (X− η(X)ξ)(ln f )g(W, Z)− φX(ln f )g(TW, Z) (95)

for X ∈ Γ(TB) and Z, W ∈ Γ(TF).
2. If N is Sasakian, then

g(AFTZW, X) = −η(X)g(TZ, W)− φX(ln f )g(W, TZ) (96)

− cos2 θX(ln f )g(W, Z)

and
g(AFZW, φX) = (X− η(X)ξ)(ln f )g(W, Z)− φX(ln f )g(TW, Z) (97)

for X ∈ Γ(TB) and Z, W ∈ Γ(TF).
3. If N is Kenmotsu, then

g(AFTZW, X) = cos2 θη(X)(g(Z, W)− η(Z)η(W)) (98)

−φX(ln f )g(W, TZ)− cos2 θX(ln f )g(W, Z)

and
g(AFZW, φX) = (X− η(X)ξ)(ln f )g(W, Z)− φX(ln f )g(TW, Z) (99)

for X ∈ Γ(TB) and Z, W ∈ Γ(TF).

Proof. We only give its proof when N is Kenmotsu.
Given X ∈ Γ(TB) and Z, W ∈ Γ(TF), by using Lemma 10, (21), Lemma 4 and (8), we have

g(AFTZW, X)

= g(AFW TZ, X)

= −g(∇TZ(φW − TW), X)

= −g(g(φTZ, W)ξ − η(W)φTZ + φ∇TZW, X) + g(∇TZTW, X)

= cos2 θη(X)g(Z− η(Z)ξ, W) + g(∇TZW, φX)− g(TW,∇TZX)

= cos2 θη(X)(g(Z, W)− η(Z)η(W))− φX(ln f )g(W, TZ)− cos2 θX(ln f )g(W, Z).
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Replacing TZ and X by Z and φX, respectively,

g(AFZW, φX) = (X− η(X)ξ)(ln f )g(W, Z)− φX(ln f )g(TW, Z).

To obtain some inequalities on nontrivial warped product proper pointwise semi-slant submanifolds
of cosymplectic, Sasakian, Kenmotsu manifolds in the next section, we need to have

Lemma 12. Let M = B× f F be a nontrivial warped product proper pointwise semi-slant submanifold of an
almost contact metric manifold N = (N, φ, ξ, η, g) such that D1 = TB and D2 = TF.

1. If N is cosymplectic, then
g(h(X, Y), FZ) = 0 (100)

and
g(h(X, W), FZ) = −φX(ln f )g(W, Z) + (X− η(X)ξ)(ln f )g(W, TZ) (101)

for X, Y ∈ Γ(TB) and Z, W ∈ Γ(TF).
2. If N is Sasakian, then

g(h(X, Y), FZ) = η(Z)g(X, Y) (102)

and

g(h(X, W), FZ) = −η(X)g(FW, FZ)− φX(ln f )g(W, Z) (103)

+(X− η(X)ξ)(ln f )g(W, TZ)

for X, Y ∈ Γ(TB) and Z, W ∈ Γ(TF).
3. If N is Kenmotsu, then

g(h(X, Y), FZ) = η(Z)g(φX, Y) (104)

and

g(h(X, W), FZ) = −η(X)η(W)η(FZ)− φX(ln f )g(W, Z) (105)

+(X− η(X)ξ)(ln f )g(W, TZ)

for X, Y ∈ Γ(TB) and Z, W ∈ Γ(TF).

Proof. We will give its proof when N is Sasakian.
Given X, Y ∈ Γ(TB) and Z, W ∈ Γ(TF), by using (19) and (8), we get

g(h(X, Y), FZ)

= g(∇XY, φZ− TZ)

= −g(φ∇XY, Z)− g(∇XY, TZ)

= −g(∇XφY− (g(X, Y)ξ − η(Y)X), Z) + g(Y,∇XTZ)

= g(φY, X(ln f )Z) + η(Z)g(X, Y) + g(Y, X(ln f )TZ)

= η(Z)g(X, Y),

which gives (102).
Replacing X by φX at (97), we obtain

g(h(X, W), FZ) = η(X)η(AFZW)− φX(ln f )g(W, Z) + (X− η(X)ξ)(ln f )g(W, TZ).
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By using (3) and (20),

η(AFZW) = g(AFZW, ξ)

= g(h(W, ξ), FZ)

= g(∇Wξ, FZ)

= g(−φW, FZ)

= −g(FW, FZ),

which gives (103).

10. Inequalities

We will consider inequalities for the squared norm of the second fundamental form in terms
of a warping function and a semi-slant function for a warped product submanifold in cosymplectic
manifolds, Sasakian manifolds and Kenmotsu manifolds.

Let M = B × f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n+ 1)-dimensional almost contact metric manifold (N, φ, ξ, η, g) with the semi-slant
function θ such that D1 = TB, D2 = TF and ξ is tangent to M.

Then by using Remark 11 we can choose a local orthonormal frame {e1, e2, · · · , e2m1+1, v1,
· · · , v2m2 , w1, · · · , w2m2 , u1, · · · , u2r} of TN such that {e1, · · · , e2m1+1} ⊂ Γ(D1), {v1, · · · , v2m2} ⊂
Γ(D2), {w1, · · · , w2m2} ⊂ Γ(FD2), {u1, · · · , u2r} ⊂ Γ(µ) with the following conditions:

1. em1+i = φei, 1 ≤ i ≤ m1, e2m1+1 = ξ,
2. vm2+i = sec θTvi, 1 ≤ i ≤ m2,
3. wi = csc θFvi, 1 ≤ i ≤ 2m2,
4. ur+i = φui, 1 ≤ i ≤ r.

We have m = 2m1 + 2m2 + 1 and n = m1 + 2m2 + r.
Using the above notations, we obtain

Theorem 13. Let M = B× f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional Sasakian manifold (N, φ, ξ, η, g) with the semi-slant function θ such
that D1 = TB, D2 = TF and ξ is tangent to M.

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc2 θ + cot2 θ)||φ∇(ln f )||2 + 4m2 sin2 θ (106)

with equality holding if and only if g(h(Z, W), V) = 0 for Z, W ∈ Γ(TF) and V ∈ Γ(TM⊥).

Proof. Since µ = 0, we get

||h||2 =
2m1+1

∑
i,j=1

g(h(ei, ej), h(ei, ej)) +
2m2

∑
i,j=1

g(h(vi, vj), h(vi, vj))

+ 2
2m1+1

∑
i=1

2m2

∑
j=1

g(h(ei, vj), h(ei, vj))

=
2m1+1

∑
i,j=1

2m2

∑
k=1

g(h(ei, ej), wk)
2 +

2m2

∑
i,j=1

2m2

∑
k=1

g(h(vi, vj), wk)
2

+ 2
2m1+1

∑
i=1

2m2

∑
j,k=1

g(h(ei, vj), wk)
2.
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By using Lemma 12 and Remark 10, we obtain

||h||2 =
2m2

∑
i,j,k=1

g(h(vi, vj), wk)
2 (107)

+2 csc2 θ
2m1+1

∑
i=1

2m2

∑
j,k=1

(−η(ei)g(Fvj, Fvk)

−φei(ln f )g(vj, vk) + (ei − η(ei)ξ)(ln f )g(vj, Tvk))
2

=
2m2

∑
i,j,k=1

g(h(vi, vj), wk)
2

+2 csc2 θ
2m1

∑
i=1

2m2

∑
j,k=1

(−φei(ln f )δjk + ei(ln f )g(vj, Tvk))
2

+2 csc2 θ
2m2

∑
j,k=1

(− sin2 θδjk)
2

=
2m2

∑
i,j,k=1

g(h(vi, vj), wk)
2

+2 csc2 θ
2m1

∑
i=1

2m2

∑
j,k=1

((φei(ln f ))2δjk + (ei(ln f )g(vj, Tvk))
2

−2φei(ln f )δjk · ei(ln f )g(vj, Tvk)) + 4m2 sin2 θ,

where δjk is the Kronecker delta for 1 ≤ j, k ≤ 2m2.
But

2m1

∑
i=1

(φei(ln f ))2 =
2m1

∑
i=1

g(φei,∇(ln f ))2 (108)

=
2m1

∑
i=1

g(ei, φ∇(ln f ))2

= g(φ∇(ln f ), φ∇(ln f ))

= ||φ∇(ln f )||2,

2m1

∑
i=1

(ei(ln f ))2 =
2m1

∑
i=1

g(ei,∇(ln f ))2 (109)

= g(∇(ln f ),∇(ln f ))− (η(∇(ln f )))2

= g(φ∇(ln f ), φ∇(ln f ))

= ||φ∇(ln f )||2,

δjkg(vj, Tvk) = 0, (110)



Mathematics 2020, 8, 985 27 of 33

By Remark 11,

2m2

∑
j,k=1

g(vj, Tvk)
2 (111)

=
m2

∑
k=1

2m2

∑
j=1

g(vj, Tvk)
2 +

m2

∑
k=1

2m2

∑
j=1

g(vj, Tvm2+k)
2

=
m2

∑
k=1

g(sec θTvk, Tvk)
2 +

m2

∑
k=1

g(vk, sec θ(− cos2 θ)vk)
2

=
m2

∑
k=1

sec2 θ · cos4 θ +
m2

∑
k=1

cos2 θ

= 2m2 cos2 θ.

Applying (108), (109), (110), (111) to (107), we have

||h||2 =
2m2

∑
i,j,k=1

g(h(vi, vj), wk)
2 + 2 csc2 θ(2m2||φ∇(ln f )||2

+ 2m2 cos2 θ||φ∇(ln f )||2) + 4m2 sin2 θ

so that
||h||2 ≥ 4m2(csc2 θ + cot2 θ)||φ∇(ln f )||2 + 4m2 sin2 θ

with equality holding if and only if g(h(vi, vj), wk) = 0 for 1 ≤ i, j, k ≤ 2m2.
Therefore, the result follows.

In the same way, we get

Theorem 14. Let M = B× f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional cosymplectic manifold (N, φ, ξ, η, g) with the semi-slant function θ such
that D1 = TB, D2 = TF and ξ is tangent to M.

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc2 θ + cot2 θ)||φ∇(ln f )||2 (112)

with equality holding if and only if g(h(Z, W), V) = 0 for Z, W ∈ Γ(TF) and V ∈ Γ(TM⊥).

Theorem 15. Let M = B× f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional Kenmotsu manifold (N, φ, ξ, η, g) with the semi-slant function θ such
that D1 = TB, D2 = TF and ξ is tangent to M.

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc2 θ + cot2 θ)||φ∇(ln f )||2 (113)

with equality holding if and only if g(h(Z, W), V) = 0 for Z, W ∈ Γ(TF) and V ∈ Γ(TM⊥).

Let M = B × f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n+ 1)-dimensional almost contact metric manifold (N, φ, ξ, η, g) with the semi-slant
function θ such that D1 = TB, D2 = TF and ξ is normal to M with ξ ∈ Γ(µ).

Then by Propositin 4, µ is φ-invariant.
Using Remark 11, we can choose a local orthonormal frame {e1, e2, · · · , e2m1 , v1, · · · , v2m2 , w1,

· · · , w2m2 , u1, · · · , u2r+1} of TN such that {e1, · · · , e2m1} ⊂ Γ(D1), {v1, · · · , v2m2} ⊂ Γ(D2),
{w1, · · · , w2m2} ⊂ Γ(FD2), {u1, · · · , u2r+1} ⊂ Γ(µ) with the following conditions:
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1. em1+i = φei, 1 ≤ i ≤ m1,
2. vm2+i = sec θTvi, 1 ≤ i ≤ m2,
3. wi = csc θFvi, 1 ≤ i ≤ 2m2,
4. ur+i = φui, 1 ≤ i ≤ r, u2r+1 = ξ.

We have m = 2m1 + 2m2 and n = m1 + 2m2 + r.
Notice that if N is Sasakian, then from Theorem 2, there does not exist such a proper pointwise

semi-slant submanifold M of N.
Using these notations, in a similar way, we obtain

Theorem 16. Let M = B× f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional Kenmotsu manifold (N, φ, ξ, η, g) with the semi-slant function θ such
that D1 = TB, D2 = TF and ξ is normal to M with ξ ∈ Γ(µ).

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc2 θ + cot2 θ)||∇(ln f )||2 + 2m1 (114)

with equality holding if and only if g(h(Z, W), V) = 0 for Z, W ∈ Γ(TF) and V ∈ Γ(TM⊥).

Proof. Since µ =< ξ >, we obtain

||h||2 =
2m1

∑
i,j=1

g(h(ei, ej), h(ei, ej)) +
2m2

∑
i,j=1

g(h(vi, vj), h(vi, vj))

+ 2
2m1

∑
i=1

2m2

∑
j=1

g(h(ei, vj), h(ei, vj))

=
2m1

∑
i,j=1

(
2m2

∑
k=1

g(h(ei, ej), wk)
2 + (η(h(ei, ej)))

2)

+
2m2

∑
i,j=1

(
2m2

∑
k=1

g(h(vi, vj), wk)
2 + (η(h(vi, vj)))

2)

+ 2
2m1

∑
i=1

(
2m2

∑
j,k=1

g(h(ei, vj), wk)
2 + (η(h(ei, vj)))

2).

Using (22), we can easily check that η(h(ei, ej)) = −δij and η(h(ei, vk)) = 0 for 1 ≤ i, j ≤ 2m1 and
1 ≤ k ≤ 2m2 so that by using Lemma 12,

||h||2 = 2m1 +
2m2

∑
i,j=1

(
2m2

∑
k=1

g(h(vi, vj), wk)
2 + (η(h(vi, vj)))

2)

+ 2 csc2 θ
2m1

∑
i=1

2m2

∑
j,k=1

(−η(ei)η(vj)η(Fvk)

− φei(ln f )g(vj, vk) + (ei − η(ei)ξ)(ln f )g(vj, Tvk))
2

= 2m1 +
2m2

∑
i,j=1

(
2m2

∑
k=1

g(h(vi, vj), wk)
2 + (η(h(vi, vj)))

2)

+ 2 csc2 θ
2m1

∑
i=1

2m2

∑
j,k=1

((φei(ln f ))2δjk + (ei(ln f )g(vj, Tvk))
2

− 2φei(ln f )δjk · ei(ln f )g(vj, Tvk)).
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In a similar way to the proof of Theorem 13, we also derive the following:

2m1

∑
i=1

(φei(ln f ))2 = ||∇(ln f )||2,

2m1

∑
i=1

(ei(ln f ))2 = ||∇(ln f )||2,

2m2

∑
j,k=1

(g(vj, Tvk))
2 = 2m2 cos2 θ,

δjkg(vj, Tvk) = 0

so that
||h||2 ≥ 2m1 + 4m2(csc2 θ + cot2 θ)||∇(ln f )||2

with equality holding if and only if g(h(vi, vj), wk) = 0 and g(h(vi, vj), ξ) = 0 for 1 ≤ i, j, k ≤ 2m2.
Therefore, the result follows.

In the same way, we get

Theorem 17. Let M = B× f F be a m-dimensional nontrivial warped product proper pointwise semi-slant
submanifold of a (2n + 1)-dimensional cosymplectic manifold (N, φ, ξ, η, g) with the semi-slant function θ such
that D1 = TB, D2 = TF and ξ is normal to M with ξ ∈ Γ(µ).

Assume that n = m1 + 2m2.
Then we have

||h||2 ≥ 4m2(csc2 θ + cot2 θ)||∇(ln f )||2 (115)

with equality holding if and only if g(h(Z, W), V) = 0 for Z, W ∈ Γ(TF) and V ∈ Γ(TM⊥).

11. Examples

Example 7. Define a map i : R4 7→ R11 by

i(x1, x2, x3, x4) = (y1, y2, · · · , y10, t) = (x2 sin x3, x1 sin x3,

x2 sin x4, x1 sin x4, x2 cos x3, x1 cos x3, x2 cos x4, x1 cos x4, x3, x4, 0)

Let M := {(x1, x2, x3, x4) ∈ R4 | 0 < x1, x2 < 1, 0 < x3, x4 < π
2 }.

We define (φ, ξ, η, g) on R11 as follows:

φ(a1
∂

∂y1
+ · · ·+ a10

∂
∂y10

+ a11
∂
∂t ) :=

5

∑
i=1

(−a2i
∂

∂y2i−1
+ a2i−1

∂
∂y2i

),

ξ := ∂
∂t , η := dt, ai ∈ R, 1 ≤ i ≤ 11,

g is the Euclidean metric on R11.
We easily check that (φ, ξ, η, g) is an almost contact metric structure on R11. Then M is a pointwise

semi-slant submanifold of R11 with the semi-slant function k(x1, x2, x3, x4) = arccos(
1

x2
1 + x2

2 + 1
) such that

ξ is normal to M and

D1 = < sin x3
∂

∂y2
+ cos x3

∂
∂y6

+ sin x4
∂

∂y8
+ cos x4

∂
∂y10

,

sin x3
∂

∂y1
+ cos x3

∂
∂y5

+ sin x4
∂

∂y7
+ cos x4

∂
∂y9

>,
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D2 = < x2 cos x3
∂

∂y1
+ x1 cos x3

∂
∂y2

+ ∂
∂y3
− x2 sin x3

∂
∂y5
− x1 sin x3

∂
∂y6

,
∂

∂y4
+ x2 cos x4

∂
∂y7

+ x1 cos x4
∂

∂y8
− x2 sin x4

∂
∂y9
− x1 sin x4

∂
∂y10

> .

Notice that (R11, φ, ξ, η, g) is cosymplectic.

Example 8. Define a map i : R5 7→ R7 by

i(x1, x2, · · · , x5) = (y1, y2, · · · , y6, t)

= (x3, x1, x5, sin x4, 0, cos x4, x2).

Let M := {(x1, x2, · · · , x5) ∈ R5 | 0 < x4 < π
2 }.

We define (φ, ξ, η, g) on R7 as follows:

φ(a1
∂

∂y1
+ · · ·+ a6

∂
∂y6

+ a7
∂
∂t ) :=

3

∑
i=1

(−a2i
∂

∂y2i−1
+ a2i−1

∂
∂y2i

),

ξ := ∂
∂t , η := dt, ai ∈ R, 1 ≤ i ≤ 7,

g is the Euclidean metric on R7. It is easy to check that (φ, ξ, η, g) is an almost contact metric structure on R7.
Then M is a pointwise semi-slant submanifold of R7 with the semi-slant function k(x1, · · · , x5) = x4

such that ξ is tangent to M and

D1 =< ∂
∂y1

, ∂
∂y2

, ξ >

D2 =< ∂
∂y3

, cos x4
∂

∂y4
− sin x4

∂
∂y6

> .

Example 9. Let (N, φ, ξ, η, gN) be an almost contact metric manifold. Let M be a submanifold of a hyperkähler
manifold (M, J1, J2, J3, gM) such that M is complex with respect to the complex structure J1 (i.e., J1(TM) =

TM) and totally real with respect to the complex structure J2 (i.e., J2(TM) ⊂ TM⊥) [40]. Let f : M 7→ [0, π
2 ]

be a C∞-function. Let N := M× N with the natural projections π1 : N 7→ M and π2 : N 7→ N.
We define (φ, ξ, η, g) on N as follows:

φ(X + Y) := cos( f ◦ π1)J1X− sin( f ◦ π1)J2X + φY,

ξ := ξ, η := η,

g(Z, W) := gM(dπ1(Z), dπ1(W)) + gN(dπ2(Z), dπ2(W))

for X ∈ Γ(TM), Y ∈ Γ(TN), Z, W ∈ Γ(TN).
Here, ξ is exactly the horizontal lift of ξ along π2 and η(Z) := η(dπ2(Z)). Conveniently, we identify a

vector field on M (or on N) with its horizontal lift.
We can easily check that (φ, ξ, η, g) is an almost contact metric structure on N.
Then M× N is a pointwise semi-slant submanifold of an almost contact metric manifold (N, φ, ξ, η, g)

with the semi-slant function f ◦ π1 such that ξ is tangent to M× N and D1 = TN, D2 = TM.

Example 10. Define (φ, ξ, η, g) on R11 as follows:

φ(a1
∂

∂y1
+ · · ·+ a10

∂
∂y10

+ a11
∂
∂t ) =

5

∑
i=1

(−a2i
∂

∂y2i−1
+ a2i−1

∂
∂y2i

),

ξ = ∂
∂t , η = dt, ai ∈ R, 1 ≤ i ≤ 11,

g is the Euclidean metric on R11. Then we know that R11 = (R11, φ, ξ, η, g) is a cosymplectic manifold.
Let

M = {(x1, x2, u, v) | 0 < xi < 1, i = 1, 2, 0 < u, v <
π

2
}.
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Take two points P1, P2 in the unit sphere S1 such that

Pi = (a1i, a2i), i = 1, 2,

a11a12 + a21a22 = 0,

− a11a22 + a21a12 6= 0.

We define a map i : M ⊂ R4 7→ R11 by

i(x1, x2, u, v) = (y1, y2, · · · , y10, t)

= (x1 cos u, x2 cos u, x1 cos v, x2 cos v,

x1 sin u, x2 sin u, x1 sin v, x2 sin v,

a11u + a12v, a21u + a22v, 2020).

Then the tangent bundle TM is spanned by X1, X2, Y1, Y2, where

X1 = cos u ∂
∂y1

+ cos v ∂
∂y3

+ sin u ∂
∂y5

+ sin v ∂
∂y7

,

X2 = cos u ∂
∂y2

+ cos v ∂
∂y4

+ sin u ∂
∂y6

+ sin v ∂
∂y8

,

Y1 = −x1 sin u ∂
∂y1
− x2 sin u ∂

∂y2
+ x1 cos u ∂

∂y5

+ x2 cos u ∂
∂y6

+ a11
∂

∂y9
+ a21

∂
∂y10

,

Y2 = −x1 sin v ∂
∂y3
− x2 sin v ∂

∂y4
+ x1 cos v ∂

∂y7

+ x2 cos v ∂
∂y8

+ a12
∂

∂y9
+ a22

∂
∂y10

.

We can easily check that M is a proper pointwise semi-slant submanifold of a 11-dimensional cosymplectic
manifold R11 = (R11, φ, ξ, η, g) such that D1 =< X1, X2 >, D2 =< Y1, Y2 >, the semi-slant functions
θ with

cos θ =
| − a11a22 + a21a12|

1 + x2
1 + x2

2
,

ξ is normal to M with ξ ∈ Γ(µ).
We see that the distributions D1, D2 are integrable. Denote by B, F the integral manifolds of D1, D2,

respectively.
Then we see that M = (M, g) is a non-trivial warped product Riemannian submanifold of R11 such that

M = B× f F,

g = 2(dx2
1 + dx2

2) + (1 + x2
1 + x2

2)(du2 + dv2),

the warping function f =
√

1 + x2
1 + x2

2.

Hence, M is a non-trivial warped product proper pointwise semi-slant submanifold of (R11, φ, ξ, η, g).
By Theorem 17, we obtain

||h||2 ≥ 4(
(1 + x2

1 + x2
2)

2 + (−a11a22 + a21a12)
2

(1 + x2
1 + x2

2)
2 − (−a11a22 + a21a12)2

)||∇(1
2

ln(1 + x2
1 + x2

2))||2. (116)
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