Article

A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets

Jeong-Gon Lee ${ }^{1, *(\mathbb{D}}$, Mohammad Fozouni ${ }^{2}{ }^{(D)}$, Kul Hur ${ }^{3}$ and Young Bae Jun ${ }^{4}$
1 Division of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
2 Department of Mathematics, Faculty of Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous P.O. 163, Iran; fozouni@hotmail.com
3 Department of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea; kulhur@wku.ac.kr
4 Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; skywine@gmail.com
* Correspondence: jukolee@wku.ac.kr

Received: 21 April 2020; Accepted: 25 May 2020; Published: 17 June 2020

Abstract

In 2020, Kang, Song and Jun introduced the notion of multipolar intuitionistic fuzzy set with finite degree, which is a generalization of intuitionistic fuzzy set, and they applied it to BCK/BCI-algebras. In this paper, we used this notion to study p-ideals of BCI -algebras. The notion of k-polar intuitionistic fuzzy p-ideals in BCI-algebras is introduced, and several properties were investigated. An example to illustrate the k-polar intuitionistic fuzzy p-ideal is given. The relationship between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal is displayed. A k-polar intuitionistic fuzzy p-ideal is found to be k-polar intuitionistic fuzzy ideal, and an example to show that the converse is not true is provided. The notions of p-ideals and k-polar (ϵ, \in)-fuzzy p-ideal in BCI-algebras are used to study the characterization of k-polar intuitionistic p-ideal. The concept of normal k-polar intuitionistic fuzzy p-ideal is introduced, and its characterization is discussed. The process of eliciting normal k-polar intuitionistic fuzzy p-ideal using k-polar intuitionistic fuzzy p-ideal is provided.

Keywords: multipolar intuitionistic fuzzy set with finite degree k; k-polar (ϵ, ϵ)-fuzzy ideal; k-polar intuitionistic fuzzy ideal; k-polar intuitionistic fuzzy p-ideal

MSC: 06F35; 03G25; 08A72

1. Introduction

BCI-algebras were introduced by Iséki [1] as the algebraic counterpart of the BCI-logic. BCI-algebras are a generalization of BCK-algebras, and they originated from two sources: set theory and propositional calculi. See the books [2,3] for more information on BCK/BCI-algebras. Fuzzy sets were first introduced by Zadeh [4], in which the membership degree is represented by only one function-the truth function. Intuitionistic fuzzy sets, which were introduced by Atanassov (see [5,6]), are a generalization of fuzzy sets. As an extension of the bipolar fuzzy set, Chen et al. [7] introduced an m-polar fuzzy set in 2014, and then this concept was applied to certain algebraic structures as BCK/BCI algebras, graph theory and decision making problem. For BCK/BCI-algebras, see [8-10], for graph theory, see [11-14] and see [15-18] for decision making problems. Al-Masarwah and Ahmad discussed the notion of m-polar fuzzy sets with applications in BCK/BCI-algebras. They introduced the notions of m-polar fuzzy subalgebras and m-polar fuzzy (closed, commutative) ideals and gave characterizations of m-polar fuzzy subalgebras and m-polar fuzzy (commutative) ideals. They considered relations
between m-polar fuzzy subalgebras, m-polar fuzzy ideals and m-polar fuzzy commutative ideals (see [8]). Using the notion of multipolar fuzzy point, Mohseni Takallo et al. [9] studied p-ideals of BCI-algebras. In [19], Kang et al. introduced the notion of multipolar intuitionistic fuzzy set with finite degree as a generalization of intuitionistic fuzzy set, and applied it to BCK/BCI-algebras. They introduced the concepts of a k-polar intuitionistic fuzzy subalgebra and a (closed) k-polar intuitionistic fuzzy ideal in a BCK/BCI-algebra, and investigated their relations and characterizations. In a BCI-algebra, they considered the relationship between a k-polar intuitionistic fuzzy ideal and a closed k-polar intuitionistic fuzzy ideal, and discussed the characterization of a closed k-polar intuitionistic fuzzy ideal. They consulted conditions for a k-polar intuitionistic fuzzy ideal to be a closed k-polar intuitionistic fuzzy ideal in a BCI-algebra. The aim of this manuscript was to use Kang et al.'s notion so called multipolar intuitionistic fuzzy set for studying p-ideal in BCI-algebras. This is a generalization of multipolar fuzzy p-ideals of BCI -algebras which is studied in [9]. We introduce the concept of k-polar intuitionistic fuzzy p-ideals in BCI-algebras, and then we study several properties. We first give an example to illustrate the k-polar intuitionistic fuzzy p-ideal. We consider the relationship between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal. We first prove that every k-polar intuitionistic fuzzy p-ideal is a k-polar intuitionistic fuzzy ideal, and then give an example to show that the converse is not true in general. We use the notion of p-ideals in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal. We also use the notion of k-polar (\in, \in)-fuzzy p-ideal in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal. We define the concept of normal k-polar intuitionistic fuzzy p-ideal, and discuss its characterization. We look at the process of eliciting normal k-polar intuitionistic fuzzy p-ideal from a given k-polar intuitionistic fuzzy p-ideal.

2. Preliminaries

If a set U has a special element 0 and a binary operation $*$ satisfying the conditions:
(I) $\quad(\forall \omega, v, \tau \in U)(((\omega * v) *(\omega * \tau)) *(\tau * v)=0)$,
(II) $(\forall \omega, v \in U)((\omega *(\omega * v)) * v=0)$,
(III) $(\forall \omega \in U)(\omega * \omega=0)$,
(IV) $(\forall \omega, v \in U)(\omega * v=0, v * \omega=0 \Rightarrow \omega=v)$,
then it is said that U is a BCI-algebra. If a BCI-algebra U satisfies the following identity:
(V) $(\forall \omega \in U)(0 * \omega=0)$,
then U is called a $B C K$-algebra.
Any BCK/BCI-algebra U satisfies the following conditions:

$$
\begin{align*}
& (\forall \omega \in U)(\omega * 0=\omega) \tag{1}\\
& (\forall \omega, v, \tau \in U)((\omega * v) * \tau=(\omega * \tau) * v) \tag{2}
\end{align*}
$$

A subset I of a BCI-algebra U is called

- a subalgebra of U if $\omega * v \in I$ for all $\omega, v \in I$.
- an ideal of U if it satisfies:

$$
\begin{align*}
& 0 \in I \tag{3}\\
& (\forall \omega \in U)(\forall v \in I)(\omega * v \in I \Rightarrow \omega \in I) . \tag{4}
\end{align*}
$$

- a p-ideal of U (see [20]) if it satisfies Equation (3) and

$$
\begin{equation*}
(\forall \omega, v, \tau \in U)((\omega * \tau) *(v * \tau) \in I, v \in I \Rightarrow \omega \in I) \tag{5}
\end{equation*}
$$

Let $\left\{b_{i} \mid i \in \Gamma\right\}$ be a family of real numbers where Γ is any index set and we define

$$
\begin{aligned}
& \bigvee\left\{b_{i} \mid i \in \Gamma\right\}:= \begin{cases}\max \left\{b_{i} \mid i \in \Gamma\right\} & \text { if } \Gamma \text { is finite } \\
\sup \left\{b_{i} \mid i \in \Gamma\right\} & \text { otherwise }\end{cases} \\
& \bigwedge\left\{b_{i} \mid i \in \Gamma\right\}:= \begin{cases}\min \left\{b_{i} \mid i \in \Gamma\right\} & \text { if } \Gamma \text { is finite } \\
\inf \left\{b_{i} \mid i \in \Gamma\right\} & \text { otherwise. }\end{cases}
\end{aligned}
$$

If $\Gamma=\{1,2\}$, we will also use $b_{1} \vee b_{2}$ and $b_{1} \wedge b_{2}$ instead of $\bigvee\left\{b_{i} \mid i \in \Gamma\right\}$ and $\wedge\left\{b_{i} \mid i \in\right.$ $\Gamma\}$, respectively.

Let k be a natural number and $[0,1]^{k}$ denote the k-Cartesian product of $[0,1]$, that is,

$$
[0,1]^{k}=[0,1] \times[0,1] \times \cdots \times[0,1]
$$

in which $[0,1]$ is repeated k times. The order " \leq " in $[0,1]^{k}$ is given by the pointwise order.
By a k-polar fuzzy set on a set U (see [7]), we mean a function $\widehat{\xi}: U \rightarrow[0,1]^{k}$ where k is a natural number. The membership value of every element $z \in U$ is denoted by

$$
\widehat{\zeta}(z)=\left(\left(\operatorname{proj}_{1} \circ \widehat{\xi}\right)(z),\left(\operatorname{proj}_{2} \circ \widehat{\zeta}\right)(z), \cdots,\left(\operatorname{proj}_{k} \circ \widehat{\xi}\right)(z)\right)
$$

where $\operatorname{proj}_{i}:[0,1]^{k} \rightarrow[0,1]$ is the i-th projection for all $i=1,2, \cdots, k$ and \circ is the composition of functions.

A k-polar fuzzy set $\widehat{\xi}$ on a BCK/BCI-algebra U is called a k-polar fuzzy ideal of U (see [8]) if the following conditions are valid.

$$
\begin{align*}
& (\forall z \in U)(\widehat{\xi}(0) \geq \widehat{\xi}(z)) \tag{6}\\
& (\forall z, x \in U)(\widehat{\xi}(z) \geq \widehat{\xi}(z * x) \wedge \widehat{\xi}(x)) \tag{7}
\end{align*}
$$

By a k-polar fuzzy point on a set U, we mean a k-polar fuzzy set $\widehat{\xi}$ on U of the form

$$
\widehat{\zeta}(x)= \begin{cases}\hat{r}=\left(r_{1}, r_{2}, \cdots, r_{k}\right) \in(0,1]^{k} & \text { if } x=z \tag{8}\\ \hat{0}=(0,0, \cdots, 0) & \text { if } x \neq z\end{cases}
$$

and it is denoted by $z_{\hat{r}}$ where z is a given element of U. We say that z is the support of $z_{\hat{r}}$ and \hat{r} is the value of $z_{\hat{r}}$.

We say that a k-polar fuzzy point $z_{\hat{r}}$ is contained in a k-polar fuzzy set $\widehat{\xi}$, denoted by $z_{\hat{r}} \in \widehat{\xi}$, if $\widehat{\xi}(z) \geq \hat{r}$, that is, $\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) \geq r_{i}$ for all $i=1,2, \cdots, k$.

A k-polar fuzzy set $\widehat{\xi}$ on a BCI-algebra U is called a k-polar (\in, \in)-fuzzy p-ideal of U (see [9]) if it satisfies

$$
\begin{align*}
& (\forall z \in U)\left(\forall \hat{r} \in[0,1]^{k}\right)\left(z_{\hat{r}} \in \widehat{\xi} \Rightarrow 0_{\hat{r}} \in \widehat{\xi}\right) \tag{9}\\
& (\forall z, x, y \in U)\left(\forall \hat{r}, \hat{t} \in[0,1]^{k}\right)\left(((z * y) *(x * y))_{\hat{r}} \in \widehat{\xi}, x_{\hat{t}} \in \widehat{\xi} \Rightarrow z_{\inf \{\hat{r}, \hat{t}\}} \in \widehat{\xi}\right) \tag{10}
\end{align*}
$$

It is easy to show that Condition (10) is equivalent to the following condition.

$$
\begin{equation*}
(\forall z, x, y \in U)(\widehat{\xi}(z) \geq \widehat{\xi}((z * y) *(x * y)) \wedge \widehat{\xi}(x)) \tag{11}
\end{equation*}
$$

A multipolar intuitionistic fuzzy set with finite degree k (briefly, k-pIF set) over a set U (see [19]) is a mapping

$$
\begin{equation*}
(\widehat{\xi}, \widehat{\varrho}): U \rightarrow[0,1]^{k} \times[0,1]^{k}, z \mapsto(\widehat{\zeta}(z), \widehat{\varrho}(z)) \tag{12}
\end{equation*}
$$

where $\widehat{\xi}: U \rightarrow[0,1]^{k}$ and $\widehat{\varrho}: U \rightarrow[0,1]^{k}$ are k-polar fuzzy sets over a set U such that $\widehat{\varsigma}(z)+\widehat{\varrho}(z) \leq \hat{1}$ for all $z \in U$, that is, $\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)+\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) \leq 1$ for all $z \in U$ and $i=1,2, \cdots, k$. We know that if the multipolar intuitionistic fuzzy set has degree 1, then it is an intuitionistic fuzzy set. So, the intuitionistic fuzzy set is a special case of the multipolar intuitionistic fuzzy set. From this point of view, multipolar intuitionistic fuzzy set is a generalization of intuitionistic fuzzy set.

Given a k-pIF set $(\widehat{\xi}, \widehat{\varrho})$ over a set U, we consider the sets

$$
\begin{equation*}
U(\widehat{\widehat{\xi}}, \hat{t}):=\{z \in U \mid \widehat{\xi}(z) \geq \hat{t}\} \text { and } L(\widehat{\varrho}, \hat{s}):=\{z \in U \mid \widehat{\varrho}(z) \leq \hat{s}\} \tag{13}
\end{equation*}
$$

where $\hat{t}=\left(t_{1}, t_{2}, \cdots, t_{k}\right) \in[0,1]^{k}$ and $\hat{s}=\left(s_{1}, s_{2}, \cdots, s_{k}\right) \in[0,1]^{k}$ with $\hat{t}+\hat{s} \leq \hat{1}$, which is called a k-polar upper (resp., lower) level set of $(\widehat{\xi}, \widehat{\varrho})$ where " + " is the componentwise operation in $[0,1]^{k}$, that is, $t_{i}+s_{i} \leq 1$ for all $i=1,2, \cdots, k$. It is clear that $U(\widehat{\xi}, \hat{t})=\bigcap_{i=1}^{k} U(\widehat{\xi}, \hat{t})^{i}$ and $L(\widehat{\varrho}, \hat{s})=\bigcap_{i=1}^{k} L(\widehat{\varrho}, \hat{s})^{i}$ where

$$
U(\widehat{\xi}, \hat{t})^{i}=\left\{z \in U \mid\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) \geq t_{i}\right\} \text { and } L(\widehat{\varrho}, \hat{s})^{i}=\left\{z \in U \mid\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) \leq s_{i}\right\}
$$

A k-pIF set $(\widehat{\xi}, \widehat{\varrho})$ over U is called a k-polar intuitionistic fuzzy ideal (briefly, k-pIF ideal) of U (see [19]) if it satisfies the conditions

$$
\begin{equation*}
(\forall z \in U)(\widehat{\zeta}(0) \geq \widehat{\zeta}(z), \widehat{\varrho}(0) \leq \widehat{\varrho}(z)) \tag{14}
\end{equation*}
$$

that is, $\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0) \geq\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)$ and $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0) \leq\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)$ for $i=1,2, \cdots, k$ and

$$
\begin{equation*}
(\forall z, x \in U)\binom{\widehat{\xi}(z) \geq \widehat{\xi}(z * x) \wedge \widehat{\xi}(x)}{\widehat{\varrho}(z) \leq \widehat{\varrho}(z * x) \vee \widehat{\varrho}(x)} \tag{15}
\end{equation*}
$$

3. \boldsymbol{k}-Polar Intuitionistic Fuzzy \boldsymbol{p}-Ideals

In this section, let U be a BCI-algebra unless otherwise stated.
Definition 1. A k-pIF set $(\widehat{\xi}, \widehat{\varrho})$ over U is called a k-polar intuitionistic fuzzy p-ideal (briefly, k-pIF p-ideal) of U if it satisfies Condition (14) and

$$
\begin{equation*}
(\forall z, x, y \in U)\binom{\widehat{\xi}(z) \geq \widehat{\xi}((z * x) *(y * x)) \wedge \widehat{\xi}(y)}{\widehat{\varrho}(z) \leq \widehat{\varrho}((z * x) *(y * x)) \vee \widehat{\varrho}(y)} \tag{16}
\end{equation*}
$$

Example 1. Let $U=\{0, x, a, b\}$ be a set with a binary operation $*$ which is given in Table 1.
Table 1. Cayley table for the binary operation " $*$ ".

$*$	$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{a}	\boldsymbol{b}
0	0	x	a	b
x	x	0	b	a
a	a	b	0	x
b	b	a	x	0

Then, U is a BCI-algebra (see [2]). Let $(\widehat{\xi}, \widehat{\varrho})$ be a 4-polar intuitionistic fuzzy set over U given by

$$
\begin{aligned}
&(\widehat{\xi}, \widehat{\varrho}): U \rightarrow[0,1]^{4} \times[0,1]^{4}, \\
& z \mapsto \begin{cases}((0.8,0.67,0.9,0.56),(0.19,0.15,0.07,0.28)) & \text { if } z=0, \\
((0.7,0.57,0.7,0.56),(0.19,0.24,0.07,0.35)) & \text { if } z=x, \\
((0.5,0.37,0.4,0.32),(0.37,0.44,0.39,0.58)) & \text { if } z=a, \\
((0.5,0.37,0.4,0.32),(0.37,0.44,0.39,0.58)) & \text { if } z=b .\end{cases}
\end{aligned}
$$

It is routine to check that $(\widehat{\xi}, \widehat{\varrho})$ is a 4-polar intuitionistic fuzzy p-ideal of U.
Theorem 1. Let I be a subset of U and let $\left(\widehat{\xi}_{I}, \widehat{\varrho}_{I}\right)$ be a k-pIF set on U defined by

$$
\begin{aligned}
& \widehat{\zeta}_{I}: U \rightarrow[0,1]^{k}, z \mapsto \begin{cases}\hat{1} & \text { if } z \in I, \\
\hat{0} & \text { otherwise }\end{cases} \\
& \widehat{\varrho}_{I}: U \rightarrow[0,1]^{k}, z \mapsto \begin{cases}\hat{0} & \text { if } z \in I, \\
\hat{1} & \text { otherwise }\end{cases}
\end{aligned}
$$

Then, $\left(\widehat{\xi}_{I}, \widehat{\varrho}_{I}\right)$ is a k-pIF ideal p-ideal of U if and only if I is a p-ideal of U.
Proof. Straightforward.
In the following theorem, we look at the relationship between k-pIF ideal and k-pIF p-ideal.
Theorem 2. Every k-pIF p-ideal is a k-pIF ideal.
Proof. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF p-ideal of U. If we put $x=0$ in (16) and use (1), then

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) & \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * 0) *(x * 0)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)\right\} \\
& =\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z * x),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) & \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * 0) *(x * 0)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\} \\
& =\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z * x),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\}
\end{aligned}
$$

for all $z, x \in U$. Therefore $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF ideal of U.
In the following example, we find that the converse of Theorem 2 is not true.
Example 2. Let $U=\{0, x, b, c, d\}$ be a set with a binary operation $*$, which is given in Table 2 .
Table 2. Cayley table for the binary operation "*".

$*$	$\mathbf{0}$	\boldsymbol{x}	\boldsymbol{b}	\boldsymbol{c}	\boldsymbol{d}
0	0	0	d	c	b
x	x	0	d	c	b
b	b	b	0	d	c
c	c	c	b	0	d
d	d	d	c	b	0

Then, U is a BCI-algebra (see [2]). Define a 3-polar intuitionistic fuzzy set $(\widehat{\xi}, \widehat{\varrho})$ on U as follows:

$$
\begin{aligned}
&(\widehat{\jmath,}, \widehat{\varrho}): U \rightarrow[0,1]^{3} \times[0,1]^{3}, \\
& z \mapsto \begin{cases}((0.6,0.7,0.9),(0.2,0.25,0.07)) & \text { if } z=0, \\
((0.6,0.5,0.7),(0.3,0.25,0.17)) & \text { if } z=x, \\
((0.2,0.3,0.4),(0.6,0.45,0.27)) & \text { if } z=b, \\
((0.5,0.4,0.6),(0.4,0.35,0.37)) & \text { if } z=c, \\
((0.2,0.3,0.4),(0.6,0.45,0.27)) & \text { if } z=d .\end{cases}
\end{aligned}
$$

It is easy to confirm that $(\widehat{\xi}, \widehat{\varrho})$ is a 3-polar intuitionistic fuzzy ideal of U. But it is not a 3-polar intuitionistic fuzzy p-ideal of U since

$$
\left(\operatorname{proj}_{2} \circ \widehat{\xi}\right)(x)=0.5<0.7=\min \left\{\left(\operatorname{proj}_{2} \circ \widehat{\xi}\right)((x * b) *(0 * b)),\left(\operatorname{proj}_{2} \circ \widehat{\xi}\right)(0)\right\}
$$

and/or

$$
\left(\operatorname{proj}_{3} \circ \widehat{\varrho}\right)(x)=0.17>0.07=\max \left\{\left(\operatorname{proj}_{3} \circ \widehat{\varrho}\right)((x * b) *(0 * b)),\left(\operatorname{proj}_{3} \circ \widehat{\varrho}\right)(0)\right\} .
$$

Proposition 1. Every k-pIF p-ideal $(\widehat{\xi}, \widehat{\varrho})$ of U satisfies the following inequalities.

$$
\begin{equation*}
(\forall z \in U)(\widehat{\S}(z) \geq \widehat{\zeta}(0 *(0 * z)), \widehat{\varrho}(z) \leq \widehat{\varrho}(0 *(0 * z))) \tag{17}
\end{equation*}
$$

Proof. If we change y to z and x to 0 in Equation (16), then

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) & \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * z) *(0 * z)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)\right\} \\
& =\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0 *(0 * z)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)\right\} \\
& =\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0 *(0 * z))
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) & \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * z) *(0 * z)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)\right\} \\
& =\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0 *(0 * z)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)\right\} \\
& =\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0 *(0 * z))
\end{aligned}
$$

for all $z \in U$.
Proposition 2. Every k-pIF p-ideal $(\widehat{\xi}, \widehat{\varrho})$ of U satisfies the following inequalities.

$$
\begin{equation*}
(\forall z, x, y \in U)\binom{\widehat{\xi}(z * x) \leq \widehat{\xi}((z * y) *(x * y))}{\widehat{\varrho}(z * x) \geq \widehat{\varrho}((z * y) *(x * y))} . \tag{18}
\end{equation*}
$$

Proof. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF p-ideal of U. Then, it is a k-pIF ideal of U by Theorem 2. For any $z, x, y \in U$, we have $((z * y) *(x * y)) *(z * x)=0$. Hence

$$
\begin{aligned}
& \left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y)) \\
& \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(((z * y) *(x * y)) *(z * x)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z * x)\right\} \\
& =\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z * x)\right\}=\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z * x)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)) \\
& \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(((z * y) *(x * y)) *(z * x)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z * x)\right\} \\
& =\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z * x)\right\}=\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z * x)
\end{aligned}
$$

for all $z, x, y \in U$.
We provide conditions for a k-pIF ideal to be a k-pIF p-ideal.
Theorem 3. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF ideal of U satisfying the condition

$$
\begin{equation*}
(\forall z, x, y \in U)\binom{\widehat{\xi}(z * x) \geq \widehat{\xi}((z * y) *(x * y))}{\widehat{\varrho}(z * x) \leq \widehat{\varrho}((z * y) *(x * y))} \tag{19}
\end{equation*}
$$

Then, it is a k-pIF p-ideal of U.

Proof. Using Equations (15) and (19), we have that

$$
\widehat{\xi}(z) \geq \widehat{\xi}(z * x) \wedge \widehat{\xi}(x) \geq \widehat{\xi}((z * y) *(x * y)) \wedge \widehat{\xi}(x)
$$

and

$$
\widehat{\varrho}(z) \leq \widehat{\varrho}(z * x) \vee \widehat{\varrho}(x) \leq \widehat{\varrho}((z * y) *(x * y)) \vee \widehat{\varrho}(x)
$$

for all $z, x, y \in U$. Therefore $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U.
Lemma 1. Every k-pIF ideal $(\widehat{\xi}, \widehat{\varrho})$ of U satisfies the following inequalities.

$$
\begin{equation*}
(\forall z \in U)(\widehat{\zeta}(z) \leq \widehat{\zeta}(0 *(0 * z)), \widehat{\varrho}(z) \geq \widehat{\varrho}(0 *(0 * z))) \tag{20}
\end{equation*}
$$

Proof. For any $z, x \in U$, we obtain

$$
\widehat{\zeta}(0 *(0 * z)) \geq \widehat{\zeta}((0 *(0 * z)) * z) \wedge \widehat{\xi}(z)=\widehat{\xi}((0 * z) *(0 * z)) \wedge \widehat{\zeta}(z)=\widehat{\zeta}(0) \wedge \widehat{\xi}(z)=\widehat{\xi}(z)
$$

and

$$
\widehat{\varrho}(0 *(0 * z)) \leq \widehat{\varrho}((0 *(0 * z)) * z) \vee \widehat{\varrho}(z)=\widehat{\varrho}((0 * z) *(0 * z)) \vee \widehat{\varrho}(z)=\widehat{\varrho}(0) \vee \widehat{\varrho}(z)=\widehat{\varrho}(z)
$$

by Equations (2), (3), (14) and (15).
Theorem 4. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF set over U. If $(\widehat{\xi}, \widehat{\varrho})$ satisfies the following inequalities

$$
\begin{equation*}
(\forall z \in U)(\widehat{\widehat{\xi}}(z) \geq \widehat{\zeta}(0 *(0 * z)), \widehat{\varrho}(z) \leq \widehat{\varrho}(0 *(0 * z))) . \tag{21}
\end{equation*}
$$

Proof. For any $z, x, y \in U$ and $i=1,2, \cdots, k$, we have

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y)) & \leq\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0 *(0 *(z * y) *(x * y))) \\
& =\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((0 * x) *(0 * y)) \\
& =\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0 *(0 *(z * y))) \\
& \leq\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z * x),
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)) & \geq\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0 *(0 *(z * y) *(x * y))) \\
& =\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((0 * x) *(0 * y)) \\
& =\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0 *(0 *(z * y))) \\
& \geq\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z * x),
\end{aligned}
$$

which imply that $\widehat{\zeta}((z * y) *(x * y)) \leq \widehat{\wp}(z * x)$ and $\widehat{\varrho}((z * y) *(x * y)) \geq \widehat{\varrho}(z * x)$ for all $z, x, y \in U$. Therefore $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U by Theorem 3 .

We consider characterizations of a k-pIF p-ideal.
Theorem 5. Given a $k-p I F$ set $(\widehat{\xi}, \widehat{\varrho})$ over U, the following assertions are equivalent.
(i) $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U.
(ii) The k-polar upper and lower level sets $U(\widehat{\xi}, \hat{r})$ and $L(\widehat{\varrho}, \hat{q})$ are p-ideals of U for all $(\hat{r}, \hat{q}) \in[0,1]^{k} \times[0,1]^{k}$ with $U(\widehat{\xi}, \hat{r}) \neq \varnothing \neq L(\widehat{\varrho}, \hat{q})$.

Proof. Assume that $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U. It is clear that $0 \in U(\widehat{\xi} ; \hat{r})$ and $0 \in L(\widehat{\varrho} ; \hat{q})$ for any $\hat{r}=\left(r_{1}, r_{2}, \cdots, r_{k}\right) \in(0,1]^{k}$ and $\hat{q}=\left(q_{1}, q_{2}, \cdots, q_{k}\right) \in(0,1]^{k}$. Let $z, x, y, b, c, d \in U$ be such that $(z * y) *(x * y) \in U(\widehat{\xi} ; \hat{r}), x \in U(\widehat{\xi} ; \hat{r}),(b * d) *(c * d) \in L(\widehat{\varrho} ; \hat{q})$ and $c \in L(\widehat{\varrho} ; \hat{q})$. Then, $\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z *$ $y) *(x * y)) \geq r_{i},\left(\operatorname{proj}_{i} \circ \widehat{\widehat{\zeta}}\right)(x) \geq r_{i},\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((b * d) *(c * d)) \leq q_{i}$ and $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(c) \leq q_{i}$. It follows from Equations (16) that

$$
\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)\right\} \geq r_{i}
$$

and

$$
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(b) \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((b * d) *(c * d)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(c)\right\} \leq q_{i}
$$

for $i=1,2, \cdots, k$. Hence $z \in U(\widehat{\xi} ; \hat{r})$ and $b \in L(\widehat{\varrho} ; \hat{q})$ and therefore $U(\widehat{\xi} ; \hat{r})$ and $L(\widehat{\varrho} ; \hat{q})$ are p-ideals of U.
Conversely, suppose that the k-polar upper and lower level sets $U(\widehat{\xi}, \hat{r})$ and $L(\widehat{\varrho}, \hat{q})$ are p-ideals of U for all $(\hat{r}, \hat{q}) \in[0,1]^{k} \times[0,1]^{k}$ with $U(\widehat{\xi}, \hat{r}) \neq \varnothing \neq L(\widehat{\varrho}, \hat{q})$. If $\widehat{\xi}(0)<\widehat{\xi}(b)$ for some $b \in U$, then $b \in U(\widehat{\xi} ; \hat{r})$ and $0 \notin U(\widehat{\xi} ; \hat{r})$ where $\hat{r}:=\widehat{\xi}(b)$. This is a contradiction, and so $\widehat{\xi}(0) \geq \widehat{\xi}(z)$ for all $z \in U$. If $\widehat{\varrho}(0)>\widehat{\varrho}(c)$ for some $c \in U$, then $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)>\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(c)$ for $i=1,2, \cdots, k$. If we take $q_{i}:=\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(c)$ for $i=1,2, \cdots, k$, then $c \in L(\widehat{\varrho}, \hat{q})^{i}$ and $0 \notin L(\widehat{\varrho}, \hat{q})^{i}$ for $i=1,2, \cdots, k$. Thus $c \in \bigcap_{i=1}^{k} L(\widehat{\varrho}, \hat{q})^{i}=L(\widehat{\varrho}, \hat{q})$ and $0 \notin L(\widehat{\varrho}, \hat{q})$, which is a contradiction; hence $\widehat{\varrho}(0) \leq \widehat{\varrho}(z)$ for all $z \in U$. Now, suppose that there exist $b, c, d \in U$ such that $\widehat{\xi}(b)<\widehat{\zeta}((b * d) *(c * d)) \wedge \widehat{\xi}(c)$ or $\widehat{\varrho}(b)>\widehat{\varrho}((b * d) *(c * d)) \vee \widehat{\varrho}(c)$. If we take

$$
\hat{r}:=\widehat{\xi}((b * d) *(c * d)) \wedge \widehat{\zeta}(c)
$$

and

$$
\hat{q}:=\widehat{\varrho}((b * d) *(c * d)) \vee \widehat{\varrho}(c)
$$

then

$$
(b * d) *(c * d) \in U(\widehat{\xi} ; \hat{r}) \text { and } c \in U(\widehat{\xi} ; \hat{r})
$$

or

$$
(b * d) *(c * d) \in L(\widehat{\varrho}, \hat{q}) \text { and } c \in L(\widehat{\varrho}, \hat{q})
$$

Since $U(\widehat{\xi} ; \hat{r})$ and $L(\widehat{\varrho}, \hat{q})$ are p-ideals of U by assumption, it follows that $b \in U(\widehat{\widetilde{\xi}} ; \hat{r})$ or $b \in L(\widehat{\varrho} ; \hat{q})$. Hence $\widehat{\xi}(b) \geq \hat{r}=\widehat{\xi}((b * d) *(c * d)) \wedge \widehat{\xi}(c)$ or $\widehat{\varrho}(b) \leq \hat{q}=\widehat{\varrho}((b * d) *(c * d)) \vee \widehat{\varrho}(c)$, which is a contradiction. Thus $\widehat{\xi}(z) \geq \widehat{\zeta}((z * y) *(x * y)) \wedge \widehat{\zeta}(x)$ and $\widehat{\varrho}(z) \leq \widehat{\varrho}((z * y) *(x * y)) \vee \widehat{\varrho}(x)$ for all $z, x, y \in U$; therefore $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U.

Given a k-pIF set $(\widehat{\xi}, \widehat{\varrho})$ over U and $(\hat{t}, \hat{s}) \in(0,1]^{k} \times[0,1)^{k}$, we consider the sets:

$$
R_{(\widehat{\xi}, \hat{t})}(U):=\{z \in U \mid \widehat{\xi}(z)+\hat{t}>\hat{1}\}
$$

and

$$
R_{(\widehat{\varrho}, \hat{s})}(U):=\{z \in U \mid \widehat{\varrho}(z)+\hat{s}<\hat{1}\} .
$$

Then, $R_{(\widehat{\xi}, \hat{t})}(U)=\bigcap_{i=1}^{k} R_{(\widehat{\xi}, \hat{t})}(U)^{i}$ and $R_{(\widehat{\varrho}, \hat{s})}(U)=\bigcap_{i=1}^{k} R_{(\widehat{\varrho}, \hat{s})}(U)^{i}$ where

$$
R_{(\widehat{\xi}, \hat{t})}(U)^{i}:=\left\{z \in U \mid\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)+t_{i}>1\right\}
$$

and

$$
R_{(\widehat{\varrho}, \hat{s})}(U)^{i}:=\left\{z \in U \mid\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)+s_{i}<1\right\}
$$

for $i=1,2, \cdots, k$.
Theorem 6. Given a $k-p I F \operatorname{set}(\widehat{\xi}, \widehat{\varrho})$ over U, the following assertions are equivalent.
(i) $(\widehat{\xi}, \widehat{Q})$ is a k-pIF p-ideal of U.
(ii) The sets $R_{(\widehat{\xi}, \hat{t})}(U)$ and $R_{(\widehat{\varrho}, \hat{s})}(U)$ are p-ideals of U for all $(\hat{t}, \hat{s}) \in(0,1]^{k} \times[0,1)^{k}$ with $R_{(\widehat{\xi}, \hat{t})}(U) \neq \varnothing \neq$ $R_{(\widehat{\varrho}, \hat{s})}(U)$.

Proof. Assume that $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U. It is clear that $0 \in R_{(\widehat{\xi}, \hat{t})}(U)$ and $0 \in R_{(\widehat{\varrho}, \hat{s})}(U)$. Let $z, x, y, b, c, d \in U$ be such that $(z * y) *(x * y) \in R_{(\widehat{\xi}, \hat{t})}(U), x \in R_{(\widehat{\xi}, \hat{t})}(U),(b * d) *(c * d) \in R_{(\widehat{\varrho}, \hat{s})}(U)$ and $c \in R_{(\hat{\varrho}, \hat{s})}(U)$. Then, $\widehat{\xi}((z * y) *(x * y))+\hat{t}>\hat{1}, \widehat{\xi}(x)+\hat{t}>\hat{1}, \widehat{\varrho}((b * d) *(c * d))+\hat{s}<\hat{1}$ and $\widehat{\varrho}(c)+\hat{s}<\hat{1}$. It follows that

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)+t_{i} & \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)\right\}+t_{i} \\
& =\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y))+t_{i},\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)+t_{i}\right\}>1
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(b)+s_{i} & \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((b * d) *(c * d)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(c)\right\}+s_{i} \\
& =\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((b * d) *(c * d))+s_{i},\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(c)+s_{i}\right\}<1
\end{aligned}
$$

for all $i=1,2, \cdots, k$. Hence $z \in \bigcap_{i=1}^{k} R_{(\widehat{\zeta}, \hat{\imath})}(U)^{i}=R_{(\widehat{\xi}, \hat{\imath})}(U)$ and $b \in \bigcap_{i=1}^{k} R_{(\widehat{\varrho}, \hat{s})}(U)^{i}=R_{(\widehat{\varrho}, \hat{s})}(U)$; therefore $R_{(\widehat{\xi}, \hat{t})}(U)$ and $R_{(\hat{Q}, \hat{s})}(U)$ are p-ideals of U for all $(\hat{t}, \hat{s}) \in(0,1]^{k} \times[0,1)^{k}$.

Conversely suppose that (ii) is valid. If $\widehat{\xi}(0)<\widehat{\xi}(z)$ or $\widehat{\varrho}(0)>\widehat{\varrho}(b)$ for some $z, b \in U$, then $\widehat{\zeta}(0)+$ $\hat{t} \leq \hat{1}<\widehat{\zeta}(z)+\hat{t}$ or $\widehat{\varrho}(0)+\hat{s} \geq \hat{1}>\widehat{\varrho}(b)+\hat{s}$ for some $(\hat{t}, \hat{s}) \in(0,1]^{k} \times[0,1)^{k}$. Thus $0 \notin R_{(\widehat{\xi}, \hat{t})}(U)$ or $0 \notin R_{(\widehat{\widehat{,}, \hat{s})}}(U)$ which is a contradiction. Hence $(\widehat{\xi}, \widehat{\varrho})$ satisfies Condition (14). Suppose that $\widehat{\xi}(b)<$ $\widehat{\xi}((b * d) *(c * d)) \wedge \widehat{\xi}(c)$ for some $b, c \in U$. Then, $\widehat{\xi}(b)+\hat{t} \leq \hat{1}<(\widehat{\xi}((b * d) *(c * d)) \wedge \widehat{\xi}(c))+\hat{t}=$ $(\widehat{\xi}((b * d) *(c * d))+\hat{t}) \wedge(\widehat{\xi}(c)+\hat{t})$ for some $\hat{t} \in(0,1]^{k}$. It follows that $(b * d) *(c * d) \in R_{(\widehat{\xi}, \hat{t})}(U)$ and
$c \in R_{(\widehat{\xi}, \hat{t})}(U)$, which implies that $b \in R_{(\widehat{\xi}, \hat{t})}(U)$ since $R_{(\widehat{\xi}, \hat{t})}(U)$ is a p-ideal of U; hence $\widehat{\xi}(b)+\hat{t}>\hat{1}$, which is a contradiction. If $\widehat{\varrho}(z)>\widehat{\varrho}((z * y) *(x * y)) \vee \widehat{\varrho}(x)$ for some $z, x \in U$, then

$$
\widehat{\varrho}(z)+\hat{s} \geq \hat{1}>(\widehat{\jmath}((z * y) *(x * y)) \vee \widehat{\S}(x))+\hat{s}=(\widehat{\xi}((z * y) *(x * y))+\hat{s}) \vee(\widehat{\widehat{\zeta}}(x)+\hat{s})
$$

for some $\hat{s} \in[0,1)^{k}$. Thus $(z * y) *(x * y) \in R_{(\hat{\varrho}, \hat{s})}(U)$ and $x \in R_{(\hat{\varrho}, \hat{s})}(U)$. Since $R_{(\hat{\varrho}, \hat{s})}(U)$ is a p-ideal of U, it follows that $z \in R_{(\widehat{\varrho}, \hat{s})}(U)$, that is, $\widehat{\varrho}(z)+\hat{s}<\hat{1}$. This is a contradiction. This shows that $(\widehat{\xi}, \widehat{\varrho})$ satisfies Condition (16); therefore $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U.

The following theorem shows the characterization of k-pIF p-ideal using k-polar (\in, \in)-fuzzy p-ideal.

Theorem 7. A k-pIF set $(\widehat{\xi}, \widehat{\varrho})$ over U is a k-pIF p-ideal of U if and only if $\widehat{\xi}$ and $\widehat{\varrho}^{c}$ are k-polar (\in, \in)-fuzzy p-ideals of U where $\widehat{\varrho}^{c}=1-\widehat{\varrho}$, i.e., $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}=1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)$ for $i=1,2, \cdots, k$.

Proof. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF p-ideal of U. It is clear that $\widehat{\xi}$ is a k-polar (ϵ, ϵ)-fuzzy p-ideal of U. Let $z, x, y \in U$. Then,

$$
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(0)=1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0) \geq 1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)=\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(z)
$$

and

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(z) & =1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) \geq 1-\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\} \\
& =\min \left\{1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)), 1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\} \\
& =\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(x)\right\} .
\end{aligned}
$$

Thus $\widehat{\varrho}^{c}$ is a k-polar (\in, \in)-fuzzy p-ideal of U.
Conversely, suppose that $\widehat{\xi}$ and $\widehat{\varrho}^{c}$ are k-polar (\in, \in)-fuzzy p-ideals of U. For any $z, x \in U$, we have $\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0) \geq\left(\operatorname{proj}_{i} \circ \widehat{\zeta}\right)(z),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)\right\}$, $1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)=\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(0) \geq\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(z)=1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)$, i.e., $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0) \leq\left(\operatorname{proj}_{i} \circ\right.$ $\widehat{\varrho})(z)$ and

$$
\begin{aligned}
1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) & =\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(z) \geq \min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{c}(x)\right\} \\
& =\min \left\{1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)), 1-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\} \\
& =1-\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\}
\end{aligned}
$$

that is, $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z) \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\}$; therefore $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U.

The following corollary is an immediate consequence of Theorem 7.
Corollary 1. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF set over U. Then, $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U if and only if the necessary operator $\square(\widehat{\xi}, \widehat{\varrho})=\left(\widehat{\widehat{\xi}}, \widehat{\xi}^{c}\right)$ and the possibility operator $\diamond(\widehat{\zeta}, \widehat{\varrho})=\left(\widehat{\varrho}^{c}, \widehat{\varrho}\right)$ of $(\widehat{\xi}, \widehat{\varrho})$ are k-pIF p-ideals of U.

Definition 2. A k-pIF p-ideal ($\widehat{\xi}, \widehat{\varrho})$ of U is said to be normal if there exists $z, x \in U$ such that $\widehat{\xi}(z)=\hat{1}$ and $\widehat{\varrho}(x)=\hat{0}$.

Example 3. Consider the BCI-algebra $U=\{0, x, a, b\}$, which is given in Example 1. Let $(\widehat{\xi}, \widehat{\varrho})$ be a 3-polar intuitionistic fuzzy set over U given by

$$
\begin{aligned}
& (\widehat{\xi}, \widehat{\varrho}): U \rightarrow[0,1]^{3} \times[0,1]^{3} \\
& \quad z \mapsto \begin{cases}((1.00,1.00,1.00),(0.00,0.00,0.00)) & \text { if } z=0 \\
((0.72,0.57,1.00),(0.00,0.24,0.35)) & \text { if } z=x \\
((0.52,0.37,0.32),(0.37,0.44,0.58)) & \text { if } z=a \\
((0.52,0.37,0.32),(0.37,0.44,0.58)) & \text { if } z=b\end{cases}
\end{aligned}
$$

It is routine to check that $(\widehat{\xi}, \widehat{\varrho})$ is a normal 3-polar intuitionistic fuzzy p-ideal of U.
It is clear that if a k-pIF p-ideal $(\widehat{\zeta}, \widehat{\varrho})$ of U is normal, then $\widehat{\zeta}(0)=\hat{1}$ and $\widehat{\varrho}(0)=\hat{0}$, that is, $\left(\operatorname{proj}_{i} \circ \widehat{\zeta}\right)(0)=1$ and $\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)=0$ for all $i=1,2, \cdots, k$.

Lemma 2. A k-pIF p-ideal $(\widehat{\xi}, \widehat{\varrho})$ of U is normal if and only if $\widehat{\xi}(0)=\hat{1}$ and $\widehat{\varrho}(0)=\hat{0}$.
Proof. Straightforward.
In the following theorem we look at the process of eliciting normal k-pIF p-ideal from a given k-pIF p-ideal.

Theorem 8. If $(\widehat{\xi}, \widehat{\varrho})$ is k-pIF p-ideal of U, then the k-pIF set $(\widehat{\xi}, \widehat{\varrho})^{+}=\left(\widehat{\zeta}^{+}, \widehat{\varrho}^{+}\right)$on U defined by

$$
\begin{align*}
& \widehat{\zeta}^{+}: U \rightarrow[0,1]^{k}, z \mapsto \hat{1}+\widehat{\xi}(z)-\widehat{\zeta}(0), \\
& \widehat{\varrho}^{+}: U \rightarrow[0,1]^{k}, z \mapsto \widehat{\varrho}(z)-\widehat{\varrho}(0) \tag{22}
\end{align*}
$$

is a normal k-pIF p-ideal of U containing $(\widehat{\xi}, \widehat{\varrho})$.
Proof. Assume that $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF p-ideal of U. Then, $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF ideal of U by Theorem 2. For any $z, x \in U$, we have

$$
\begin{gathered}
\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)=1+\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)=1 \geq\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) \\
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)=\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)=0 \leq\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)
\end{gathered}
$$

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\zeta}\right)^{+}(z) & =1+\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0) \\
& \geq 1+\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)\right\}-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0) \\
& =\min \left\{1+\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)((z * y) *(x * y))-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0), 1+\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(x)-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)\right\} \\
& =\min \left\{\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)^{+}((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\zeta}\right)^{+}(x)\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{+}(z) & =\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0) \\
& \leq \max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)\right\}-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0) \\
& =\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)((z * y) *(x * y))-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(x)-\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(0)\right\} \\
& =\max \left\{\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{+}((z * y) *(x * y)),\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{+}(x)\right\}
\end{aligned}
$$

for all for $i=1,2, \cdots, k$. Hence $(\widehat{\zeta}, \widehat{\varrho})^{+}$is a k-pIF p-ideal of U and it is normal by Lemma 2 . It is clear that $(\widehat{\xi}, \widehat{\varrho})$ is contained in $(\widehat{\xi}, \widehat{\varrho})^{+}$.

Theorem 9. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF p-ideal of U. Then, $(\widehat{\xi}, \widehat{\varrho})$ is normal if and only if $(\widehat{\xi}, \widehat{\varrho})^{+}=(\widehat{\xi}, \widehat{\varrho})$, that is, $\widehat{\zeta}^{+}=\widehat{\zeta}$ and $\widehat{\varrho}^{+}=\widehat{\varrho}$.

Proof. The sufficiency is clear. Assume that $(\widehat{\xi}, \widehat{\varrho})$ is normal. Then,

$$
\begin{aligned}
& \left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)^{+}(z)=1+\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)=\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z) \\
& \left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)^{+}(z)=\left(\operatorname{proj}_{i} \circ \widehat{\varrho}\right)(z)-\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(0)=\left(\operatorname{proj}_{i} \circ \widehat{\xi}\right)(z)
\end{aligned}
$$

for all $z \in U$ by Lemma 2. This completes the proof.
Corollary 2. Let $(\widehat{\xi}, \widehat{\varrho})$ be a k-pIF p-ideal of U. If $(\widehat{\xi}, \widehat{\varrho})$ is normal, then $\left((\widehat{\xi}, \widehat{\varrho})^{+}\right)^{+}=(\widehat{\xi}, \widehat{\varrho})$.
Theorem 10. Let $(\widehat{\xi}, \widehat{\varrho})$ be a non-constant normal k-pIF p-ideal of U, which is maximal in the poset of normal k-pIF p-ideals under set inclusion. Then, $\widehat{\xi}$ and $\widehat{\varrho}$ have the values $\hat{0}$ and $\hat{1}$ only.

Proof. Since $(\widehat{\widehat{\xi}}, \widehat{\varrho})$ is normal, we have $\widehat{\widehat{\xi}}(0)=\hat{1}$ and $\widehat{\varrho}(0)=\hat{0}$ by Lemma 2. Let $z, x \in U$ be such that $\widehat{\zeta}(z) \neq \hat{1}$ and $\widehat{\varrho}(x) \neq \hat{0}$. It is sufficient to show that $\widehat{\xi}(z)=\hat{0}$ and $\widehat{\varrho}(x)=\hat{1}$. If $\widehat{\xi}(z) \neq \hat{0}$ and $\widehat{\varrho}(x) \neq \hat{1}$, then there exists $b, c \in U$ such that $\hat{0}<\widehat{\zeta}(b)<\hat{1}$ and $\hat{0}<\widehat{\varrho}(c)<\hat{1}$. Let $(\widehat{\xi}, \widehat{\varrho})_{*}=\left(\widehat{\zeta}_{*}, \widehat{\varrho}_{*}\right)$ be a k-pIF set on U given by

$$
\widehat{\xi}_{*}: U \rightarrow[0,1]^{k}, z \mapsto \frac{1}{2}(\widehat{\xi}(z)+\widehat{\zeta}(b)) .
$$

and

$$
\widehat{\varrho}_{*}: U \rightarrow[0,1]^{k}, z \mapsto \frac{1}{2}(\widehat{\varrho}(z)+\widehat{\varrho}(c)) .
$$

It is clear that $(\widehat{\xi}, \widehat{\varrho})_{*}$ is well-defined. For any $z, x \in U$, we have

$$
\begin{aligned}
& \widehat{\zeta}_{*}(0)=\frac{1}{2}(\widehat{\zeta}(0)+\widehat{\zeta}(b))=\frac{1}{2}(\hat{1}+\widehat{\zeta}(b)) \geq \frac{1}{2}(\widehat{\zeta}(z)+\widehat{\zeta}(b))=\widehat{\xi}_{*}(z), \\
& \widehat{\varrho}_{*}(0)=\frac{1}{2}(\widehat{\varrho}(0)+\widehat{\varrho}(c))=\frac{1}{2}(\hat{0}+\widehat{\varrho}(c)) \leq \frac{1}{2}(\widehat{\varrho}(z)+\widehat{\varrho}(c))=\widehat{\varrho}_{*}(z), \\
& \widehat{\xi}_{*}(z)=\frac{1}{2}(\widehat{\xi}(z)+\widehat{\xi}(b)) \geq \frac{1}{2}((\widehat{\xi}(z * x) \wedge \widehat{\xi}(x))+\widehat{\xi}(b)) \\
& =\frac{1}{2}((\widehat{\zeta}(z * x)+\widehat{\zeta}(b)) \wedge(\widehat{\zeta}(x)+\widehat{\zeta}(b))) \\
& =\frac{1}{2}(\widehat{\xi}(z * x)+\widehat{\xi}(b)) \wedge \frac{1}{2}(\widehat{\xi}(x)+\widehat{\xi}(b)) \\
& =\widehat{\xi}_{*}(z * x) \wedge \widehat{\xi}_{*}(x)
\end{aligned}
$$

and

$$
\begin{aligned}
\widehat{\varrho}_{*}(z) & =\frac{1}{2}(\widehat{\varrho}(z)+\widehat{\varrho}(c)) \leq \frac{1}{2}((\widehat{\varrho}(z * x) \vee \widehat{\varrho}(x))+\widehat{\varrho}(c)) \\
& =\frac{1}{2}((\widehat{\varrho}(z * x)+\widehat{\varrho}(c)) \vee(\widehat{\varrho}(x)+\widehat{\varrho}(c))) \\
& =\frac{1}{2}(\widehat{\varrho}(z * x)+\widehat{\varrho}(c)) \vee \frac{1}{2}(\widehat{\varrho}(x)+\widehat{\varrho}(c)) \\
& =\widehat{\varrho}_{*}(z * x) \vee \widehat{\varrho}_{*}(x) .
\end{aligned}
$$

Hence $(\widehat{\xi}, \widehat{\varrho})$ is a k-pIF ideal of U. We have

$$
\widehat{\xi}_{*}(z)=\frac{1}{2}(\widehat{\zeta}(z)+\widehat{\zeta}(b)) \geq \frac{1}{2}(\widehat{\zeta}(0 *(0 * z))+\widehat{\zeta}(b))=\widehat{\xi}_{*}(0 *(0 * z))
$$

and

$$
\widehat{\varrho}_{*}(z)=\frac{1}{2}(\widehat{\varrho}(z)+\widehat{\varrho}(c)) \leq \frac{1}{2}(\widehat{\varrho}(0 *(0 * z))+\widehat{\varrho}(c))=\widehat{\varrho}_{*}(0 *(0 * z))
$$

for all $z \in U$. Hence $(\widehat{\zeta}, \widehat{\varrho})_{*}$ is a k-pIF p-ideal of U by Theorem 4 . Now, we get

$$
\widehat{\zeta}_{*}^{+}(z)=\hat{1}+\widehat{\zeta}_{*}(z)-\widehat{\zeta}_{*}(0)=\hat{1}+\frac{1}{2}(\widehat{\zeta}(z)+\widehat{\zeta}(b))-\frac{1}{2}(\widehat{\zeta}(0)+\widehat{\zeta}(b))=\frac{1}{2}(\hat{1}+\widehat{\zeta}(z))
$$

and

$$
\widehat{\varrho}_{*}^{+}(z)=\widehat{\varrho}_{*}(z)-\widehat{\varrho}_{*}(0)=\frac{1}{2}(\widehat{\varrho}(z)+\widehat{\varrho}(c))-\frac{1}{2}(\widehat{\varrho}(0)+\widehat{\varrho}(c))=\frac{1}{2} \widehat{\varrho}(z),
$$

and so $\widehat{\xi}_{*}^{+}(0)=\frac{1}{2}(\hat{1}+\widehat{\xi}(0))=\hat{1}$ and $\widehat{\varrho}_{*}^{+}(z)=\frac{1}{2} \widehat{\varrho}(0)=\hat{0}$. Hence $(\widehat{\xi}, \widehat{\varrho})_{*}$ is normal. Note that

$$
\widehat{\xi}_{*}^{+}(0)=\hat{1}>\widehat{\xi}_{*}^{+}(b)=\frac{1}{2}(\hat{1}+\widehat{\xi}(b))>\widehat{\xi}(b)
$$

and

$$
\widehat{\varrho}_{*}^{+}(0)=\hat{0}<\widehat{\varrho}_{*}^{+}(c)=\frac{1}{2}(\hat{0}+\widehat{\varrho}(c))<\widehat{\varrho}(c) .
$$

Hence $(\widehat{\xi}, \widehat{\varrho})_{*}^{+}$is non-constant and $(\widehat{\xi}, \widehat{\varrho})$ is not maximal, which is a contradiction; therefore $\widehat{\xi}$ and $\widehat{\varrho}$ have the values $\hat{0}$ and $\hat{1}$ only.

4. Conclusions and Future Works

As a generalization of intuitionistic fuzzy set, Kang et al. [19] introduced the notion of multipolar intuitionistic fuzzy set with finite degree, and then they applied the notion to BCK/BCI-algebras. In this manuscript, we used Kang et al.'s multipolar intuitionistic fuzzy set to study p-ideal in BCI-algebras. We introduced the notion of k-polar intuitionistic fuzzy p-ideals (see Definition 1) in BCI -algebras, and then we studied several properties (See Proposition 1, Proposition 2). We gave an example to illustrate the k-polar intuitionistic fuzzy p-ideal (see Example 1), and considered the relationship between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal. We have shown that every k-polar intuitionistic fuzzy p-ideal is a k-polar intuitionistic fuzzy ideal (see Theorem 2), and then provided an example to show that the converse is not true in general (see Example 2). We used the notion of p-ideals in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal (see Theorem 1, Theorem 5 and Theorem 6), and also used the notion of k-polar (\in, \in)-fuzzy p-ideal in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal (see Theorem 7). We defined the concept of normal k-polar intuitionistic fuzzy p-ideal (see Definition 2), and discussed its characterization (see Lemma 2 and Theorem 9). We looked at the process of eliciting normal k-polar intuitionistic fuzzy p-ideal from a given k-polar intuitionistic fuzzy p-ideal (see Theorem 8). Our goal in the future is to apply the ideas and results of this paper to other forms of ideals, filters, etc. in BCK/BCI-algebras. We will also apply the ideas and results of this paper to other algebraic structures, for example, MV-algebras, EQ-algebras, equality algebras, hoops, etc.

Author Contributions: Created and conceptualized ideas, J.-G.L. and Y.B.J.; writing-original draft preparation, Y.B.J.; writing-review and editing, M.F. and K.H.; funding acquisition, J.-G.L. All authors have read and agreed to the published version of the manuscript.
Funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049321).
Acknowledgments: We would like to thank the guest editor and the anonymous reviewers for their very careful reading and valuable comments/suggestions.
Conflicts of Interest: The authors declare no conflict of interest.

References

1. Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26-29. [CrossRef]
2. Huang, Y. BCI-Algebra; Science Press: Beijing, China, 2006.
3. Meng, J.; Jun, Y.B. BCK-Algebras; Kyungmoonsa Co.: Seoul, Korea, 1994.
4. Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338-353. [CrossRef]
5. Atanassov, K.T. Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20-23 June 1983 (Deposed in Centr. Sci-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). Repr. Int. Bioautomation 2016, 20, S1-S6.
6. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96. [CrossRef]
7. Chen, J.; Li, S.; Ma, S.; Wang, X. m-polar fuzzy sets: An extension of bipolar fuzzy sets. Sci. World J. 2014, 2014, 416530. [CrossRef] [PubMed]
8. Al-Masarwah, A.; Ahmad, A.G. m-polar fuzzy ideals of BCK/BCI-algebras. J. King Saud Univ. Sci. 2019, 31, 1220-1226. [CrossRef]
9. Mohseni Takallo, M.; Ahn, S.S.; Borzooei, R.A.; Jun, Y.B. Multipolar fuzzy p-ideals of BCI-algebras. Mathematics 2019, 7, 1094. [CrossRef]
10. Al-Masarwah, A.; Ahmad, A.G. m-polar (α, β)-fuzzy ideals in BCK/BCI-algebras. Symmetry 2019, 11, 44. [CrossRef]
11. Akram, M.; Sarwar, M. New applications of m-polar fuzzy competition graphs. New Math. Nat. Comput. 2018, 14, 249-276. [CrossRef]
12. Akram, M.; Adeel, A. m-polar fuzzy graphs and m-polar fuzzy line graphs. J. Discret. Math. Sci. Cryptogr. 2017, 20, 1597-1617. [CrossRef]
13. Akram, M.; Waseem, N.; Davvaz, B. Certain types of domination in m-polar fuzzy graphs. J. Mult. Valued Log. Soft Comput. 2017, 29, 619-646.
14. Sarwar, M.; Akram, M. Representation of graphs using m-polar fuzzy environment. Ital. J. Pure Appl. Math. 2017, 38, 291-312.
15. Akram, M.; Waseem, N.; Liu, P. Novel approach in decision making with m-polar fuzzy ELECTRE-I. Int. J. Fuzzy Syst. 2019, 21, 1117-1129. [CrossRef]
16. Akram, M.; Ali, G.; Alshehri, N.O. A New Multi-Attribute Decision-Making Method Based on m-Polar Fuzzy Soft Rough Sets. Symmetry 2017, 9, 271. [CrossRef]
17. Adeel, A.; Akram, M.; Koam, A.N.A. Group decision-making based on m-polar fuzzy linguistic TOPSIS method. Symmetry 2019, 11, 735. [CrossRef]
18. Adeel, A.; Akram, M.; Ahmed, I.; Nazar, K. Novel m-polar fuzzy linguistic ELECTRE-I method for group decision-making. Symmetry 2019, 11, 471. [CrossRef]
19. Kang, K.T.; Song, S.Z.; Jun, Y.B. Multipolar intuitionistic fuzzy set with finite degree and its application in BCK/BCI-algebras. Mathematics 2020, 8, 177. [CrossRef]
20. Zhang, X.H.; Hao, J.; Bhatti, S.A. On p-ideals of a BCI-algebra. Punjab Univ. J. Math. (Lahore) 1994, 27, 121-128.
(C) 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
