

Article A p-Ideal in BCI-Algebras Based on Multipolar Intuitionistic Fuzzy Sets

Jeong-Gon Lee^{1,*}, Mohammad Fozouni², Kul Hur³ and Young Bae Jun⁴

- ¹ Division of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea
- ² Department of Mathematics, Faculty of Sciences and Engineering, Gonbad Kavous University, Gonbad Kavous P.O. 163, Iran; fozouni@hotmail.com
- ³ Department of Applied Mathematics, Wonkwang University, 460, Iksan-daero, Iksan-Si, Jeonbuk 54538, Korea; kulhur@wku.ac.kr
- ⁴ Department of Mathematics Education, Gyeongsang National University, Jinju 52828, Korea; skywine@gmail.com
- * Correspondence: jukolee@wku.ac.kr

Received: 21 April 2020; Accepted: 25 May 2020; Published: 17 June 2020

Abstract: In 2020, Kang, Song and Jun introduced the notion of multipolar intuitionistic fuzzy set with finite degree, which is a generalization of intuitionistic fuzzy set, and they applied it to BCK/BCI-algebras. In this paper, we used this notion to study *p*-ideals of BCI-algebras. The notion of *k*-polar intuitionistic fuzzy *p*-ideals in BCI-algebras is introduced, and several properties were investigated. An example to illustrate the *k*-polar intuitionistic fuzzy *p*-ideal is given. The relationship between *k*-polar intuitionistic fuzzy ideal and *k*-polar intuitionistic fuzzy *p*-ideal is displayed. A *k*-polar intuitionistic fuzzy *p*-ideal is found to be *k*-polar intuitionistic fuzzy ideal, and an example to show that the converse is not true is provided. The notions of *p*-ideals and *k*-polar (\in, \in)-fuzzy *p*-ideal in BCI-algebras are used to study the characterization of *k*-polar intuitionistic *p*-ideal. The concept of normal *k*-polar intuitionistic fuzzy *p*-ideal is introduced, and its characterization is discussed. The process of eliciting normal *k*-polar intuitionistic fuzzy *p*-ideal is provided.

Keywords: multipolar intuitionistic fuzzy set with finite degree k; k-polar (\in , \in)-fuzzy ideal; k-polar intuitionistic fuzzy jdeal; k-polar intuitionistic fuzzy p-ideal

MSC: 06F35; 03G25; 08A72

1. Introduction

BCI-algebras were introduced by Iséki [1] as the algebraic counterpart of the BCI-logic. BCI-algebras are a generalization of BCK-algebras, and they originated from two sources: set theory and propositional calculi. See the books [2,3] for more information on BCK/BCI-algebras. Fuzzy sets were first introduced by Zadeh [4], in which the membership degree is represented by only one function—the truth function. Intuitionistic fuzzy sets, which were introduced by Atanassov (see [5,6]), are a generalization of fuzzy sets. As an extension of the bipolar fuzzy set, Chen et al. [7] introduced an *m*-polar fuzzy set in 2014, and then this concept was applied to certain algebraic structures as BCK/BCI algebras, graph theory and decision making problem. For BCK/BCI-algebras, see [8–10], for graph theory, see [11–14] and see [15–18] for decision making problems. Al-Masarwah and Ahmad discussed the notion of *m*-polar fuzzy sets with applications in BCK/BCI-algebras. They introduced the notions of *m*-polar fuzzy subalgebras and *m*-polar fuzzy (closed, commutative) ideals and gave characterizations of *m*-polar fuzzy subalgebras and *m*-polar fuzzy (commutative) ideals. They considered relations between *m*-polar fuzzy subalgebras, *m*-polar fuzzy ideals and *m*-polar fuzzy commutative ideals (see [8]). Using the notion of multipolar fuzzy point, Mohseni Takallo et al. [9] studied *p*-ideals of BCI-algebras. In [19], Kang et al. introduced the notion of multipolar intuitionistic fuzzy set with finite degree as a generalization of intuitionistic fuzzy set, and applied it to BCK/BCI-algebras. They introduced the concepts of a k-polar intuitionistic fuzzy subalgebra and a (closed) k-polar intuitionistic fuzzy ideal in a BCK/BCI-algebra, and investigated their relations and characterizations. In a BCI-algebra, they considered the relationship between a k-polar intuitionistic fuzzy ideal and a closed k-polar intuitionistic fuzzy ideal, and discussed the characterization of a closed k-polar intuitionistic fuzzy ideal. They consulted conditions for a k-polar intuitionistic fuzzy ideal to be a closed *k*-polar intuitionistic fuzzy ideal in a BCI-algebra. The aim of this manuscript was to use Kang et al.'s notion so called multipolar intuitionistic fuzzy set for studying *p*-ideal in BCI-algebras. This is a generalization of multipolar fuzzy *p*-ideals of BCI-algebras which is studied in [9]. We introduce the concept of *k*-polar intuitionistic fuzzy *p*-ideals in BCI-algebras, and then we study several properties. We first give an example to illustrate the k-polar intuitionistic fuzzy p-ideal. We consider the relationship between k-polar intuitionistic fuzzy ideal and k-polar intuitionistic fuzzy p-ideal. We first prove that every *k*-polar intuitionistic fuzzy *p*-ideal is a *k*-polar intuitionistic fuzzy ideal, and then give an example to show that the converse is not true in general. We use the notion of *p*-ideals in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal. We also use the notion of k-polar (\in, \in) -fuzzy p-ideal in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy *p*-ideal. We define the concept of normal *k*-polar intuitionistic fuzzy *p*-ideal, and discuss its characterization. We look at the process of eliciting normal k-polar intuitionistic fuzzy p-ideal from a given *k*-polar intuitionistic fuzzy *p*-ideal.

2. Preliminaries

If a set *U* has a special element 0 and a binary operation * satisfying the conditions:

- (I) $(\forall \omega, v, \tau \in U) (((\omega * v) * (\omega * \tau)) * (\tau * v) = 0),$
- (II) $(\forall \omega, v \in U) ((\omega * (\omega * v)) * v = 0),$
- (III) $(\forall \omega \in U) \ (\omega * \omega = 0),$
- (IV) $(\forall \omega, v \in U) \ (\omega * v = 0, v * \omega = 0 \Rightarrow \omega = v),$

then it is said that *U* is a *BCI-algebra*. If a BCI-algebra *U* satisfies the following identity:

(V)
$$(\forall \omega \in U) \ (0 * \omega = 0),$$

then *U* is called a *BCK-algebra*.

Any BCK/BCI-algebra *U* satisfies the following conditions:

$$(\forall \omega \in U) \ (\omega * 0 = \omega) , \tag{1}$$

$$(\forall \omega, v, \tau \in U) ((\omega * v) * \tau = (\omega * \tau) * v).$$
⁽²⁾

A subset *I* of a BCI-algebra *U* is called

- a *subalgebra* of *U* if $\omega * v \in I$ for all $\omega, v \in I$.
- an *ideal* of *U* if it satisfies:

$$0 \in I, \tag{3}$$

$$(\forall \omega \in U) \ (\forall v \in I) \ (\omega * v \in I \Rightarrow \omega \in I).$$
(4)

• a *p*-ideal of *U* (see [20]) if it satisfies Equation (3) and

$$(\forall \omega, v, \tau \in U) ((\omega * \tau) * (v * \tau) \in I, v \in I \Rightarrow \omega \in I).$$
(5)

Let $\{b_i \mid i \in \Gamma\}$ be a family of real numbers where Γ is any index set and we define

$$\bigvee \{b_i \mid i \in \Gamma\} := \begin{cases} \max\{b_i \mid i \in \Gamma\} & \text{if } \Gamma \text{ is finite,} \\ \sup\{b_i \mid i \in \Gamma\} & \text{otherwise.} \end{cases}$$
$$\bigwedge \{b_i \mid i \in \Gamma\} := \begin{cases} \min\{b_i \mid i \in \Gamma\} & \text{if } \Gamma \text{ is finite,} \\ \inf\{b_i \mid i \in \Gamma\} & \text{otherwise.} \end{cases}$$

If $\Gamma = \{1,2\}$, we will also use $b_1 \vee b_2$ and $b_1 \wedge b_2$ instead of $\vee \{b_i \mid i \in \Gamma\}$ and $\wedge \{b_i \mid i \in \Gamma\}$, respectively.

Let *k* be a natural number and $[0, 1]^k$ denote the *k*-Cartesian product of [0, 1], that is,

$$[0,1]^k = [0,1] \times [0,1] \times \cdots \times [0,1]$$

in which [0, 1] is repeated k times. The order " \leq " in $[0, 1]^k$ is given by the pointwise order.

By a *k-polar fuzzy set* on a set U (see [7]), we mean a function $\hat{\xi} : U \to [0,1]^k$ where k is a natural number. The membership value of every element $z \in U$ is denoted by

$$\widehat{\xi}(z) = \left((\operatorname{proj}_1 \circ \widehat{\xi})(z), (\operatorname{proj}_2 \circ \widehat{\xi})(z), \cdots, (\operatorname{proj}_k \circ \widehat{\xi})(z) \right),$$

where $\text{proj}_i : [0,1]^k \to [0,1]$ is the *i*-th projection for all $i = 1, 2, \dots, k$ and \circ is the composition of functions.

A *k*-polar fuzzy set $\hat{\xi}$ on a BCK/BCI-algebra *U* is called a *k*-polar fuzzy ideal of *U* (see [8]) if the following conditions are valid.

$$(\forall z \in U) \left(\widehat{\xi}(0) \ge \widehat{\xi}(z)\right),\tag{6}$$

$$(\forall z, x \in U) \left(\widehat{\xi}(z) \ge \widehat{\xi}(z * x) \land \widehat{\xi}(x)\right).$$
(7)

By a *k*-polar fuzzy point on a set U, we mean a *k*-polar fuzzy set $\hat{\xi}$ on U of the form

$$\widehat{\xi}(x) = \begin{cases} \widehat{r} = (r_1, r_2, \cdots, r_k) \in (0, 1]^k & \text{if } x = z, \\ \widehat{0} = (0, 0, \cdots, 0) & \text{if } x \neq z, \end{cases}$$
(8)

and it is denoted by $z_{\hat{r}}$ where *z* is a given element of *U*. We say that *z* is the *support* of $z_{\hat{r}}$ and \hat{r} is the *value* of $z_{\hat{r}}$.

We say that a *k*-polar fuzzy point $z_{\hat{r}}$ is contained in a *k*-polar fuzzy set $\hat{\xi}$, denoted by $z_{\hat{r}} \in \hat{\xi}$, if $\hat{\xi}(z) \geq \hat{r}$, that is, $(\text{proj}_i \circ \hat{\xi})(z) \geq r_i$ for all $i = 1, 2, \cdots, k$.

A *k*-polar fuzzy set $\hat{\xi}$ on a BCI-algebra *U* is called a *k*-polar (\in, \in) -fuzzy *p*-ideal of *U* (see [9]) if it satisfies

$$(\forall z \in U) (\forall \hat{r} \in [0,1]^k) \left(z_{\hat{r}} \in \widehat{\xi} \Rightarrow 0_{\hat{r}} \in \widehat{\xi} \right),$$
(9)

$$(\forall z, x, y \in U)(\forall \hat{r}, \hat{t} \in [0, 1]^k) \left(((z * y) * (x * y))_{\hat{r}} \in \widehat{\xi}, x_{\hat{t}} \in \widehat{\xi} \Rightarrow z_{\inf\{\hat{r}, \hat{t}\}} \in \widehat{\xi} \right).$$
(10)

It is easy to show that Condition (10) is equivalent to the following condition.

$$(\forall z, x, y \in U) \left(\widehat{\xi}(z) \ge \widehat{\xi}((z * y) * (x * y)) \land \widehat{\xi}(x)\right).$$
(11)

A *multipolar intuitionistic fuzzy set with finite degree k* (briefly, *k-pIF set*) over a set *U* (see [19]) is a mapping

$$(\widehat{\xi}, \widehat{\varrho}) : U \to [0, 1]^k \times [0, 1]^k, \ z \mapsto (\widehat{\xi}(z), \widehat{\varrho}(z))$$
(12)

where $\hat{\xi} : U \to [0,1]^k$ and $\hat{\varrho} : U \to [0,1]^k$ are *k*-polar fuzzy sets over a set *U* such that $\hat{\xi}(z) + \hat{\varrho}(z) \leq \hat{1}$ for all $z \in U$, that is, $(\operatorname{proj}_i \circ \hat{\xi})(z) + (\operatorname{proj}_i \circ \hat{\varrho})(z) \leq 1$ for all $z \in U$ and $i = 1, 2, \dots, k$. We know that if the multipolar intuitionistic fuzzy set has degree 1, then it is an intuitionistic fuzzy set. So, the intuitionistic fuzzy set is a special case of the multipolar intuitionistic fuzzy set. From this point of view, multipolar intuitionistic fuzzy set is a generalization of intuitionistic fuzzy set.

Given a *k*-pIF set $(\hat{\xi}, \hat{\varrho})$ over a set *U*, we consider the sets

$$U(\widehat{\xi},\widehat{t}) := \{ z \in U \mid \widehat{\xi}(z) \ge \widehat{t} \} \text{ and } L(\widehat{\varrho},\widehat{s}) := \{ z \in U \mid \widehat{\varrho}(z) \le \widehat{s} \},$$
(13)

where $\hat{t} = (t_1, t_2, \dots, t_k) \in [0, 1]^k$ and $\hat{s} = (s_1, s_2, \dots, s_k) \in [0, 1]^k$ with $\hat{t} + \hat{s} \leq \hat{1}$, which is called a *k*-polar upper (resp., lower) level set of $(\hat{\xi}, \hat{\varrho})$ where "+" is the componentwise operation in $[0, 1]^k$, that is, $t_i + s_i \leq 1$ for all $i = 1, 2, \dots, k$. It is clear that $U(\hat{\xi}, \hat{t}) = \bigcap_{i=1}^k U(\hat{\xi}, \hat{t})^i$ and $L(\hat{\varrho}, \hat{s}) = \bigcap_{i=1}^k L(\hat{\varrho}, \hat{s})^i$ where

$$U(\widehat{\xi},\widehat{t})^i = \{z \in U \mid (\operatorname{proj}_i \circ \widehat{\xi})(z) \ge t_i\} \text{ and } L(\widehat{\varrho},\widehat{s})^i = \{z \in U \mid (\operatorname{proj}_i \circ \widehat{\varrho})(z) \le s_i\}.$$

A *k*-pIF set $(\hat{\xi}, \hat{\varrho})$ over *U* is called a *k*-polar intuitionistic fuzzy ideal (briefly, *k*-pIF ideal) of *U* (see [19]) if it satisfies the conditions

$$(\forall z \in U)(\widehat{\xi}(0) \ge \widehat{\xi}(z), \ \widehat{\varrho}(0) \le \widehat{\varrho}(z)), \tag{14}$$

that is, $(\operatorname{proj}_i \circ \widehat{\xi})(0) \ge (\operatorname{proj}_i \circ \widehat{\xi})(z)$ and $(\operatorname{proj}_i \circ \widehat{\varrho})(0) \le (\operatorname{proj}_i \circ \widehat{\varrho})(z)$ for $i = 1, 2, \cdots, k$. and

$$(\forall z, x \in U) \left(\begin{array}{c} \widehat{\xi}(z) \ge \widehat{\xi}(z * x) \land \widehat{\xi}(x) \\ \widehat{\varrho}(z) \le \widehat{\varrho}(z * x) \lor \widehat{\varrho}(x) \end{array} \right).$$
(15)

3. *k*-Polar Intuitionistic Fuzzy *p*-Ideals

In this section, let *U* be a BCI-algebra unless otherwise stated.

Definition 1. A k-pIF set $(\hat{\xi}, \hat{\varrho})$ over U is called a k-polar intuitionistic fuzzy p-ideal (briefly, k-pIF p-ideal) of U if it satisfies Condition (14) and

$$(\forall z, x, y \in U) \begin{pmatrix} \widehat{\xi}(z) \ge \widehat{\xi}((z * x) * (y * x)) \land \widehat{\xi}(y) \\ \widehat{\varrho}(z) \le \widehat{\varrho}((z * x) * (y * x)) \lor \widehat{\varrho}(y) \end{pmatrix}.$$
(16)

Example 1. Let $U = \{0, x, a, b\}$ be a set with a binary operation * which is given in Table 1.

Table 1. Cayley table for the binary operation "*".

*	0	x	а	b
0	0	x	а	b
x	x	0	b	а
а	а	b	0	x
b	b	а	x	0

Then, U is a BCI-algebra (see [2]). Let $(\hat{\xi}, \hat{\varrho})$ be a 4-polar intuitionistic fuzzy set over U given by

$$\begin{split} &(\widehat{\xi},\widehat{\varrho}): U \to [0,1]^4 \times [0,1]^4, \\ &z \mapsto \begin{cases} &((0.8,0.67,0.9,0.56),(0.19,0.15,0.07,0.28)) &\text{if } z=0, \\ &((0.7,0.57,0.7,0.56),(0.19,0.24,0.07,0.35)) &\text{if } z=x, \\ &((0.5,0.37,0.4,0.32),(0.37,0.44,0.39,0.58)) &\text{if } z=a, \\ &((0.5,0.37,0.4,0.32),(0.37,0.44,0.39,0.58)) &\text{if } z=b. \end{cases} \end{split}$$

It is routine to check that $(\hat{\xi}, \hat{\varrho})$ is a 4-polar intuitionistic fuzzy p-ideal of U.

Theorem 1. Let I be a subset of U and let $(\hat{\xi}_I, \hat{\varrho}_I)$ be a k-pIF set on U defined by

$$\widehat{\xi}_{I}: U \to [0,1]^{k}, z \mapsto \begin{cases} \widehat{1} & \text{if } z \in I, \\ \widehat{0} & \text{otherwise} \end{cases}$$

$$\widehat{arrho}_I: U o [0,1]^k, \, z \mapsto \left\{ egin{array}{cc} \hat{0} & ext{if } z \in I, \ \hat{1} & ext{otherwise} \end{array}
ight.$$

Then, $(\widehat{\xi}_I, \widehat{\varrho}_I)$ is a k-pIF ideal p-ideal of U if and only if I is a p-ideal of U.

Proof. Straightforward. \Box

In the following theorem, we look at the relationship between *k*-pIF ideal and *k*-pIF *p*-ideal.

Theorem 2. Every k-pIF p-ideal is a k-pIF ideal.

Proof. Let $(\hat{\xi}, \hat{\varrho})$ be a *k*-pIF *p*-ideal of *U*. If we put x = 0 in (16) and use (1), then

$$(\operatorname{proj}_{i} \circ \widehat{\xi})(z) \ge \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})((z * 0) * (x * 0)), (\operatorname{proj}_{i} \circ \widehat{\xi})(x)\}$$

= min{(proj_{i} \circ \widehat{\xi})(z * x), (proj_{i} \circ \widehat{\xi})(x)}

and

$$\begin{aligned} (\operatorname{proj}_i \circ \widehat{\varrho})(z) &\leq \max\{(\operatorname{proj}_i \circ \widehat{\varrho})((z * 0) * (x * 0)), (\operatorname{proj}_i \circ \widehat{\varrho})(x)\} \\ &= \max\{(\operatorname{proj}_i \circ \widehat{\varrho})(z * x), (\operatorname{proj}_i \circ \widehat{\varrho})(x)\} \end{aligned}$$

for all $z, x \in U$. Therefore $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF ideal of *U*. \Box

In the following example, we find that the converse of Theorem 2 is not true.

Example 2. Let $U = \{0, x, b, c, d\}$ be a set with a binary operation *, which is given in Table 2.

Table 2. Cayley table for the binary operation "*".

*	0	x	b	с	d
0	0	0	d	С	b
x	x	0	d	С	b
b	b	b	0	d	С
С	С	С	b	0	d
d	d	d	С	b	0
d	d	d	С	b	

Then, U is a BCI-algebra (see [2]). Define a 3-polar intuitionistic fuzzy set $(\hat{\xi}, \hat{\varrho})$ *on U as follows:*

$$\begin{split} &(\widehat{\xi},\widehat{\varrho}): U \to [0,1]^3 \times [0,1]^3, \\ &z\mapsto \begin{cases} &((0.6,0.7,0.9),(0.2,0.25,0.07)) & \text{if } z=0, \\ &((0.6,0.5,0.7),(0.3,0.25,0.17)) & \text{if } z=x, \\ &((0.2,0.3,0.4),(0.6,0.45,0.27)) & \text{if } z=b, \\ &((0.5,0.4,0.6),(0.4,0.35,0.37)) & \text{if } z=c, \\ &((0.2,0.3,0.4),(0.6,0.45,0.27)) & \text{if } z=d. \end{cases} \end{split}$$

It is easy to confirm that $(\hat{\xi}, \hat{\varrho})$ is a 3-polar intuitionistic fuzzy ideal of U. But it is not a 3-polar intuitionistic fuzzy p-ideal of U since

$$(\operatorname{proj}_2 \circ \widehat{\xi})(x) = 0.5 < 0.7 = \min\{(\operatorname{proj}_2 \circ \widehat{\xi})((x * b) * (0 * b)), (\operatorname{proj}_2 \circ \widehat{\xi})(0)\}$$

and/or

$$(\operatorname{proj}_3 \circ \widehat{\varrho})(x) = 0.17 > 0.07 = \max\{(\operatorname{proj}_3 \circ \widehat{\varrho})((x * b) * (0 * b)), (\operatorname{proj}_3 \circ \widehat{\varrho})(0)\}$$

Proposition 1. Every *k*-pIF *p*-ideal $(\hat{\xi}, \hat{\varrho})$ of *U* satisfies the following inequalities.

$$(\forall z \in U)(\widehat{\xi}(z) \ge \widehat{\xi}(0 * (0 * z)), \ \widehat{\varrho}(z) \le \widehat{\varrho}(0 * (0 * z))).$$

$$(17)$$

Proof. If we change y to z and x to 0 in Equation (16), then

$$\begin{aligned} (\operatorname{proj}_{i} \circ \widehat{\xi})(z) &\geq \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})((z \ast z) \ast (0 \ast z)), (\operatorname{proj}_{i} \circ \widehat{\xi})(0)\} \\ &= \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})(0 \ast (0 \ast z)), (\operatorname{proj}_{i} \circ \widehat{\xi})(0)\} \\ &= (\operatorname{proj}_{i} \circ \widehat{\xi})(0 \ast (0 \ast z)) \end{aligned}$$

and

$$(\operatorname{proj}_{i} \circ \widehat{\varrho})(z) \leq \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((z * z) * (0 * z)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(0)\} \\ = \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})(0 * (0 * z)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(0)\} \\ = (\operatorname{proj}_{i} \circ \widehat{\varrho})(0 * (0 * z))$$

for all $z \in U$. \Box

Proposition 2. Every *k*-*pIF p*-ideal $(\hat{\xi}, \hat{\varrho})$ of U satisfies the following inequalities.

$$(\forall z, x, y \in U) \left(\begin{array}{c} \widehat{\xi}(z * x) \leq \widehat{\xi}((z * y) * (x * y)) \\ \widehat{\varrho}(z * x) \geq \widehat{\varrho}((z * y) * (x * y)) \end{array} \right).$$
(18)

Proof. Let $(\hat{\xi}, \hat{\varrho})$ be a *k*-pIF *p*-ideal of *U*. Then, it is a *k*-pIF ideal of *U* by Theorem 2. For any $z, x, y \in U$, we have ((z * y) * (x * y)) * (z * x) = 0. Hence

$$\begin{aligned} (\operatorname{proj}_{i} \circ \widehat{\xi})((z * y) * (x * y)) \\ &\geq \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})(((z * y) * (x * y)) * (z * x)), (\operatorname{proj}_{i} \circ \widehat{\xi})(z * x)\} \\ &= \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})(0), (\operatorname{proj}_{i} \circ \widehat{\xi})(z * x)\} = (\operatorname{proj}_{i} \circ \widehat{\xi})(z * x) \end{aligned}$$

and

$$\begin{aligned} (\operatorname{proj}_{i} \circ \widehat{\varrho})((z * y) * (x * y)) \\ &\leq \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})(((z * y) * (x * y)) * (z * x)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(z * x)\} \\ &= \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})(0), (\operatorname{proj}_{i} \circ \widehat{\varrho})(z * x)\} = (\operatorname{proj}_{i} \circ \widehat{\varrho})(z * x) \end{aligned}$$

for all $z, x, y \in U$. \Box

We provide conditions for a *k*-pIF ideal to be a *k*-pIF *p*-ideal.

Theorem 3. Let $(\hat{\xi}, \hat{\varrho})$ be a k-pIF ideal of U satisfying the condition

$$(\forall z, x, y \in U) \left(\begin{array}{c} \widehat{\xi}(z * x) \ge \widehat{\xi}((z * y) * (x * y)) \\ \widehat{\varrho}(z * x) \le \widehat{\varrho}((z * y) * (x * y)) \end{array} \right).$$
(19)

Then, it is a k-pIF p-ideal of U.

Proof. Using Equations (15) and (19), we have that

$$\widehat{\xi}(z) \ge \widehat{\xi}(z * x) \land \widehat{\xi}(x) \ge \widehat{\xi}((z * y) * (x * y)) \land \widehat{\xi}(x)$$

and

$$\widehat{\varrho}(z) \le \widehat{\varrho}(z \ast x) \lor \widehat{\varrho}(x) \le \widehat{\varrho}((z \ast y) \ast (x \ast y)) \lor \widehat{\varrho}(x)$$

for all $z, x, y \in U$. Therefore $(\widehat{\xi}, \widehat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. \Box

Lemma 1. Every k-pIF ideal $(\hat{\xi}, \hat{\varrho})$ of U satisfies the following inequalities.

$$(\forall z \in U)(\widehat{\xi}(z) \le \widehat{\xi}(0 * (0 * z)), \ \widehat{\varrho}(z) \ge \widehat{\varrho}(0 * (0 * z))).$$

$$(20)$$

Proof. For any $z, x \in U$, we obtain

$$\widehat{\xi}(0*(0*z)) \ge \widehat{\xi}((0*(0*z))*z) \wedge \widehat{\xi}(z) = \widehat{\xi}((0*z)*(0*z)) \wedge \widehat{\xi}(z) = \widehat{\xi}(0) \wedge \widehat{\xi}(z) = \widehat{\xi}(z)$$

and

$$\widehat{\varrho}(0*(0*z)) \leq \widehat{\varrho}((0*(0*z))*z) \lor \widehat{\varrho}(z) = \widehat{\varrho}((0*z)*(0*z)) \lor \widehat{\varrho}(z) = \widehat{\varrho}(0) \lor \widehat{\varrho}(z) = \widehat{\varrho}(z)$$

by Equations (2), (3), (14) and (15).

Theorem 4. Let $(\hat{\xi}, \hat{\varrho})$ be a k-pIF set over U. If $(\hat{\xi}, \hat{\varrho})$ satisfies the following inequalities

$$(\forall z \in U)(\widehat{\xi}(z) \ge \widehat{\xi}(0 * (0 * z)), \, \widehat{\varrho}(z) \le \widehat{\varrho}(0 * (0 * z))).$$
(21)

Proof. For any $z, x, y \in U$ and $i = 1, 2, \dots, k$, we have

$$\begin{aligned} (\operatorname{proj}_i \circ \widehat{\xi})((z * y) * (x * y)) &\leq (\operatorname{proj}_i \circ \widehat{\xi})(0 * (0 * (z * y) * (x * y))) \\ &= (\operatorname{proj}_i \circ \widehat{\xi})((0 * x) * (0 * y)) \\ &= (\operatorname{proj}_i \circ \widehat{\xi})(0 * (0 * (z * y))) \\ &\leq (\operatorname{proj}_i \circ \widehat{\xi})(z * x), \end{aligned}$$

and

$$\begin{aligned} (\operatorname{proj}_i \circ \widehat{\varrho})((z * y) * (x * y)) &\geq (\operatorname{proj}_i \circ \widehat{\varrho})(0 * (0 * (z * y) * (x * y))) \\ &= (\operatorname{proj}_i \circ \widehat{\varrho})((0 * x) * (0 * y)) \\ &= (\operatorname{proj}_i \circ \widehat{\varrho})(0 * (0 * (z * y))) \\ &\geq (\operatorname{proj}_i \circ \widehat{\varrho})(z * x), \end{aligned}$$

which imply that $\hat{\xi}((z * y) * (x * y)) \leq \hat{\xi}(z * x)$ and $\hat{\varrho}((z * y) * (x * y)) \geq \hat{\varrho}(z * x)$ for all $z, x, y \in U$. Therefore $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U* by Theorem 3. \Box

We consider characterizations of a *k*-pIF *p*-ideal.

Theorem 5. Given a k-pIF set $(\hat{\xi}, \hat{\varrho})$ over U, the following assertions are equivalent.

- (*i*) $(\hat{\xi}, \hat{\varrho})$ is a k-pIF p-ideal of U.
- (ii) The k-polar upper and lower level sets $U(\hat{\xi}, \hat{r})$ and $L(\hat{\varrho}, \hat{q})$ are p-ideals of U for all $(\hat{r}, \hat{q}) \in [0, 1]^k \times [0, 1]^k$ with $U(\hat{\xi}, \hat{r}) \neq \emptyset \neq L(\hat{\varrho}, \hat{q})$.

Proof. Assume that $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. It is clear that $0 \in U(\hat{\xi}; \hat{r})$ and $0 \in L(\hat{\varrho}; \hat{q})$ for any $\hat{r} = (r_1, r_2, \dots, r_k) \in (0, 1]^k$ and $\hat{q} = (q_1, q_2, \dots, q_k) \in (0, 1]^k$. Let $z, x, y, b, c, d \in U$ be such that $(z * y) * (x * y) \in U(\hat{\xi}; \hat{r}), x \in U(\hat{\xi}; \hat{r}), (b * d) * (c * d) \in L(\hat{\varrho}; \hat{q})$ and $c \in L(\hat{\varrho}; \hat{q})$. Then, $(\operatorname{proj}_i \circ \hat{\xi})((z * y) * (x * y)) \ge r_i$, $(\operatorname{proj}_i \circ \hat{\xi})(x) \ge r_i$, $(\operatorname{proj}_i \circ \hat{\varrho})((b * d) * (c * d)) \le q_i$ and $(\operatorname{proj}_i \circ \hat{\varrho})(c) \le q_i$. It follows from Equations (16) that

$$(\operatorname{proj}_{i} \circ \widehat{\xi})(z) \ge \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})((z * y) * (x * y)), (\operatorname{proj}_{i} \circ \widehat{\xi})(x)\} \ge r_{i}$$

and

$$(\operatorname{proj}_{i} \circ \widehat{\varrho})(b) \le \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((b * d) * (c * d)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(c)\} \le q_{i}$$

for $i = 1, 2, \dots, k$. Hence $z \in U(\widehat{\xi}; \widehat{r})$ and $b \in L(\widehat{\varrho}; \widehat{q})$ and therefore $U(\widehat{\xi}; \widehat{r})$ and $L(\widehat{\varrho}; \widehat{q})$ are *p*-ideals of *U*.

Conversely, suppose that the *k*-polar upper and lower level sets $U(\hat{\xi}, \hat{r})$ and $L(\hat{\varrho}, \hat{q})$ are *p*-ideals of *U* for all $(\hat{r}, \hat{q}) \in [0, 1]^k \times [0, 1]^k$ with $U(\hat{\xi}, \hat{r}) \neq \emptyset \neq L(\hat{\varrho}, \hat{q})$. If $\hat{\xi}(0) < \hat{\xi}(b)$ for some $b \in U$, then $b \in U(\hat{\xi}; \hat{r})$ and $0 \notin U(\hat{\xi}; \hat{r})$ where $\hat{r} := \hat{\xi}(b)$. This is a contradiction, and so $\hat{\xi}(0) \geq \hat{\xi}(z)$ for all $z \in U$. If $\hat{\varrho}(0) > \hat{\varrho}(c)$ for some $c \in U$, then $(\text{proj}_i \circ \hat{\varrho})(0) > (\text{proj}_i \circ \hat{\varrho})(c)$ for $i = 1, 2, \cdots, k$. If we take $q_i := (\text{proj}_i \circ \hat{\varrho})(c)$ for $i = 1, 2, \cdots, k$, then $c \in L(\hat{\varrho}, \hat{q})^i$ and $0 \notin L(\hat{\varrho}, \hat{q})^i$ for $i = 1, 2, \cdots, k$. Thus $c \in \bigcap_{i=1}^k L(\hat{\varrho}, \hat{q})^i = L(\hat{\varrho}, \hat{q})$ and $0 \notin L(\hat{\varrho}, \hat{q})$, which is a contradiction; hence $\hat{\varrho}(0) \leq \hat{\varrho}(z)$ for all $z \in U$. Now, suppose that there exist $b, c, d \in U$ such that $\hat{\xi}(b) < \hat{\xi}((b * d) * (c * d)) \land \hat{\xi}(c)$ or $\hat{\varrho}(b) > \hat{\varrho}((b * d) * (c * d)) \lor \hat{\varrho}(c)$. If we take

$$\hat{r} := \widehat{\xi}((b * d) * (c * d)) \land \widehat{\xi}(c)$$

and

$$\hat{q} := \hat{\varrho}((b * d) * (c * d)) \lor \hat{\varrho}(c),$$

then

$$(b*d)*(c*d) \in U(\widehat{\xi};\widehat{r})$$
 and $c \in U(\widehat{\xi};\widehat{r})$

or

$$(b * d) * (c * d) \in L(\widehat{\varrho}, \widehat{q}) \text{ and } c \in L(\widehat{\varrho}, \widehat{q}).$$

Since $U(\hat{\xi}; \hat{r})$ and $L(\hat{\varrho}, \hat{q})$ are *p*-ideals of *U* by assumption, it follows that $b \in U(\hat{\xi}; \hat{r})$ or $b \in L(\hat{\varrho}; \hat{q})$. Hence $\hat{\xi}(b) \geq \hat{r} = \hat{\xi}((b * d) * (c * d)) \land \hat{\xi}(c)$ or $\hat{\varrho}(b) \leq \hat{q} = \hat{\varrho}((b * d) * (c * d)) \lor \hat{\varrho}(c)$, which is a contradiction. Thus $\hat{\xi}(z) \geq \hat{\xi}((z * y) * (x * y)) \land \hat{\xi}(x)$ and $\hat{\varrho}(z) \leq \hat{\varrho}((z * y) * (x * y)) \lor \hat{\varrho}(x)$ for all $z, x, y \in U$; therefore $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. \Box

Given a *k*-pIF set $(\hat{\xi}, \hat{\varrho})$ over *U* and $(\hat{t}, \hat{s}) \in (0, 1]^k \times [0, 1)^k$, we consider the sets:

$$R_{(\widehat{\xi},\widehat{t})}(U) := \{ z \in U \mid \widehat{\xi}(z) + \widehat{t} > \widehat{1} \}$$

and

$$R_{(\widehat{\varrho},\widehat{s})}(U) := \{ z \in U \mid \widehat{\varrho}(z) + \widehat{s} < \widehat{1} \}$$

Then,
$$R_{(\hat{\xi},\hat{t})}(U) = \bigcap_{i=1}^{k} R_{(\hat{\xi},\hat{t})}(U)^{i}$$
 and $R_{(\hat{\varrho},\hat{s})}(U) = \bigcap_{i=1}^{k} R_{(\hat{\varrho},\hat{s})}(U)^{i}$ where

$$R_{(\widehat{\xi},\widehat{t})}(U)^{i} := \{ z \in U \mid (\operatorname{proj}_{i} \circ \widehat{\xi})(z) + t_{i} > 1 \}$$

and

$$R_{(\widehat{\varrho},\widehat{s})}(U)^{i} := \{ z \in U \mid (\operatorname{proj}_{i} \circ \widehat{\varrho})(z) + s_{i} < 1 \}$$

for $i = 1, 2, \cdots, k$.

Theorem 6. Given a k-pIF set $(\hat{\xi}, \hat{\varrho})$ over U, the following assertions are equivalent.

- (*i*) $(\hat{\xi}, \hat{\varrho})$ is a k-pIF p-ideal of U.
- (ii) The sets $R_{(\hat{\xi},\hat{t})}(U)$ and $R_{(\hat{\ell},\hat{s})}(U)$ are p-ideals of U for all $(\hat{t},\hat{s}) \in (0,1]^k \times [0,1)^k$ with $R_{(\hat{\xi},\hat{t})}(U) \neq \emptyset \neq R_{(\hat{\ell},\hat{s})}(U)$.

Proof. Assume that $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. It is clear that $0 \in R_{(\hat{\xi},\hat{t})}(U)$ and $0 \in R_{(\hat{\varrho},\hat{s})}(U)$. Let $z, x, y, b, c, d \in U$ be such that $(z * y) * (x * y) \in R_{(\hat{\xi},\hat{t})}(U), x \in R_{(\hat{\xi},\hat{t})}(U), (b * d) * (c * d) \in R_{(\hat{\varrho},\hat{s})}(U)$ and $c \in R_{(\hat{\varrho},\hat{s})}(U)$. Then, $\hat{\xi}((z * y) * (x * y)) + \hat{t} > \hat{1}, \hat{\xi}(x) + \hat{t} > \hat{1}, \hat{\varrho}((b * d) * (c * d)) + \hat{s} < \hat{1}$ and $\hat{\varrho}(c) + \hat{s} < \hat{1}$. It follows that

$$(\operatorname{proj}_{i} \circ \widehat{\xi})(z) + t_{i} \ge \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})((z * y) * (x * y)), (\operatorname{proj}_{i} \circ \widehat{\xi})(x)\} + t_{i}$$
$$= \min\{(\operatorname{proj}_{i} \circ \widehat{\xi})((z * y) * (x * y)) + t_{i}, (\operatorname{proj}_{i} \circ \widehat{\xi})(x) + t_{i}\} > 1$$

and

$$\begin{aligned} (\operatorname{proj}_{i} \circ \widehat{\varrho})(b) + s_{i} &\leq \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((b * d) * (c * d)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(c)\} + s_{i} \\ &= \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((b * d) * (c * d)) + s_{i}, (\operatorname{proj}_{i} \circ \widehat{\varrho})(c) + s_{i}\} < 1 \end{aligned}$$

for all $i = 1, 2, \cdots, k$. Hence $z \in \bigcap_{i=1}^k R_{(\widehat{\xi}, \widehat{t})}(U)^i = R_{(\widehat{\xi}, \widehat{t})}(U)$ and $b \in \bigcap_{i=1}^k R_{(\widehat{\varrho}, \widehat{s})}(U)^i = R_{(\widehat{\varrho}, \widehat{s})}(U)$; therefore $R_{(\widehat{\xi}, \widehat{t})}(U)$ and $R_{(\widehat{\varrho}, \widehat{s})}(U)$ are *p*-ideals of *U* for all $(\widehat{t}, \widehat{s}) \in (0, 1]^k \times [0, 1)^k$.

Conversely suppose that (ii) is valid. If $\hat{\xi}(0) < \hat{\xi}(z)$ or $\hat{\varrho}(0) > \hat{\varrho}(b)$ for some $z, b \in U$, then $\hat{\xi}(0) + \hat{t} \le \hat{1} < \hat{\xi}(z) + \hat{t}$ or $\hat{\varrho}(0) + \hat{s} \ge \hat{1} > \hat{\varrho}(b) + \hat{s}$ for some $(\hat{t}, \hat{s}) \in (0, 1]^k \times [0, 1)^k$. Thus $0 \notin R_{(\hat{\xi}, \hat{t})}(U)$ or $0 \notin R_{(\hat{\varrho}, \hat{s})}(U)$ which is a contradiction. Hence $(\hat{\xi}, \hat{\varrho})$ satisfies Condition (14). Suppose that $\hat{\xi}(b) < \hat{\xi}((b * d) * (c * d)) \land \hat{\xi}(c)$ for some $b, c \in U$. Then, $\hat{\xi}(b) + \hat{t} \le \hat{1} < (\hat{\xi}((b * d) * (c * d)) \land \hat{\xi}(c)) + \hat{t} = (\hat{\xi}((b * d) * (c * d)) + \hat{t}) \land (\hat{\xi}(c) + \hat{t})$ for some $\hat{t} \in (0, 1]^k$. It follows that $(b * d) * (c * d) \in R_{(\hat{\xi},\hat{t})}(U)$ and

 $c \in R_{(\widehat{\xi},\widehat{t})}(U)$, which implies that $b \in R_{(\widehat{\xi},\widehat{t})}(U)$ since $R_{(\widehat{\xi},\widehat{t})}(U)$ is a *p*-ideal of *U*; hence $\widehat{\xi}(b) + \widehat{t} > \widehat{1}$, which is a contradiction. If $\widehat{\varrho}(z) > \widehat{\varrho}((z * y) * (x * y)) \lor \widehat{\varrho}(x)$ for some $z, x \in U$, then

$$\widehat{\varrho}(z) + \widehat{s} \geq \widehat{1} > (\widehat{\xi}((z \ast y) \ast (x \ast y)) \lor \widehat{\xi}(x)) + \widehat{s} = (\widehat{\xi}((z \ast y) \ast (x \ast y)) + \widehat{s}) \lor (\widehat{\xi}(x) + \widehat{s})$$

for some $\hat{s} \in [0,1)^k$. Thus $(z * y) * (x * y) \in R_{(\hat{\varrho},\hat{s})}(U)$ and $x \in R_{(\hat{\varrho},\hat{s})}(U)$. Since $R_{(\hat{\varrho},\hat{s})}(U)$ is a *p*-ideal of *U*, it follows that $z \in R_{(\hat{\varrho},\hat{s})}(U)$, that is, $\hat{\varrho}(z) + \hat{s} < \hat{1}$. This is a contradiction. This shows that $(\hat{\xi}, \hat{\varrho})$ satisfies Condition (16); therefore $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. \Box

The following theorem shows the characterization of *k*-pIF *p*-ideal using *k*-polar (\in, \in) -fuzzy *p*-ideal.

Theorem 7. A k-pIF set $(\hat{\xi}, \hat{\varrho})$ over U is a k-pIF p-ideal of U if and only if $\hat{\xi}$ and $\hat{\varrho}^c$ are k-polar (\in, \in) -fuzzy p-ideals of U where $\hat{\varrho}^c = 1 - \hat{\varrho}$, i.e., $(\operatorname{proj}_i \circ \hat{\varrho})^c = 1 - (\operatorname{proj}_i \circ \hat{\varrho})$ for $i = 1, 2, \cdots, k$.

Proof. Let $(\hat{\xi}, \hat{\varrho})$ be a *k*-pIF *p*-ideal of *U*. It is clear that $\hat{\xi}$ is a *k*-polar (\in, \in) -fuzzy *p*-ideal of *U*. Let *z*, *x*, *y* \in *U*. Then,

$$(\operatorname{proj}_i \circ \widehat{\varrho})^c(0) = 1 - (\operatorname{proj}_i \circ \widehat{\varrho})(0) \ge 1 - (\operatorname{proj}_i \circ \widehat{\varrho})(z) = (\operatorname{proj}_i \circ \widehat{\varrho})^c(z)$$

and

$$\begin{aligned} (\operatorname{proj}_{i} \circ \widehat{\varrho})^{c}(z) &= 1 - (\operatorname{proj}_{i} \circ \widehat{\varrho})(z) \geq 1 - \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((z * y) * (x * y)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(x)\} \\ &= \min\{1 - (\operatorname{proj}_{i} \circ \widehat{\varrho})((z * y) * (x * y)), 1 - (\operatorname{proj}_{i} \circ \widehat{\varrho})(x)\} \\ &= \min\{(\operatorname{proj}_{i} \circ \widehat{\varrho})^{c}((z * y) * (x * y)), (\operatorname{proj}_{i} \circ \widehat{\varrho})^{c}(x)\}.\end{aligned}$$

Thus $\hat{\varrho}^c$ is a *k*-polar (\in, \in)-fuzzy *p*-ideal of *U*.

Conversely, suppose that $\hat{\xi}$ and $\hat{\varrho}^c$ are *k*-polar (\in, \in) -fuzzy *p*-ideals of *U*. For any $z, x \in U$, we have $(\operatorname{proj}_i \circ \hat{\xi})(0) \ge (\operatorname{proj}_i \circ \hat{\xi})(z)$, $(\operatorname{proj}_i \circ \hat{\xi})(z) \ge \min\{(\operatorname{proj}_i \circ \hat{\xi})((z * y) * (x * y)), (\operatorname{proj}_i \circ \hat{\xi})(x)\}, 1 - (\operatorname{proj}_i \circ \hat{\varrho})(0) = (\operatorname{proj}_i \circ \hat{\varrho})^c(0) \ge (\operatorname{proj}_i \circ \hat{\varrho})^c(z) = 1 - (\operatorname{proj}_i \circ \hat{\varrho})(z)$, i.e., $(\operatorname{proj}_i \circ \hat{\varrho})(0) \le (\operatorname{proj}_i \circ \hat{\varrho})(z)$ and

$$\begin{split} 1 - (\operatorname{proj}_i \circ \widehat{\varrho})(z) &= (\operatorname{proj}_i \circ \widehat{\varrho})^c(z) \geq \min\{(\operatorname{proj}_i \circ \widehat{\varrho})^c((z * y) * (x * y)), (\operatorname{proj}_i \circ \widehat{\varrho})^c(x)\} \\ &= \min\{1 - (\operatorname{proj}_i \circ \widehat{\varrho})((z * y) * (x * y)), 1 - (\operatorname{proj}_i \circ \widehat{\varrho})(x)\} \\ &= 1 - \max\{(\operatorname{proj}_i \circ \widehat{\varrho})((z * y) * (x * y)), (\operatorname{proj}_i \circ \widehat{\varrho})(x)\}, \end{split}$$

that is, $(\operatorname{proj}_i \circ \hat{\varrho})(z) \leq \max\{(\operatorname{proj}_i \circ \hat{\varrho})((z * y) * (x * y)), (\operatorname{proj}_i \circ \hat{\varrho})(x)\}$; therefore $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. \Box

The following corollary is an immediate consequence of Theorem 7.

Corollary 1. Let $(\hat{\xi}, \hat{\varrho})$ be a k-pIF set over U. Then, $(\hat{\xi}, \hat{\varrho})$ is a k-pIF p-ideal of U if and only if the necessary operator $\Box(\hat{\xi}, \hat{\varrho}) = (\hat{\xi}, \hat{\xi}^c)$ and the possibility operator $\Diamond(\hat{\xi}, \hat{\varrho}) = (\hat{\varrho}^c, \hat{\varrho})$ of $(\hat{\xi}, \hat{\varrho})$ are k-pIF p-ideals of U.

Definition 2. A *k*-*pIF p*-*ideal* $(\hat{\xi}, \hat{\varrho})$ of *U* is said to be normal if there exists $z, x \in U$ such that $\hat{\xi}(z) = \hat{1}$ and $\hat{\varrho}(x) = \hat{0}$.

Example 3. Consider the BCI-algebra $U = \{0, x, a, b\}$, which is given in Example 1. Let $(\hat{\xi}, \hat{\varrho})$ be a 3-polar intuitionistic fuzzy set over U given by

$$\begin{split} & (\widehat{\xi}, \widehat{\varrho}) : U \to [0,1]^3 \times [0,1]^3, \\ & z \mapsto \begin{cases} & ((1.00, 1.00, 1.00), (0.00, 0.00, 0.00)) & \text{if } z = 0, \\ & ((0.72, 0.57, 1.00), (0.00, 0.24, 0.35)) & \text{if } z = x, \\ & ((0.52, 0.37, 0.32), (0.37, 0.44, 0.58)) & \text{if } z = a, \\ & ((0.52, 0.37, 0.32), (0.37, 0.44, 0.58)) & \text{if } z = b. \end{cases} \end{split}$$

It is routine to check that $(\hat{\xi}, \hat{\varrho})$ is a normal 3-polar intuitionistic fuzzy p-ideal of U.

It is clear that if a *k*-pIF *p*-ideal $(\hat{\xi}, \hat{\varrho})$ of *U* is normal, then $\hat{\xi}(0) = \hat{1}$ and $\hat{\varrho}(0) = \hat{0}$, that is, $(\operatorname{proj}_i \circ \hat{\xi})(0) = 1$ and $(\operatorname{proj}_i \circ \hat{\varrho})(0) = 0$ for all $i = 1, 2, \dots, k$.

Lemma 2. A k-pIF p-ideal $(\hat{\xi}, \hat{\varrho})$ of U is normal if and only if $\hat{\xi}(0) = \hat{1}$ and $\hat{\varrho}(0) = \hat{0}$.

Proof. Straightforward. \Box

In the following theorem we look at the process of eliciting normal *k*-pIF *p*-ideal from a given *k*-pIF *p*-ideal.

Theorem 8. If $(\hat{\xi}, \hat{\varrho})$ is k-pIF p-ideal of U, then the k-pIF set $(\hat{\xi}, \hat{\varrho})^+ = (\hat{\xi}^+, \hat{\varrho}^+)$ on U defined by

$$\widehat{\xi}^{+}: U \to [0,1]^{k}, z \mapsto \widehat{1} + \widehat{\xi}(z) - \widehat{\xi}(0),
\widehat{\varrho}^{+}: U \to [0,1]^{k}, z \mapsto \widehat{\varrho}(z) - \widehat{\varrho}(0)$$
(22)

is a normal k-pIF p-ideal of U containing $(\hat{\xi}, \hat{\varrho})$.

Proof. Assume that $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF *p*-ideal of *U*. Then, $(\hat{\xi}, \hat{\varrho})$ is a *k*-pIF ideal of *U* by Theorem 2. For any $z, x \in U$, we have

$$(\operatorname{proj}_{i} \circ \widehat{\xi})(0) = 1 + (\operatorname{proj}_{i} \circ \widehat{\xi})(0) - (\operatorname{proj}_{i} \circ \widehat{\xi})(0) = 1 \ge (\operatorname{proj}_{i} \circ \widehat{\xi})(z),$$

$$(\operatorname{proj}_{i} \circ \widehat{\varrho})(0) = (\operatorname{proj}_{i} \circ \widehat{\varrho})(0) - (\operatorname{proj}_{i} \circ \widehat{\varrho})(0) = 0 \le (\operatorname{proj}_{i} \circ \widehat{\varrho})(z),$$

$$\begin{aligned} (\operatorname{proj}_i \circ \widehat{\xi})^+(z) &= 1 + (\operatorname{proj}_i \circ \widehat{\xi})(z) - (\operatorname{proj}_i \circ \widehat{\xi})(0) \\ &\geq 1 + \min\{(\operatorname{proj}_i \circ \widehat{\xi})((z * y) * (x * y)), (\operatorname{proj}_i \circ \widehat{\xi})(x)\} - (\operatorname{proj}_i \circ \widehat{\xi})(0) \\ &= \min\{1 + (\operatorname{proj}_i \circ \widehat{\xi})((z * y) * (x * y)) - (\operatorname{proj}_i \circ \widehat{\xi})(0), 1 + (\operatorname{proj}_i \circ \widehat{\xi})(x) - (\operatorname{proj}_i \circ \widehat{\xi})(0)\} \\ &= \min\{(\operatorname{proj}_i \circ \widehat{\xi})^+((z * y) * (x * y)), (\operatorname{proj}_i \circ \widehat{\xi})^+(x)\} \end{aligned}$$

and

$$\begin{aligned} (\operatorname{proj}_{i} \circ \widehat{\varrho})^{+}(z) &= (\operatorname{proj}_{i} \circ \widehat{\varrho})(z) - (\operatorname{proj}_{i} \circ \widehat{\varrho})(0) \\ &\leq \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((z * y) * (x * y)), (\operatorname{proj}_{i} \circ \widehat{\varrho})(x)\} - (\operatorname{proj}_{i} \circ \widehat{\varrho})(0) \\ &= \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})((z * y) * (x * y)) - (\operatorname{proj}_{i} \circ \widehat{\varrho})(0), (\operatorname{proj}_{i} \circ \widehat{\varrho})(x) - (\operatorname{proj}_{i} \circ \widehat{\varrho})(0)\} \\ &= \max\{(\operatorname{proj}_{i} \circ \widehat{\varrho})^{+}((z * y) * (x * y)), (\operatorname{proj}_{i} \circ \widehat{\varrho})^{+}(x)\} \end{aligned}$$

for all for $i = 1, 2, \dots, k$. Hence $(\hat{\xi}, \hat{\varrho})^+$ is a *k*-pIF *p*-ideal of *U* and it is normal by Lemma 2. It is clear that $(\hat{\xi}, \hat{\varrho})$ is contained in $(\hat{\xi}, \hat{\varrho})^+$. \Box

Theorem 9. Let $(\hat{\xi}, \hat{\varrho})$ be a k-pIF p-ideal of U. Then, $(\hat{\xi}, \hat{\varrho})$ is normal if and only if $(\hat{\xi}, \hat{\varrho})^+ = (\hat{\xi}, \hat{\varrho})$, that is, $\hat{\xi}^+ = \hat{\xi}$ and $\hat{\varrho}^+ = \hat{\varrho}$.

Proof. The sufficiency is clear. Assume that $(\hat{\xi}, \hat{\varrho})$ is normal. Then,

$$(\operatorname{proj}_{i} \circ \widehat{\xi})^{+}(z) = 1 + (\operatorname{proj}_{i} \circ \widehat{\xi})(z) - (\operatorname{proj}_{i} \circ \widehat{\xi})(0) = (\operatorname{proj}_{i} \circ \widehat{\xi})(z)$$
$$(\operatorname{proj}_{i} \circ \widehat{\varrho})^{+}(z) = (\operatorname{proj}_{i} \circ \widehat{\varrho})(z) - (\operatorname{proj}_{i} \circ \widehat{\xi})(0) = (\operatorname{proj}_{i} \circ \widehat{\xi})(z)$$

for all $z \in U$ by Lemma 2. This completes the proof. \Box

Corollary 2. Let $(\hat{\xi}, \hat{\varrho})$ be a k-pIF p-ideal of U. If $(\hat{\xi}, \hat{\varrho})$ is normal, then $((\hat{\xi}, \hat{\varrho})^+)^+ = (\hat{\xi}, \hat{\varrho})$.

Theorem 10. Let $(\hat{\xi}, \hat{\varrho})$ be a non-constant normal k-pIF p-ideal of U, which is maximal in the poset of normal k-pIF p-ideals under set inclusion. Then, $\hat{\xi}$ and $\hat{\varrho}$ have the values $\hat{0}$ and $\hat{1}$ only.

Proof. Since $(\hat{\xi}, \hat{\varrho})$ is normal, we have $\hat{\xi}(0) = \hat{1}$ and $\hat{\varrho}(0) = \hat{0}$ by Lemma 2. Let $z, x \in U$ be such that $\hat{\xi}(z) \neq \hat{1}$ and $\hat{\varrho}(x) \neq \hat{0}$. It is sufficient to show that $\hat{\xi}(z) = \hat{0}$ and $\hat{\varrho}(x) = \hat{1}$. If $\hat{\xi}(z) \neq \hat{0}$ and $\hat{\varrho}(x) \neq \hat{1}$, then there exists $b, c \in U$ such that $\hat{0} < \hat{\xi}(b) < \hat{1}$ and $\hat{0} < \hat{\varrho}(c) < \hat{1}$. Let $(\hat{\xi}, \hat{\varrho})_* = (\hat{\xi}_*, \hat{\varrho}_*)$ be a *k*-pIF set on *U* given by

$$\widehat{\xi}_*: U \to [0,1]^k, \, z \mapsto rac{1}{2} \left(\widehat{\xi}(z) + \widehat{\xi}(b)
ight).$$

and

$$\widehat{arrho}_*: U
ightarrow [0,1]^k$$
, $z \mapsto rac{1}{2} \left(\widehat{arrho}(z) + \widehat{arrho}(c)
ight)$.

It is clear that $(\hat{\xi}, \hat{\varrho})_*$ is well-defined. For any $z, x \in U$, we have

$$\widehat{\xi}_*(0) = \frac{1}{2} \left(\widehat{\xi}(0) + \widehat{\xi}(b) \right) = \frac{1}{2} \left(\widehat{1} + \widehat{\xi}(b) \right) \ge \frac{1}{2} \left(\widehat{\xi}(z) + \widehat{\xi}(b) \right) = \widehat{\xi}_*(z),$$

$$\widehat{\varrho}_*(0) = rac{1}{2} \left(\widehat{\varrho}(0) + \widehat{\varrho}(c) \right) = rac{1}{2} \left(\widehat{0} + \widehat{\varrho}(c) \right) \leq rac{1}{2} \left(\widehat{\varrho}(z) + \widehat{\varrho}(c) \right) = \widehat{\varrho}_*(z),$$

$$\begin{aligned} \widehat{\xi}_*(z) &= \frac{1}{2} \left(\widehat{\xi}(z) + \widehat{\xi}(b) \right) \ge \frac{1}{2} \left(\left(\widehat{\xi}(z * x) \land \widehat{\xi}(x) \right) + \widehat{\xi}(b) \right) \\ &= \frac{1}{2} (\left(\widehat{\xi}(z * x) + \widehat{\xi}(b) \right) \land \left(\widehat{\xi}(x) + \widehat{\xi}(b) \right)) \\ &= \frac{1}{2} (\widehat{\xi}(z * x) + \widehat{\xi}(b)) \land \frac{1}{2} (\widehat{\xi}(x) + \widehat{\xi}(b)) \\ &= \widehat{\xi}_*(z * x) \land \widehat{\xi}_*(x) \end{aligned}$$

and

$$\begin{split} \widehat{\varrho}_*(z) &= \frac{1}{2} \left(\widehat{\varrho}(z) + \widehat{\varrho}(c) \right) \leq \frac{1}{2} \left(\left(\widehat{\varrho}(z * x) \lor \widehat{\varrho}(x) \right) + \widehat{\varrho}(c) \right) \\ &= \frac{1}{2} (\left(\widehat{\varrho}(z * x) + \widehat{\varrho}(c) \right) \lor \left(\widehat{\varrho}(x) + \widehat{\varrho}(c) \right) \right) \\ &= \frac{1}{2} \left(\widehat{\varrho}(z * x) + \widehat{\varrho}(c) \right) \lor \frac{1}{2} \left(\widehat{\varrho}(x) + \widehat{\varrho}(c) \right) \\ &= \widehat{\varrho}_*(z * x) \lor \widehat{\varrho}_*(x). \end{split}$$

Hence $(\widehat{\xi}, \widehat{\varrho})$ is a *k*-pIF ideal of *U*. We have

$$\widehat{\xi}_*(z) = \frac{1}{2} \left(\widehat{\xi}(z) + \widehat{\xi}(b) \right) \ge \frac{1}{2} \left(\widehat{\xi}(0 * (0 * z)) + \widehat{\xi}(b) \right) = \widehat{\xi}_*(0 * (0 * z))$$

and

$$\widehat{\varrho}_*(z) = \frac{1}{2} \left(\widehat{\varrho}(z) + \widehat{\varrho}(c) \right) \le \frac{1}{2} \left(\widehat{\varrho}(0 * (0 * z)) + \widehat{\varrho}(c) \right) = \widehat{\varrho}_*(0 * (0 * z))$$

for all $z \in U$. Hence $(\hat{\xi}, \hat{\varrho})_*$ is a *k*-pIF *p*-ideal of *U* by Theorem 4. Now, we get

$$\hat{\xi}_*^+(z) = \hat{1} + \hat{\xi}_*(z) - \hat{\xi}_*(0) = \hat{1} + \frac{1}{2} \left(\hat{\xi}(z) + \hat{\xi}(b) \right) - \frac{1}{2} \left(\hat{\xi}(0) + \hat{\xi}(b) \right) = \frac{1}{2} \left(\hat{1} + \hat{\xi}(z) \right),$$

and

$$\widehat{\varrho}_*^+(z) = \widehat{\varrho}_*(z) - \widehat{\varrho}_*(0) = \frac{1}{2} \left(\widehat{\varrho}(z) + \widehat{\varrho}(c) \right) - \frac{1}{2} \left(\widehat{\varrho}(0) + \widehat{\varrho}(c) \right) = \frac{1}{2} \widehat{\varrho}(z),$$

and so $\widehat{\xi}^+_*(0) = \frac{1}{2} \left(\widehat{1} + \widehat{\xi}(0) \right) = \widehat{1}$ and $\widehat{\varrho}^+_*(z) = \frac{1}{2} \widehat{\varrho}(0) = \widehat{0}$. Hence $(\widehat{\xi}, \widehat{\varrho})_*$ is normal. Note that

$$\widehat{\xi}^+_*(0) = \widehat{1} > \widehat{\xi}^+_*(b) = \frac{1}{2} \left(\widehat{1} + \widehat{\xi}(b) \right) > \widehat{\xi}(b)$$

and

$$\widehat{\varrho}^+_*(0) = \widehat{0} < \widehat{\varrho}^+_*(c) = \frac{1}{2} \left(\widehat{0} + \widehat{\varrho}(c) \right) < \widehat{\varrho}(c).$$

Hence $(\hat{\xi}, \hat{\varrho})^+_*$ is non-constant and $(\hat{\xi}, \hat{\varrho})$ is not maximal, which is a contradiction; therefore $\hat{\xi}$ and $\hat{\varrho}$ have the values $\hat{0}$ and $\hat{1}$ only. \Box

4. Conclusions and Future Works

As a generalization of intuitionistic fuzzy set, Kang et al. [19] introduced the notion of multipolar intuitionistic fuzzy set with finite degree, and then they applied the notion to BCK/BCI-algebras. In this manuscript, we used Kang et al.'s multipolar intuitionistic fuzzy set to study *p*-ideal in BCI-algebras. We introduced the notion of k-polar intuitionistic fuzzy p-ideals (see Definition 1) in BCI-algebras, and then we studied several properties (See Proposition 1, Proposition 2). We gave an example to illustrate the *k*-polar intuitionistic fuzzy *p*-ideal (see Example 1), and considered the relationship between *k*-polar intuitionistic fuzzy ideal and *k*-polar intuitionistic fuzzy *p*-ideal. We have shown that every k-polar intuitionistic fuzzy p-ideal is a k-polar intuitionistic fuzzy ideal (see Theorem 2), and then provided an example to show that the converse is not true in general (see Example 2). We used the notion of *p*-ideals in BCI-algebras to study the characterization of *k*-polar intuitionistic fuzzy *p*-ideal (see Theorem 1, Theorem 5 and Theorem 6), and also used the notion of k-polar (\in , \in)-fuzzy p-ideal in BCI-algebras to study the characterization of k-polar intuitionistic fuzzy p-ideal (see Theorem 7). We defined the concept of normal *k*-polar intuitionistic fuzzy *p*-ideal (see Definition 2), and discussed its characterization (see Lemma 2 and Theorem 9). We looked at the process of eliciting normal k-polar intuitionistic fuzzy p-ideal from a given k-polar intuitionistic fuzzy p-ideal (see Theorem 8). Our goal in the future is to apply the ideas and results of this paper to other forms of ideals, filters, etc. in BCK/BCI-algebras. We will also apply the ideas and results of this paper to other algebraic structures, for example, MV-algebras, EQ-algebras, equality algebras, hoops, etc.

Author Contributions: Created and conceptualized ideas, J.-G.L. and Y.B.J.; writing—original draft preparation, Y.B.J.; writing—review and editing, M.F. and K.H.; funding acquisition, J.-G.L. All authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1D1A1B07049321).

Acknowledgments: We would like to thank the guest editor and the anonymous reviewers for their very careful reading and valuable comments/suggestions.

Conflicts of Interest: The authors declare no conflict of interest.

References

- 1. Iséki, K. An algebra related with a propositional calculus. Proc. Jpn. Acad. 1966, 42, 26–29. [CrossRef]
- 2. Huang, Y. BCI-Algebra; Science Press: Beijing, China, 2006.
- 3. Meng, J.; Jun, Y.B. *BCK-Algebras*; Kyungmoonsa Co.: Seoul, Korea, 1994.
- 4. Zadeh, L.A. Fuzzy sets. Inform. Control 1965, 8, 338–353. [CrossRef]
- Atanassov, K.T. Intuitionistic fuzzy sets. VII ITKR Session, Sofia, 20–23 June 1983 (Deposed in Centr. Sci.-Techn. Library of the Bulg. Acad. of Sci., 1697/84) (in Bulgarian). *Repr. Int. Bioautomation* 2016, 20, S1–S6.
- 6. Atanassov, K.T. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87-96. [CrossRef]
- Chen, J.; Li, S.; Ma, S.; Wang, X. *m*-polar fuzzy sets: An extension of bipolar fuzzy sets. *Sci. World J.* 2014, 2014, 416530. [CrossRef] [PubMed]
- 8. Al-Masarwah, A.; Ahmad, A.G. *m*-polar fuzzy ideals of BCK/BCI-algebras. *J. King Saud Univ. Sci.* **2019**, *31*, 1220–1226. [CrossRef]
- 9. Mohseni Takallo, M.; Ahn, S.S.; Borzooei, R.A.; Jun, Y.B. Multipolar fuzzy *p*-ideals of BCI-algebras. *Mathematics* **2019**, *7*, 1094. [CrossRef]
- 10. Al-Masarwah, A.; Ahmad, A.G. *m*-polar (α , β)-fuzzy ideals in BCK/BCI-algebras. *Symmetry* **2019**, *11*, 44. [CrossRef]
- 11. Akram, M.; Sarwar, M. New applications of *m*-polar fuzzy competition graphs. *New Math. Nat. Comput.* **2018**, *14*, 249–276. [CrossRef]
- 12. Akram, M.; Adeel, A. *m*-polar fuzzy graphs and *m*-polar fuzzy line graphs. *J. Discret. Math. Sci. Cryptogr.* **2017**, 20, 1597–1617. [CrossRef]
- 13. Akram, M.; Waseem, N.; Davvaz, B. Certain types of domination in *m*-polar fuzzy graphs. *J. Mult. Valued Log. Soft Comput.* **2017**, *29*, 619–646.
- 14. Sarwar, M.; Akram, M. Representation of graphs using *m*-polar fuzzy environment. *Ital. J. Pure Appl. Math.* **2017**, *38*, 291–312.
- 15. Akram, M.; Waseem, N.; Liu, P. Novel approach in decision making with *m*-polar fuzzy ELECTRE-I. *Int. J. Fuzzy Syst.* **2019**, *21*, 1117–1129. [CrossRef]
- 16. Akram, M.; Ali, G.; Alshehri, N.O. A New Multi-Attribute Decision-Making Method Based on *m*-Polar Fuzzy Soft Rough Sets. *Symmetry* **2017**, *9*, 271. [CrossRef]
- 17. Adeel, A.; Akram, M.; Koam, A.N.A. Group decision-making based on *m*-polar fuzzy linguistic TOPSIS method. *Symmetry* **2019**, *11*, 735. [CrossRef]
- 18. Adeel, A.; Akram, M.; Ahmed, I.; Nazar, K. Novel *m*-polar fuzzy linguistic ELECTRE-I method for group decision-making. *Symmetry* **2019**, *11*, 471. [CrossRef]
- 19. Kang, K.T.; Song, S.Z.; Jun, Y.B. Multipolar intuitionistic fuzzy set with finite degree and its application in BCK/BCI-algebras. *Mathematics* **2020**, *8*, 177. [CrossRef]
- 20. Zhang, X.H.; Hao, J.; Bhatti, S.A. On p-ideals of a BCI-algebra. Punjab Univ. J. Math. (Lahore) 1994, 27, 121–128.

 \odot 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).