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Abstract: Periodic traveling waves are observed in various brain activities, including visual, motor,
language, sleep, and so on. There are several neural field models describing periodic waves assuming
nonlocal interaction, and possibly, inhibition, time delay or some other properties. In this work
we study the influences of asymmetric connectivity functions and of time delay for symmetric
connectivity functions on the emergence of periodic waves and their properties. Nonlinear wave
dynamics are studied, including modulated and aperiodic waves. Multiplicity of waves for the
same values of parameters is observed. External stimulation in order to restore wave propagation in
a damaged tissue is discussed.

Keywords: neural field model; integro-differential equation; waves; brain stimulation

1. Introduction

1.1. Brain Activity and Periodic Travelling Waves

The brain displays a variety of highly nonlinear, complex dynamics across multiple spatial and
temporal scales [1]. About 86× 109 neurons of the human brain entertain complex and fluctuating
interactions. Understanding the dynamics of these interactions and the mechanisms underlying their
control remains a technical and theoretical challenge. In other words, when healthy brain processes
evolve toward abnormal and pathological states as a result of disease, degeneration or traumatic injury,
how can a therapeutic intervention be used to reposition the control parameters and guide the dynamics
back toward a healthy state? These brain processes are described today as interacting networks of
nodes/hubs and edges which for the whole brain constitute the human connectome [2]. While the
connectome is focused on anatomical connections, the dynamics of the networks are represented
by functional connections (also called the dynome [1]). For example, brain functional connections
described as a graph explore how signals are transmitted along neuroanatomical pathways and interact
with local dynamics. Functional connections are often investigated via modeling [1]. One possibility
is to use mathematical models to identify how an outside intervention such as neural electrical
stimulation can modify local dynamics and how local dynamics will in turn affect other brain regions.

Cortical brain dynamics are investigated by means of periodic traveling waves (TW) characterized
by their speed and frequency [3]. They describe the distribution of electric potential in the brain cortex.
They are measured as a mean field potential (averaged macroscopic level). Propagating waves
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are observed during various types of brain activity. They provide subthreshold depolarization to
individual neurons and increase their spiking probability. According to Muller et al. [3], TW “travel
over spatial scales that range from the mesoscopic (single cortical areas and millimetres of cortex) to
the macroscopic (global patterns of activity over several centimeters) and extend over temporal scales
from tens to hundreds of milliseconds.” It has been proposed that TW mediate information transfer in
the cortex.

Propagating waves increase the probability of neuron firing due to depolarization of neuronal
membrane [4]. In [3] it was suggested that TW can be “spontaneously generated by recurrent circuits or
evoked by external stimuli and travel along brain networks at multiple scales, transiently modulating
spiking and excitability as they pass.” The phase relations between oscillations in different cortical
regions produce the TW, and depending on the distance, axonal conduction delays can reach up to tens
of milliseconds. These TW correlate with the subject’s performance, propagate in specific directions
and synchronize distributed cortical networks that are communicating [5].

Botella-Soler et al. [6] identified for each subject the set of intracranial contacts that showed
a larger percentage of detected events during slow wave cortical activity. They called these contacts
“hubs” because the slow wave events in their travel through the cortical networks seemed to have
a great probability of passing through the region close to the contact. Using probabilities, they were
able to reconstruct a preferential propagation network for each subject. Slow waves have been reported
to propagate across cortical areas at about 1m/s with multiple propagation paths and several points
of origin. It seems that the slow waves have a preference to start in the prefrontal cortex and to
end in posterior and temporal regions of the cortex. These waves appear to shape and strengthen
neuronal networks.

Let us also note that time delays are intrinsic to the dynamics of brain networks, nodes and edges.
Propagation speed along axons depends on axonal length and diameter. Conduction times along
neural circuits also depend on degree of fiber myelination. The introduction of time delays in models
can lead to significant changes in brain dynamics. They can be averaged or treated as distributed
delays. In this paper we address the question of the effects of these delays in the dynamics of periodic
cortical waves.

Thus, according to the biological observations, TW propagate in the cortex, activating and
coordinating different parts of the brain. In this work, we study some of their properties. In the next
section, we introduce the model. Then we present stability analysis which determines the conditions
of wave appearance. Their nonlinear dynamics will be discussed in Section 3.

1.2. Neural Field Model

Neural field models were first introduced in [7]. Periodic traveling waves are described by several
models (see [8–12] and Appendix A). In this work we consider one equation model with delay, and we
discuss two mechanisms of the emergence of such waves, which were not sufficiently investigated
previously. The first mechanism is related to the asymmetric connectivity functions [13], and the
second one is determined by the delay in the response function. It is known that the loss of stability
of the homogeneous in the space solution in this model does not lead to the bifurcation of periodic
waves [8]. We show that they still appear for some larger values of time delay. We consider the
one-dimensional neural field equation for the electric potential in the brain cortex written in the form

∂u
∂t

= D
∂2u
∂x2 + Wa −Wi − σu, (1)

where D is the diffusion coefficient; Wa and Wi are given by the expressions

Wa(x, t) =
∫ ∞

−∞
φa(x− y)Sa

(
u
(

y, t− |x− y|
qa

− τa

))
dy, (2)
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Wi(x, t) =
∫ ∞

−∞
φi(x− y)Si

(
u
(

y, t− |x− y|
qi

− τi

))
dy (3)

and characterize neuron activation and inhibition. These expressions describe the intensity of signal
coming from all points y to the point x; Sa(u) and Si(u) are smooth functions; qa and qi are the
excitation speeds; |x− y|/qa,i is the time delay due to the excitation propagation from the point y to
the point x; φa and φi are the connectivity functions,

φa(r) =

{
a1e−b1r , r > 0
a3eb3r , r < 0

, φi(r) =

{
a2e−b2r , r > 0
a4eb4r , r < 0

, (4)

where ai, bi are some positive constants. Response functions Sa(u) and Si(u) are non-negative,
non-decreasing functions usually considered as sigmoid-type functions; τa and τi are time delays
in neuron response to the activating and inhibitory signals. The last term on the right-hand side of
Equation (1) describes signal decay with a decay rate σ > 0.

Neural field models are often considered without the diffusion term in the studies of both
brain oscillations and traveling waves (see, e.g., [14–17]). In the case of small diffusion coefficients,
its influence is not essential [18]. It can describe the ephaptic effect [19], ion diffusion and gap junction.
The integral terms in Equation (1) characterize nonlocal neuron communication due to axons and
dendrites. The speeds qa and qi of electric impulse propagation along axons are of the order 2–4 m/s,
while the speed of wave propagation is one-two orders of magnitude less [20] (p. 213). Thus, we will
consider a large speed limit qa = qi → ∞:

∂u
∂t

= D
∂2u
∂x2 +

∫ ∞

−∞
(φa(x− y)Sa (u (y, t− τa))− φi(x− y)Si (u (y, t− τi))) dy− σu. (5)

Up to the diffusion term, which is not very essential for small diffusion coefficients, this model is
a particular case of the two equation model considered in [8]. If the kernels in the two equations are
the same, then the system can be reduced to the single equation.

Different neural field models describe the propagation of periodic traveling waves (see
Appendix A). In this work we will consider two other mechanisms of their emergence. One of them is
related to asymmetric kernels φa and φi, whose existence is confirmed by the experimental observations
and used in theoretical considerations [13,21]. Another one is determined by the secondary bifurcation
due to time delay for symmetric connectivity functions. Similarly to [8], we observe that the loss
of stability of the homogeneous in space stationary solution leads to the appearance of periodic
time oscillations independent of the space variable or of stationary periodic in space solutions.
Periodic traveling waves bifurcate in the instability region, and they are unstable close to the bifurcation
point. We will see that they can become stable under further change of parameters.

We studied the dynamics of the periodic waves, including their non-uniqueness for the same
values of parameters. This property seems to us important, since the co-existence of waves with
different frequencies is experimentally observed.

2. Stability

2.1. Linearization and Eigenvalues

In this section we will consider the Equation (5) on the interval 0 < x < L with periodic boundary
conditions. We extend the function u(x, t) by periodicity on the whole axis, −∞ < x < ∞, so that the
integrals in Equation (5) are well defined. Let u0 be a solution of the equation

φ∗a Sa(u) + φ∗i Si(u)− σu = 0,
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where φ∗a =
∫ ∞
−∞ φa(x)dx, φ∗i =

∫ ∞
−∞ φi(x)dx. Then u0 is a stationary solution of Equation (5).

Linearizing this equation about u0, we obtain the eigenvalue problem:

Dv” + S′a(u0)e−λτa

∫ ∞

−∞
φa(x− y)v(y)dy− S′i(u0)e−λτi

∫ ∞

−∞
φi(x− y)v(y)dy− σv = λv. (6)

Here, v is a small perturbation of the stationary solution u0. Applying the Fourier transform, we get

S′a(u0)e−λτa φ̃a(ξ)− S′i(u0)e−λτi φ̃i(ξ)− Dξ2 − σ = λ, (7)

where

φ̃a(ξ) =
a1b1

b2
1 + ξ2

+
a3b3

b2
3 + ξ2

+ iξ

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
,

φ̃i(ξ) =
a2b2

b2
2 + ξ2

+
a4b4

b2
4 + ξ2

+ iξ

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
are Fourier transforms of the functions φa and φi, respectively. Let us note that Fourier transform
of non-integrable functions is considered in the sense of generalized functions. Using Fourier series
instead of Fourier transform allows one to use a classical function instead of generalized functions.
However, the advantage of the Fourier transform is that the periodicity of solutions is not imposed.

Set λ = iν. Separating the real and imaginary parts in Equation (7), we obtain:

S′a(u0) cos(ντa)

(
a1b1

b2
1 + ξ2

+
a3b3

b2
3 + ξ2

)
+ S′a(u0)ξ sin(ντa)

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
− (8)

S′i(u0) cos(ντi)

(
a2b2

b2
2 + ξ2

+
a4b4

b2
4 + ξ2

)
− S′i(u0)ξ sin(ντi)

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
− Dξ2 = σ,

− S′a(u0) sin(ντa)

(
a1b1

b2
1 + ξ2

+
a3b3

b2
3 + ξ2

)
+ S′a(u0)ξ cos(ντa)

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
+ (9)

S′i(u0) sin(ντi)

(
a2b2

b2
2 + ξ2

+
a4b4

b2
4 + ξ2

)
− S′i(u0)ξ cos(ντi)

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
= ν.

2.2. Symmetric Connectivity Functions with Time Delay

If the symmetry condition

a1 = a3, a2 = a4, b1 = b3, b2 = b4 (10)

is satisfied, then Equations (8) and (9) are as follows:

S′a(u0) cos(ντa)
a1b1

b2
1 + ξ2

− S′i(u0) cos(ντi)
a2b2

b2
2 + ξ2

− Dξ2/2 = σ/2, (11)

− S′a(u0) sin(ντa)
a1b1

b2
1 + ξ2

+ S′i(u0) sin(ντi)
a2b2

b2
2 + ξ2

= ν/2. (12)

We can express ξ2 through ν from the last equation and substitute them into Equation (11).
The resulting equation with respect to ν should be solved numerically or asymptotically. Since the
calculations are sufficiently complex, we will consider here a simplified case where τa = 0. Numerical
simulations show that periodic waves can exist in this case (Section 3). Our aim here is to analyze their
bifurcations from the homogeneous in space solution. Assuming that ν ≥ 0, we also get the conjugate
solution −ν.
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If τa = 0, then Equations (11) and (12) are as follows:

S′a(u0)
a1b1

b2
1 + ξ2

− S′i(u0) cos(ντi)
a2b2

b2
2 + ξ2

− Dξ2/2 = σ/2, (13)

S′i(u0) sin(ντi)
a2b2

b2
2 + ξ2

= ν/2. (14)

By the stability boundary we will understand here the value σ = σ0 such that system (13), (14)
does not have solutions for σ > σ0, and it has at least one solution for σ < σ0. This stability boundary
σ0 is uniquely defined and it can be negative.

Proposition 1. At the stability boundary, ξ = 0 or ν = 0.

Proof. Consider Equation (14) as an equation with respect to ν for a fixed ξ. It has a solution ν 6= 0 if
and only if

2τiS′i(u0)
a2b2

b2
2 + ξ2

> 1. (15)

Suppose that this condition is satisfied for some ξ0 > 0, and denote by ν(ξ) solution of Equation
(14) in the vicinity of ξ = ξ0 > 0, and ν0 = ν(ξ0) > 0. Assume that the corresponding value σ0 belongs
to the stability boundary.

Taking into account Equation (14), we can write Equation (13) as follows:

2S′a(u0)
a1b1

b2
1 + ξ2

− ν cot(ντi)− Dξ2 = σ. (16)

Let ξ1 be sufficiently close to ξ0 such that condition (15) remains satisfied, and ξ1 < ξ0.
Considering ν(ξ0) < π/τi, we get ν(ξ1) > ν(ξ0). Therefore,

ν(ξ1) cot(ν(ξ1)τi) < ν(ξ0) cot(ν(ξ0)τi).

Set
F(ξ) = 2S′a(u0)

a1b1

b2
1 + ξ2

− ν(ξ) cot(ν(ξ)τi)− Dξ2.

Thus, F(ξ1) > F(ξ0). Hence, σ0 = F(ξ0) cannot belong to the stability boundary since σ1 = F(ξ1) > σ0,
and system (13), (14) has a solution for σ = σ1. This contradiction shows that ξ0 = 0 when ν0 6= 0.

Let 2π/τi < ν(ξ0) < 5π/(2τi). Then there is another solution ν1(ξ0) of Equation (14) such that
π/(2τi) < ν1(ξ0) < π/τi. Therefore, cos(ν1(ξ0)τi) < 0, cos(ν(ξ0)τi) > 0, and

σ0 = F(ξ0) < 2S′a(u0)
a1b1

b2
1 + ξ2

0
− ν1(ξ0) cot(ν1(ξ0)τi)− Dξ2

0.

Hence, σ0 cannot belong to the stability boundary.
Finally, in all other cases with ν(ξ0) > 5π/(2τi) we obtain a contradiction similarly to the two

cases considered before. This contradiction shows that at the stability boundary, either ξ = 0 or
ν = 0.

Let us now determine the stability boundary with respect to time delay for a fixed σ. If ν = 0,
then from Equation (13) we get

σ =
α1

b2
1 + ξ2

− α2

b2
2 + ξ2

− Dξ2, (17)
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where α1 = 2S′a(u0)a1b1, α2 = 2S′i(u0)a2b2. Assuming that ν 6= 0, we set βi = αi/(b2
i + ξ2), i = 1, 2.

Then sin(ντi) = ν/β2,

β1 −
√

β2
2 − ν2 = σ, ν2 = β2

2 − (β1 − σ)2.

Example 1. Consider the values of parameters: S′a(u0) = S′i(u0) = 20, a1 = a2 = 4, b1 = 40, b2 = 20, α1 =

6400, α2 = 3200, σ = 0.01, Then we find

ξ = 0, β1 = 4, β2 = 8, ν2 ≈ 48, ν ≈ 6.93, τi =
1
ν

arcsin
ν

β2
= 0.151,

and
ξ = π, β1 = 3.975, β2 = 7.805, ν2 ≈ 45.123, ν ≈ 6.717, τi =

1
ν

arcsin
ν

β2
= 0.154

Hence, the homogeneous in space oscillations appear for a smaller value of time delay than periodic traveling
waves. Therefore, these waves are unstable in the vicinity of the bifurcation point. We will see in the next section
that they become stable for larger values of time delay.

2.3. Asymmetric Connectivity Function without Time Delay

If conditions (10) do not not hold, then eigenvalue (7) has a nonzero imaginary part,
λ(ξ) = α(ξ) + iν(ξ),

α(ξ) =
saa1b1

b2
1 + ξ2

+
saa3b3

b2
3 + ξ2

− sia2b2

b2
2 + ξ2

− sia4b4

b2
4 + ξ2

− Dξ2 − σ,

ν(ξ) = saξ

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
− siξ

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
, (18)

sa = S′a(u0), si = S′i(u0). Condition α(ξ) = 0 determines the stability boundary,

σ =
saa1b1

b2
1 + ξ2

+
saa3b3

b2
3 + ξ2

− sia2b2

b2
2 + ξ2

− sia4b4

b2
4 + ξ2

− Dξ2 ≡ Φ2(ξ). (19)

If σ < Φ2(ξ) for some values of ξ, then the solution loses its stability due to a pair of complex
conjugate eigenvalues λ(ξ) = α(ξ)± iν(ξ). For α = 0 corresponding to the stability boundary, the
bounded solution of the linearized equation can be written as follows:

u(x, t) = eiνteiξx + e−iνte−iξx = cos(νt + ξx).

We find ξ from equality α(ξ) = 0 and ν from (18). The frequency of the periodic wave equals ξ

and its speed c = −ν/ξ can be determined from (18):

c = −sa

(
a1

b2
1 + ξ2

− a3

b2
3 + ξ2

)
+ si

(
a2

b2
2 + ξ2

− a4

b2
4 + ξ2

)
. (20)

Different waves with the frequencies satisfying condition σ < Φ(ξ) can exist for the same values
of parameters. Their speed can be increasing or decreasing functions of frequency according to (20).

3. Numerical Results

Numerical simulations of Equation (5) in a bounded interval 0 ≤ x ≤ L with periodic boundary
conditions will be started in the case without time delay and continued with the case of time delay in
the response functions Sa(u) = Sb(u) = arctan(hu), h > 0. We will finish this section with modeling
of the stimulation of the damaged tissue in order to restore wave propagation.
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The numerical method uses an implicit finite difference scheme with Thomas’s algorithm for the
inversion of the tridiagonal matrix. Initial conditions are considered either in the form of a piece-wise
constant function or a sinus-like function with a given periodicity. The continuation method is used
to follow the branches of solutions. In this case, the value of some parameter gradually changes.
As an initial condition for the new value of parameter, we take the result of the simulation obtained
for the previous value of parameter. The time step was usually taken as 0.05 and the space step
0.005. The accuracy of numerical simulations was controlled by decreasing the time and space steps.
The typical values of parameters used in numerical simulations are presented in Table A1. Their specific
values are give below.

3.1. Wave Propagation without Time Delay

In the case without time delay (τa = τi = 0) and with symmetric connectivity functions φa and
φi, where a1 = a3, a2 = a4, b1 = b3, b2 = b4, periodic in space stationary solutions bifurcate from the
constant solution. Linear stability analysis shows that traveling waves with nonzero speed do not
bifurcate in this case.

If the connectivity functions are not symmetric, then traveling waves with nonzero speed are
observed (see Figures 1 and 2). Linear stability analysis allows the determination of the wave speed
and frequency near the bifurcation point. Let us consider an example with the following values of
parameters: a1 = 3, a2 = 4, a3 = 3, a4 = 1, b1 = 40, b2 = 20, b3 = 40, b4 = 20, D = 10−3, h = 20, L = 2.
Analysis of the function α(ξ) (Section 2.3) shows that it has a maximum at ξ = 20.53. It is positive for
σ < σc = 0.4 resulting in the bifurcation of the periodic wave with the speed given by Equation (20).
For the chosen values of parameters, we get c = −0.54. Numerical simulations show the emergence of
a periodic wave with 7 periods in the interval [0, L] and with the corresponding frequency ξ = 21.98.
Since the number of periods is an integer, the frequency of the wave observed in numerical simulations
is not precisely equal to the analytical value. The wave with the closest frequency emerges since the
corresponding eigenvalue has the maximal real part in comparison with the waves with other periods.
The speed of this wave c = −0.52 is close to the analytical value.

For the values of parameters far from the stability boundary, two types of solutions are observed
in numerical simulations: periodic waves with a constant speed (Figure 1) and aperiodic waves with
oscillating speed (Figure 2). In the first case, the wave has conventional form w(x− ct), where w(x) is
a periodic in space function and c is a constant. In the second case, the amplitude of spatial peaks and
the wave speed oscillate.

Figure 1. A snapshot of periodic wave described by Equation (5) for τa = τi = 0 (left) and a zoom-in on
the lower part of the graph (right). The values of parameters are as follows: D = 10−4, σ = 0.01, L = 2,
a1 = a2 = 0.6, a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu), and h = 20.
Here and in all examples below, the stationary solution u0 = 0.
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Figure 2. A snapshot of aperiodic wave described by Equation (5) for τa = τi = 0 (left) and a zoom-in
on the lower part of the graph (right). Periodic (Figure 1) and aperiodic waves can exist for the same
values of parameters. Convergence of solutions to one of them is determined by the initial conditions.
The values of parameters are as follows: D = 10−4, σ = 0.01, L = 2, a1 = a2 = 0.6, a3 = a4 = 4,
b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu), and h = 20.

Different periodic regimes can co-exist for the same values of parameters. Figure 3 shows the
dependence of the wave speed on the values a1(= a2) for all other parameters fixed. There are three
branches of solutions corresponding to different spatial frequencies. Thus, there are three different
periodic waves for the same values of parameters with the speeds depending on their frequency.

Figure 3. The speed of periodic waves for different values of the parameters a1 = a2. Three curves
correspond to different values of the spatial frequency: (1) solution with 12 periods in the interval [0, L],
(2) 13 periods, (3) 14 periods. Branching in curve 1 shows the transition to modulated oscillations with
the maximal and minimal values of the oscillating speed. The values of parameters are as follows:
D = 10−4, σ = 0.01, L = 2, a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu),
and h = 20.

For a sufficiently small a1, transition to modulated waves can occur (curve 1) with the amplitude
and speed depending on time. Such solutions can be qualitatively approximated by the function
u(x, t) = (k1 + ε sin(k2x + k3t)) sin(k4x + k5t), where ki are some constants. For even smaller values of
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a1, transition to aperiodic oscillations is observed for all three branches of solutions. These oscillations
can coexist with periodic or modulated periodic waves for the same values of parameters.

3.2. Time Delay and Symmetric Connectivity Functions

3.2.1. Initial Conditions

As it was discussed in the previous section, the loss of stability of the homogeneous in space
stationary solution leads either to the homogeneous in space time oscillations or to the stationary
periodic in space solutions. Consider time delay as a bifurcation parameter. If it exceeds a critical
value, then time oscillations emerge. Periodic traveling waves bifurcate for a larger value of time delay,
and they are unstable in the vicinity of the bifurcation point. Numerical simulations show that they
can become stable under a further increase of τ. Nevertheless, periodic time oscillations homogeneous
in space remain stable. Therefore, we need to choose some particular initial conditions in order to get
periodic traveling waves.

The simulations presented in this section were carried out with two types of initial conditions.
In the first case, we consider the equation

∂u
∂t

= D
∂2u
∂x2 + I(x, t) (21)

on the time interval 0 ≤ t ≤ T0. Here I(x, t) = I0 cos(px + qt), and the initial condition u(x, 0) = 0.
The result of this simulation is considered as the initial condition for Equation (5). We set I0 = 0.5, q =

0.015, T0 = 20; the value of p is taken 3, 6, 9 depending on the required space periodicity.
The second type of initial conditions is used in the continuation method. The results of the

simulations of Equation (5) for some values of parameters are used as initial conditions for some other
values of parameters.

3.2.2. Multiplicity of Waves and Parameter Dependence

An example of periodic traveling waves with different initial conditions and the same values
of parameters are shown in Figure 4. We observe one, two and three-period waves generated by
function I(x, t) for p = 3, 6 and 9. These waves have different speeds and amplitudes. The waves with
larger wavelengths have higher speeds and amplitudes. If time delay is sufficiently small, then the
waves become unstable, and the transition to periodic time oscillations independent of the space
variable is observed. If the value I0 is small enough, then the solution converges to the homogeneous
time oscillations.

Figure 4. Three types of periodic waves observed for the same values of parameters and having
different spatial frequency and speed: one-period wave with speed −0.027 (left); two-period wave
with speed −0.012 (middle); three-period wave with speed −0.0094. The values of parameters are as
follows: D = 10−4, σ = 0.01, L = 2, τa = 0, τi = 12, a1 = a2 = a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20.
Here Sa(u) = Si(u) = arctan(hu), and h = 20.
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Increase of time delay leads to the increase of the wave amplitude and to the decrease of its speed
(Figure 5). Wave propagation is determined by the transmission of activating signal between the
neurons. Since time delay retards this transmission, the speed decreases. This result was previously
obtained analytically for monotone waves [22]. Since the activating signal propagates slower with
time delay, the local response and the wave amplitude increase.

Figure 5. The absolute value of the speed (1a, 2a) and the amplitude (1b, 2b) for the one-period wave
(1a, 1b) and two-period wave (2a, 2b) depending on τi. Connected points correspond to stable solutions;
separate points to unstable solutions. The latter lead to the appearance of stationary solutions periodic
in space. The values of parameters are as follows: D = 10−4, σ = 0.01, τa = 0, a1 = a2 = a3 = a4 = 4,
b1 = b3 = 40, b2 = b4 = 20. Here Sa(u) = Si(u) = arctan(hu), and h = 20.

Let us note that the critical value of time delay τi ≈ 1.5 found in numerical simulations and
the value of the wave speed near the bifurcation point c ≈ −2 correspond to the analytical values
determined in the example in Section 2.2 (Figure 5, curves 1a, 1b). The analytical value of the
speed c = −ν/ξ = −2.13 at the bifurcation point is slightly different from the numerical value.
Since the periodic wave is unstable near the bifurcation point, we can determine its speed in numerical
simulations only at some distance from the critical value τi.

Figure 6 shows the dependence of periodic waves on the value b2 (equal to b4). The wave
amplitude and speed decrease with the increase of b2. There is a critical value b2 ≈ 40 for which the
speed becomes zero, and a transition to another branch of solutions is observed. These are stationary,
periodic in space solutions with growing amplitude as b2 increases. It is interesting to note the
existence of weakly oscillating time periodic solutions in a narrow interval between traveling waves
and stationary solutions.

The results presented above were obtained for a single delay τi in the inhibition term while
τa = 0. If we fix τi = 1 and increase τa beginning from τa = 0, then the amplitude and the speed of
traveling waves are not monotonous. The former first decreases, passes through the minimum and
then increases, while the latter increases in the beginning and decreases for larger values of the delay
(not shown).
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Figure 6. Dependence of the amplitude of the observed regimes on b2(= b4). Periodic traveling
waves are located on branch 1; stationary solutions on branch 3. A short branch 2 contains weakly
oscillating solutions. The values of parameters are as follows: D = 10−4, σ = 0.01, L = 2, τa = 0, τi = 1,
a1 = a2 = a3 = a4 = 4, b1 = b3 = 40. Here Sa(u) = Si(u) = arctan(hu), and h = 20.

3.3. Stimulation

Wave propagation can be different in a damaged tissue [23]. In this section we discuss its possible
restoration by external stimulation. This question was considered in [24] for monotonous wave fronts.

3.3.1. Exact Solution of the Stimulation Problem

Let us write Equation (5) for the normal tissue

∂u
∂t

= D
∂2u
∂x2 + J(u)− σu, (22)

where
J(u) =

∫ ∞

−∞
φa(x− y)Sa (u (y, t− τa)) dy−

∫ ∞

−∞
φi(x− y)Si (u (y, t− τi)) dy,

and a similar equation for the damaged tissue

∂v
∂t

= D
∂2v
∂x2 + J∗(v)− σv, (23)

where
J∗(v) =

∫ ∞

−∞
φ∗a (x− y)S∗a (v (y, t− τa)) dy−

∫ ∞

−∞
φ∗i (x− y)S∗i (v (y, t− τi)) dy,

and ∗ denotes the functions for the damaged tissue. In the presence of stimulation I(x, t) this equation
is as follows:

∂z
∂t

= D
∂2z
∂x2 + J∗(z)− σz + I(x, t). (24)

We will choose this function such that solution z(x, t) of Equation (24) becomes equal solution
u(x, t) of Equation (22). We set z(x, t) = u(x, t), and substitute u(x, t) in Equation (24). Then

I(x, t) =
∂u
∂t
− D

∂2u
∂x2 − J∗(u) + σu = J(u)− J∗(u).

Thus, the stimulation function

I(x, t) = J(u)− J∗(u)
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gives solution of the complete reconstruction problem.

3.3.2. Approximate Solution of the Stimulation Problem

The stimulation function suggested above uses the solution u(x, t) which may not be known for
the patient with the damaged brain tissue. In this case, some approximate solutions of the stimulation
problem can be used. Consider the integral J∗(v) in the following form:

J∗(v) =
∫ ∞

−∞
W(x)W(y) (φa(x− y)Sa (v (y, t− τa))− φi(x− y)Si (v (y, t− τi))) dy,

where W(x) = w0 < 1 for x1 ≤ x ≤ x2, x1, x2 ∈ (0, L), and W(x) = 1 outside the interval [x1, x2].
Hence, the connectivity function decreases if x or y belongs to the damaged area [x1, x2]. If we set
w0 = 0, then the connectivity function vanishes if one of the two points x or y (neurons) belongs to the
damaged area.

Without damage, the periodic traveling wave solution of Equation (22) and the integral J(u) can
be approximated by a cosine function (Figure 7). Hence, we will look for the stimulation function
in the form approximating the periodic wave: I(x, t) = I0(x) cos(px + qt). We set p = 6, q = 1 to
approximate the frequency and the speed of the wave in the normal tissue. We set I0(x) = i0 for
x1 ≤ x ≤ x2, and I0(x) = i1 outside the interval [x1, x2]. The results of numerical simulations are
presented in Figure 7 with the comparison of the normal tissue, damaged tissue without stimulation
and damaged tissue with stimulation. We observe a periodic wave in the normal tissue. The behavior
of the solution is completely different in the damaged tissue. The solution is close to 0 at the damaged
interval (green in the middle figure), and it oscillates periodically in time from both sides of this
interval. Stimulation restores the wave propagation with the same frequency and speed. The choice
of the stimulation amplitude i0 = 0.6 and i1 = 0.1 (for the example in the figure) is important. If we
set i0 = 0.6, i1 = 0, the stimulation is not successful; there is no wave propagation. Thus, stimulation
should be done not only inside the damaged interval but also around it.

Figure 7. Periodic traveling wave in the normal tissue and the integral J(u) (left). Snapshots of
solutions in the damaged tissue for two different moments of time (a) and (b) (middle). Solution with
stimulation becomes close to the periodic wave (right). The values of parameters are as follows:
D = 10−4, σ = 0.01, L = 2, τa = 0, τi = 1, a1 = a2 = a3 = a4 = 4, b1 = b3 = 40, b2 = b4 = 20,
Sa(u) = Si(u) = arctan(hu), h = 20, p = 6, q = 1, i0 = 0.6, i1 = 0.1. Green interval [0.5, 1.07] shows the
damaged tissue, w0 = 0.
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4. Discussion

Brain functioning is determined by large scale networks of epicenters (hubs) located in the
cortex and connected by white matter fiber tracks. The structure of these networks depends on the
particular type of the brain activity (motor, language and so on) and on the inter-individual variation.
The epicenters exchange information by means of signaling along the cortex or along the white matter
fibers. Apparently, this signaling occurs in the form of traveling waves. Periodic traveling waves
are observed in thalamus, visual cortex, hippocampus and other parts of the brain. There is more
and more evidence that they play the key roles in brain functioning. However, their exact roles and
organization are not known. Their characteristics, such as speed, frequency and amplitude, can vary in
wide limits (Appendix B), and it is not clear how they are initiated and stop, and how they are related
to some particular types of activities. For example, periodic waves are observed in the beginning of
produced speech, and they inverse their direction at the end [25]. The corresponding mechanisms
governing these activities are not yet understood. These investigations are at the stage of accumulation
of biological data and of elaboration of different models whose role and utility will become clearer
with time.

Neural field models are widely used to study brain patterns, including stationary structures,
pulses, wave fronts, and periodic waves. There are a number of models which describe periodic waves
(Appendix A) since it is relatively easy to find these waves on the basis of linear stability analysis
of the homogeneous in space stationary solution. The mechanisms of this instability can be related
to a combination of inhibition, time delay, refractoriness (also a variant of time delay) and nonlocal
interaction. In this work we study the influence of asymmetry of connectivity functions and of time
delay in neuron response.

Neuron connectivity is provided by numerous axons whose density decrease approximately
exponentially as a function of distance [26,27]. In modeling, the connectivity functions are usually
considered to be symmetric; that is, axon connections between points x and y have the same density as
between y and x. There is some evidence that connectivity can be asymmetric [13].

In this work we study periodic waves emerging due to the asymmetry of the connectivity
function and due to time delay in the response function. Both of them correspond to the existing
biological mechanisms. They allow us to study periodic waves in the minimal model which consists
of a single integro-differential equation. Other models contain two equations (Appendix A). In the
case of asymmetric connectivity function, periodic waves bifurcate due to the loss of stability of the
homogeneous in space stationary solution. They become unstable, while bifurcating periodic waves
are stable. This is different in the case of time delay. Periodic waves bifurcate from the unstable
stationary solution because of space-independent oscillations. Increasing time delay leads to their
stabilization.

Though the model contains quite many parameters, using some combination of parameters
reduces their number. Next, there are some additional relations between the parameters which
determine the stability boundary. Furthermore, there are some physical estimates, such as the decay
rate of neuron connectivity function or the value of time delay. Finally, the wave speed and frequency,
which depend on parameters, should be in some experimentally observed range. Altogether, these
constraints determine some limited intervals of parameter variation (Appendix B).

Cortex Damage and Stimulation

The network of hubs related to some brain function (connectome) can be damaged because
of stroke or other factors leading to partial or complete loss of the corresponding function.
Post-stroke patient recovery is often incomplete, and usually limited to six months after the accident.
Various stimulation techniques are discussed in the literature, but their results are controversial [28].

Post-stroke brain damage can influence propagation of brain waves between the hubs of the
connectome. Traveling waves in the cortex can have several functions, including activation of some of
its parts. This activation facilitates firing of individual neurons [4]. TW reflect information originating
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from right and left hemispheres, traveling short and long distances, and containing various time delays.
In other words, TW coordinate multiple faster and slower speech events by preparing the arrival of
signals traveling along white matter tracts to specific hubs. In particular, direct brain recording (ECoG)
showed the presence of TW during consonant-vowel syllables’ pronunciation [25]. Summarizing the
results by Gross et al. [29] examining how brain waves help us make sense of speech in healthy
subjects, Weaver [30] indicated the presence of different time scales in speech production from tens
of milliseconds (phoneme) to hundreds of milliseconds (intonation). Today, the language networks
have been identified with precision, including phonological processing, speech planning, language
semantics, spatial cognition and other functions [31].

We address in this work the question about possible restoration of cortex waves by external
stimulation. We show that appropriate choice of injected current allows the recovery of wave speed
and frequency, possibly leading to a better communication between the hubs of the connectome.
This proof of concept is the first step on the long road to a possible application of this approach to
patient rehabilitation.
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Appendix A. Periodic Waves in Different Models

Two equations with time delay.

In the work [8] a single neuron population model (excitation)

τ
∂u
∂t

=
∫ ∞

−∞
P(x− y)ψ(u(y, t− d))du− u (A1)

and a two population model (excitation and inhibition)

τ
∂u
∂t

=
∫ ∞

−∞
(P11(x− y)ψ1(u(y, t− d))− P12(x− y)ψ2(v(y, t− d)) dy− u (A2)

τ
∂v
∂t

=
∫ ∞

−∞
(P21(x− y)ψ1(u(y, t− d))− P22(x− y)ψ2(v(y, t− d)) dy− v (A3)

are considered. Here P(x) and Pij(x) are symmetric positive functions. A particular example of
step-wise constant functions is studied. Periodic traveling waves cannot exist for the first model.
They are observed for the second model. The existence of pulse solutions in a similar model without
delay was studied in [32].

One equation with distributed speed and delay.

Equation with a distributed propagation speed and time delay is considered in [9]:

L
(

∂u
∂t

)
= α

∫ ∞

0
g(v)

∫ ∞

−∞
K(z)S(u(x + z, t− |z|/v))dzdv+

β
∫ ∞

0
f (τ)

∫ ∞

−∞
F(z)S(u(x + z, t− τ))dzdτ, (A4)
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where L is a second-order differential operator; the functions K(z) and F(z) include both activatory
and inhibitory kernels. Different regimes are observed: periodic in time and independent of space,
stationary periodic in space, periodic traveling waves.

The model with distributed time delay is considered in [10]

u(x, t) =
∫ ∞

−∞
w(x− y)dy

∫ t

−∞
η(t− s) f (u(y, s− |x− y|/v))ds.

The same regimes as above and oscillating Turing structures are observed.

Neural field model with linear adaptation.

It is a two equation model

τ
∂u
∂t

= −u− βv +
∫

D
w(x− y)F(u(y, t))dy, (A5)

1
α

∂v
∂t

= u− v, (A6)

where the second variable represents a linear adaptation (see [11] and the references therein). A large
variety of waves and patterns are observed, including stationary periodic in space solutions, traveling
waves, modulated traveling waves and stationary and oscillating bumps.

Neural field model with refractoriness.

Periodic traveling waves are also found in one-equation model without inhibition term but with
neuron refractoriness (time delay after firing) [12]:

1
r

∂u
∂t

= −u +

(
1−

∫ t

t−1
u(x, s)ds

)
f (w⊗ u).

Here ⊗ denotes spatial convolution.

Appendix B. The Values of Parameters

Periodic traveling waves behave as cos(βt + ξx) with the time frequency β, space frequency ξ

and speed c = −β/ξ. With the interval length L = 2 cm, we get ξ = 2π/L ≈ 3 cm−1.
Let us consider the example of the simulations in Figure 5 with τ = 1 and wave speed 0.3. If this

value of τ corresponds to the characteristic time delay 10 ms ([9,33] Chapter 2.3.1), that is, the time
unit in the simulation corresponds to 0.01 s, then c = 0.3× 100 = 30 cm/s.

The time frequency β = cξ = 90 s−1 belongs to the upper limit of the observed range. The value
of the wave speed, and respectively, the time frequency linearly dependent on it can be decreased by
the variation of parameters ai and bi.

Connectivity functions can be estimated from the data in [26,27]. It exponentially decreases with
the rate of decrease in the interval 3–10 times at the at the distance 0.03 cm. This corresponds to the
exponential exp(−µx) with µ in the range 30÷ 40 cm−1.

Propagation speed measures vary depending of the methodology used. When macroscopic
waves are recorded from EEG or from ECoG which have low spatial and high temporal resolutions,
the propagation speeds varies between 1 and 10 m/s. As indicated by Muller et al. [3], these results are
compatible with the range of axonal conduction speeds of myelinated white matter fibers in the cortex.
However, when measuring mesoscopic waves’ propagation speed using local field potential (LFP)
from multielectrode arrays (MEAs) or from optical imaging signals recorded with voltage-sensitive
dyes (VSDs) having high spatial and temporal resolution, the propagation speeds varies from 0.1
to 0.8 m per second, consistent with the axonal conduction speed of the unmyelinated long-range
horizontal fibers within the superficial layers of the cortex, as indicated by Muller et al. [3].
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Summary of parameters.

Parameters of the model are summarized in the following table. Let us note that all parameters
are dimensionless. They can be recalculated to dimensional values as in the example above.

Table A1. Typical values of parameters of the model.

Parameter Name Unit Typical Value

D diffusion coefficient length2/time 10−4

L length of the interval length 2
a1, a2, a3, a4 factors in connectivity functions 1/length 1÷ 5
b1, b2, b3, b4 exponents in connectivity functions 1/length 20÷ 40
S′a(0), S′i(0) growth rate of response functions 1/time 20

τa, τi time delay in response functions time 1÷ 10
σ potential decay rate 1/time 0.01
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