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Abstract: In this paper, we obtain two iterative methods with memory by using inverse interpolation.
Firstly, using three function evaluations, we present a two-step iterative method with memory,
which has the convergence order 4.5616. Secondly, a three-step iterative method of order 10.1311
is obtained, which requires four function evaluations per iteration. Herzberger’s matrix method is
used to prove the convergence order of new methods. Finally, numerical comparisons are made
with some known methods by using the basins of attraction and through numerical computations to
demonstrate the efficiency and the performance of the presented methods.

Keywords: multipoint iterative methods; with memory; nonlinear equations; inverse interpolation;
root-finding
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1. Introduction

Solving nonlinear equations is one of the most important problems in scientific computation.
Since 1960’s, many multipoint iterative methods have been proposed for solving nonlinear equations
of the form f (x) = 0. Inverse interpolation method and self-accelerating parameter method are
two effective ways to construct iterative method with memory. An iterative method uses some
self-accelerating parameters, which is called the self-accelerating type iterative method with memory.
The self-accelerating parameters is a variable parameter, which can be constructed by Newton
interpolation or Hermite interpolation. Many efficient self-accelerating type iterative methods have
been presented in recent years, see [1–11]. Džunić et al. [1], Soleymani et al. [2] and Sharma et al. [3]
have proposed some derivative free iterative methods with one self-accelerating parameter for solving
nonlinear equations. We [4–6] have obtained some Newton type iterative methods with memory using
one simple self-accelerating parameter, which is constructed by the iterative sequences. By increasing
the numbers of the self-accelerating parameters, Cordero et al. [7], Lotfi et al. [8] and Zafar et al. [9] have
obtained some iterative method with high efficiency. Chicharro et al. [10] have analyzed the stability
of iterative method with memory by dynamical theory. Narang et al. [11] have presented a class of
Steffensen type method with memory for solving nonlinear systems. However, the self-accelerating
parameter will be very complex if it is constructed by high order interpolation polynomial. In order to
save computing time, we should construct the self-accelerating parameter with simple structure. If an
iterative method with memory is constructed by using inverse interpolation polynomial, we will call it
inverse interpolation method with memory. Neta [12] has derived a very fast inverse interpolation
iterative method with memory, which is given by
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yk =N(xk) + [ f (yk−1)φ(zk−1)− f (zk−1)φ(yk−1)]
f (xk)

2

f (yk−1)− f (zk−1)
,

zk =N(xk) + [ f (yk)φ(zk−1)− f (zk−1)φ(yk)]
f (xk)

2

f (yk)− f (zk−1)
,

xk+1 =N(xk) + [ f (yk)φ(zk)− f (zk)φ(yk)]
f (xk)

2

f (yk)− f (zk)
,

(1)

where

N(xk) = xk −
f (xk)

f ′(xk)
, (2)

φ(t) =
1

f (t)− f (xk)

(
t− xk

f (t)− f (xk)
− 1

f ′(xk)

)
. (3)

Method (1) is denoted by Neta’s method (NETM) in this paper. Petković and Neta [13]
have obtained that the convergence order of NETM is at least 10.1311. Inspired by Neta’s idea,
Petković et al. [14] have presented the following two-step iterative method with memory{

yk =N(xk) + f (xk)
2φ(yk−1),

xk+1 =N(xk) + f (xk)
2φ(yk),

(4)

where N(xk) and φ(t) are defined by (2) and (3), respectively. The convergence order of method (4) is
4.562. Method (4) is denoted by Petković’s method (PETM) in this paper.

In this paper, two new iterative methods with memory are proposed for solving nonlinear
equations, which are constructed by using inverse interpolation method. We construct a two-step
iterative method of order 4.5616 by using three function evaluations. In order to further improve
the convergence order, a three-step iterative method with convergence order 10.1311 is obtained,
which requires four function evaluations. Herzberger’s matrix method is used to prove the order of
convergence of new methods. Finally, numerical experiments are employed to support the theory
developed in this work. The basins of attraction of existing methods and our methods are presented
and compared to illustrate their performance.

2. Two Inverse Interpolation Iterative Methods with Memory

Using inverse interpolation rational polynomial, we construct a two-step iterative method with
memory. Let

R( f (x)) =
a0 + a1( f (x)− f (xk))

1 + a2( f (x)− f (xk))
, (5)

be a rational polynomial satisfying

xk = R( f (xk)), (6)

1
f ′(xk)

= R′( f (xk)), (7)

yk−1 = R( f (yk−1)). (8)

From (6)–(8), we get
a0 = xk, (9)
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and the following system 
a1 =

1
f ′(xk)

+ a2xk,

yk−1 =
xk + a1( f (yk−1)− f (xk))

1 + a2( f (yk−1)− f (xk))
.

(10)

Solving system (10), we obtain

a1 =
1

f ′(xk)
+ ϕ(yk−1)xk, (11)

a2 = ϕ(yk−1), (12)

ϕ(t) =
1

t− xk
(

1
f ′(xk)

− t− xk
f (t)− f (xk)

), (13)

where ϕ(t) is a rational function.
From (5), (9), (11) and (12), we get

yk = R(0) =
xk − a1 f (xk)

1− a2 f (xk)
= xk −

f (xk)

f ′(xk)(1− ϕ(yk−1) f (xk))
(14)

In the next step, xk+1 can be obtained by carrying out the same calculation as yk but yk−1 should
be instead by yk. We get

xk+1 = xk −
f (xk)

f ′(xk)(1− ϕ(yk) f (xk))
. (15)

Together with (14) and (15), we obtain a new two-step method with memory as follows:
yk =xk −

f (xk)

f ′(xk)(1− ϕ(yk−1) f (xk))
,

xk+1 =xk −
f (xk)

f ′(xk)(1− ϕ(yk) f (xk))
,

(16)

where ϕ(t) is defined by (13).
We will use Herzberger’s matrix method [15] to determine the convergence order of Method (16).

Theorem 1. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊂ R → R for an open
interval I. If an initial approximation x0 is sufficiently close to a simple zero α of f , then the order of convergence
of the two-step method (16) with memory is at least 4.5616.

Proof. The lower bound of order of a single step s-point method xk = G(xk−1, xk−2, · · · , xk−s) is the
spectral radius of a matrix M(s) = (mij), associated to this method, with elements
m1,j =amount of information required at point xk−j, (j = 1, 2, · · · s),
mi,i−1 = 1(i = 2, 3, · · · s),
mi,j = 0 otherwise.

The lower bound of order of an s-step method G = G1 ◦ G2 ◦ · · · ◦ Gs is the spectral radius of the
product of matrices M(s) = M1 ·M2 · · ·Ms. According to Method (16), we get the following matrices.

xk+1 = G1(yk, xk)→ M1 =

[
1 2
1 0

]
,

yk = G2(xk, yk−1)→ M2 =

[
2 1
1 0

]
.
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The matrix M(2) corresponding to Method (15) is

M(2) =

[
1 2
1 0

] [
2 1
1 0

]
=

[
4 1
2 1

]
.

The characteristic polynomial of matrix M(2) is

P2(λ) = λ2 − 5λ + 2

and the eigenvalues of matrix M(2) are {4.5616, 0.4384}. Since the spectral radius of matrix M(2)is
ρ(M(2)) ≈ 4.5616. We conclude that the convergence order of Method (16) with memory is at
least 4.5616.

In order to improve the computational efficiency of iterative method, we construct a three-step
iterative method by using inverse interpolation rational polynomial. Let

R( f (x)) =
a0 + a1( f (x)− f (xk)) + a2( f (x)− f (xk))

2

1+a3( f (x)− f (xk))
, (17)

be a rational polynomial satisfying
xk = R( f (xk)), (18)

1
f ′(xk)

= R′( f (xk)), (19)

yk−1 = R( f (yk−1)). (20)

zk−1 = R( f (zk−1)). (21)

From (18)–(21), we get
a0 = xk, (22)

and the following system
a1 + a3xk =

1
f ′(xk)

,

a3yk−1 − a1 − a2( f (yk−1)− f (xk)) =
xk − yk−1

f (yk−1)− f (xk)
,

a3zk−1 − a1 − a2( f (zk−1)− f (xk)) =
xk − zk−1

f (zk−1)− f (xk)
,

(23)

Solving system (23), we obtain

a1 =
1

f ′(xk)
+ ϕ(yk−1)xk, (24)

a2 =
ϕ(yk−1)− ϕ(zk−1)

f [zk−1, xk]− f [yk−1, xk]
, (25)

a3 =
ϕ(zk−1) f [yk−1, xk]− ϕ(yk−1) f [zk−1, xk]

f [yk−1, xk]− f [zk−1, xk]
, (26)

where ϕ(t) is defined by (13).
From (16), (21) and (23)–(25), we have

yk = R(0) =
xk − a1 f (xk) + a2 f (xk)

2

1− a3 f (xk)
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= xk −
f (xk)[1−Mk,1(ϕ(yk−1)− ϕ(zk−1)) f (xk) f ′(xk)]

f ′(xk){1−Mk,1(ϕ(yk−1) f [zk−1, xk]− ϕ(zk−1) f [yk−1, xk]) f (xk)}
, (27)

where Mk,1 =
1

f [zk−1, xk]− f [yk−1, xk]
.

In the next step, zk can be obtained by carrying out the same calculation as yk but yk−1 should be
instead by yk. We get

zk = xk −
f (xk)[1−Mk,2(ϕ(yk)− ϕ(zk−1)) f (xk) f ′(xk)]

f ′(xk){1−Mk,2(ϕ(yk) f [zk−1, xk]− ϕ(zk−1) f [yk, xk]) f (xk)}
, (28)

where Mk,2 =
1

f [zk−1, xk]− f [yk, xk]
. xk+1 can be obtained by carrying out the same calculation as zk

but zk−1 should be instead by zk.

xk+1 = xk −
f (xk)[1−Mk,3(ϕ(yk)− ϕ(zk)) f (xk) f ′(xk)]

f ′(xk){1−Mk,1(ϕ(yk) f [zk, xk]− ϕ(zk) f [yk, xk]) f (xk)}
, (29)

where Mk,3 =
1

f [zk, xk]− f [yk, xk]
.

Together with (27)–(29), we obtain a new three-step method with memory as follows:

yk = xk −
f (xk)[1−Mk,1(ϕ(yk−1)− ϕ(zk−1)) f (xk) f ′(xk)]

f ′(xk){1−Mk,1(ϕ(yk−1) f [zk−1, xk]− ϕ(zk−1) f [yk−1, xk]) f (xk)}
,

zk = xk −
f (xk)[1−Mk,2(ϕ(yk)− ϕ(zk−1)) f (xk) f ′(xk)]

f ′(xk){1−Mk,1(ϕ(yk) f [zk−1, xk]− ϕ(zk−1) f [yk, xk]) f (xk)}
,

xk+1 = xk −
f (xk)[1−Mk,3(ϕ(yk)− ϕ(zk)) f (xk) f ′(xk)]

f ′(xk){1−Mk,1(ϕ(yk) f [zk, xk]− ϕ(zk) f [yk, xk]) f (xk)}
,

(30)

where Mk,1 =
1

f [zk−1, xk]− f [yk−1, xk]
, Mk,2 =

1
f [zk−1, xk]− f [yk, xk]

and Mk,3 =
1

f [zk, xk]− f [yk, xk]
.

Now, we give the order of convergence of Method (30) by the following theorem.

Theorem 2. Let α ∈ I be a simple zero of a sufficiently differentiable function f : I ⊂ R → R for an open
interval I. If an initial approximation x0 is sufficiently close to a simple zero α of f , then the order of convergence
of the three-step Method (30) with memory is at least 10.1311.

Proof. Using Herzberger’s matrix method [15], we obtain the following matrices of Method (30)

xk+1 = G1(zk, yk, xk)→ M1 =

 1 1 2
1 0 0
0 1 0

 ,

zk = G2(yk, xk, zk−1)→ M2 =

 1 2 1
1 0 0
0 1 0

 ,

yk = G2(xk, zk−1, yk−1)→ M3 =

 2 1 1
1 0 0
0 1 0

 .
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Matrix M(3) corresponding to three-step Method (30) is

M(3) = M1M2M3 =

 1 1 2
1 0 0
0 1 0


 1 2 1

1 0 0
0 1 0


 2 1 1

1 0 0
0 1 0

 =

 8 3 2
4 2 1
2 1 1

 .

The characteristic polynomial of matrix M(3) is

P3(λ) = λ3 − 11λ2 + 9λ− 2

and the eigenvalues of matrix M(3) are {10.1311, 0.4344± 0.0932i}. Since the spectral radius of matrix
M(3) is ρ(M(4)) ≈ 10.1311. We conclude that the convergence order of method with memory (30) is at
least 10.1311.

3. Numerical Results

Our methods (16) and (30) were compared with Neta’s method (NETM), Petković’s method
(PETM) and Wang’s method (WANM) for solving some nonlinear equations. Numerical computations
were performed in the Matlab 7 computer algebra system. The computer specifications are Microsoft
Windows 7 Intel(R), Core(TM) i3-2350M CPU, 1.79 GHz with 2GB of RAM.

Wang’s method [8] 
zn =xn −

f (xn)

f ′(xn)
,

yn =zn − λn(zn − xn)
2,

xn+1 =yn −
f (yn)

2 f [xn, yn]− f ′(xn)
,

(31)

where λn =
1

xn−1 − zn−1

[
xn − zn−1

zn−1 − xn−1
+

2(zn − xn)

xn − yn−1

]
.

The following test functions were used in numerical experiments.

f1(x) = xex2 − sin2(x) + 3 cos(x) + 5, a ≈ −1.2076478271309189, x0 = −1.5,

f2(x) = x5 + x4 + 4x2 − 15, a ≈ 1.3474280989683050, x0 = 1.1,

f3(x) = arcsin(x2 − 1)− 0.5x + 1, a ≈ 0.59481096839836918, x0 = 1.1.

f4(x) = ln(x2 − 2x + 2) + exp(x2 − 4x + 4) sin(x− 1), a = 1, x0 = 0.54

f5(x) = sin(x)− x/3, a ≈ 2.2788626600758283, x0 = 3.27

f6(x) = 10xe−x2 − 1, a ≈ 1.6796306104284499, x0 = 2.1

The absolute errors |xk − a| in the first four iterations are given in Table 1, where a is the exact root
computed with 3600 significant digits. For Methods (1), (4), (16) and (30), the initial approximation
y−1 is calculated by y−1 = N(x0),z−1 is calculated by z−1 = y−1 + | f (x0)|/10. The approximated
computational order of convergence (ACOC) is defined by [16]:

ρ ≈ ln(|xn+1 − xn| / |xn − xn−1|)
ln(|xn − xn−1| / |xn−1 − xn−2|)

. (32)
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Table 1. Numerical results for fi(x)(i = 1, · · · , 6).

Methods fi(x) |x1− a| |x2− a| |x3− a| |x4− a| ρ

PETM f1(x) 0.35559×10−2 0.19719×10−10 0.59271×10−48 0.47227×10−219 4.5599492

f2(x) 0.15137×10−2 0.14866×10−12 0.51501×10−58 0.26586×10−265 4.5613777

f3(x) 0.14922×10−4 0.65850×10−24 0.57645×10−112 0.15218×10−513 4.5603961

f4(x) 0.47316×10−1 0.40385×10−5 0.11174×10−23 0.26640×10−108 4.5598985

f5(x) 0.13949×10−2 0.61756×10−14 0.18890×10−65 0.25756×10−300 4.5592146

f6(x) 0.11377 0.51251×10−4 0.59924×10−19 0.51705×10−87 4.5582387

WANM f1(x) 0.51808×10−2 0.86196×10−8 0.38505×10−33 0.408023×10−142 4.2988150

f2(x) 0.25772×10−2 0.18965×10−11 0.23539×10−49 0.224057×10−212 4.3006584

f3(x) 0.11168×10−1 0.13757×10−8 0.13978×10−38 0.108856×10−167 4.3046156

f4(x) 0.55431×10−1 0.58447×10−3 0.89039×10−13 0.477788×10−54 4.2038911

f5(x) 0.96475×10−2 0.22227×10−10 0.50290×10−47 0.226046×10−204 4.2937795

f6(x) 0.57236×10−1 0.69530×10−5 0.34120×10−22 0.116978×10−96 4.3020510

Method (16) f1(x) 0.22190×10−3 0.81848×10−18 0.18945×10−83 0.92583×10−383 4.5601986

f2(x) 0.80426×10−4 0.26205×10−19 0.94196×10−90 0.53248×10−411 4.5603052

f3(x) 0.89331×10−3 0.21584×10−15 0.10233×10−72 0.42013×10−334 4.5598019

f4(x) 0.11157×10−1 0.39468×10−11 0.16859×10−53 0.14820×10−246 4.5564931

f5(x) 0.13173×10−2 0.19405×10−14 0.41159×10−68 0.81326×10−313 4.5591294

f6(x) 0.92941×10−2 0.29837×10−9 0.23171×10−43 0.63284×10−199 4.5606727

NETM f1(x) 0.99121×10−4 0.28313×10−38 0.31361×10−388 10.130669

f2(x) 0.18992×10−5 0.51355×10−59 0.52899×10−579 10.122309

f3(x) 0.23910×10−10 0.60431×10−113 0.32556×10−1151 10.119841

f4(x) 0.20425×10−4 0.23991×10−48 0.21325×10−492 10.108125

f5(x) 0.30800×10−8 0.68005×10−89 0.63841×10−905 10.117379

f6(x) 0.31973×10−2 0.12293×10−24 0.50418×10−251 10.099743

Method (30) f1(x) 0.35789×10−10 0.93271×10−112 0.61422×10−1140 10.121489

f2(x) 0.50281×10−9 0.54597×10−96 0.14347×10−976 10.125776

f3(x) 0.26423×10−10 0.10036×10−111 0.36975×10−1138 10.120580

f4(x) 0.11409×10−9 0.10448×10−99 0.76373×10−1012 10.130546

f5(x) 0.15455×10−6 0.10783×10−75 0.75250×10−775 10.109797

f6(x) 0.19512×10−7 0.14705×10−81 0.15699×10−831 10.117955

Table 1 shows that numerical results are in concordance with the theory developed in this paper.
The computing accuracy of our Method (16) is better than that of NETM for solving nonlinear equations
fi(i = 1, 2, 4, 5, 6). The computing accuracy of our Method (30) is better than that of method PETM for
solving nonlinear equations fi(i = 1, 2, 4, 6).

4. Dynamical Analysis

The dynamical properties of the rational function give us important information about numerical
features of the iterative method as its stability and reliability. In this section, we compare our Methods
(16) and (30) to Newton’s method (2), NETM (1), PETM (4) and WANM (30) by using the basins
of attraction for three complex polynomials f (z) = zk − 1, k = 2, 3, 4, 5, 6. To generate the basins of
attraction for the zeros of a polynomial and an iterative method we take a grid of 300× 300 points in a
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rectangle D = [−3.0, 3.0]× [−3.0, 3.0] ⊂ C and we use these points as z0. If the sequence generated by
iterative method reaches a zero z∗ of the polynomial with a tolerance |zk − z∗| < 10−5 and a maximum
of 25 iterations, we decide that z0 is in the basin of attraction of the zero and we paint this point in
a blue color for this root. In the same basin of attraction, the number of iterations needed to achieve
the solution is showed in darker or brighter colors (the less iterations, the brighter color). Black color
denotes lack of convergence to any of the roots (with the maximum of iterations established) or
convergence to the infinity. The parameters used in iterative Method (30) is λ0 = 0.001. All the figures
are created by the Mathematica 4 computer algebra system. The computer specifications are Microsoft
Windows 7 Intel(R), Core(TM) i3-2350M CPU, 1.79 GHz with 2GB of RAM.

Figure 1 show that our Method (16) and Newton’s method are global convergence for solving
complex polynomial f (z) = z2 − 1. Compared to the other method, our Method (16) has the least
diverging points in Figure 2. Figure 3 show that the convergence speed of our method (30) is faster
than that of the other methods. Figures 1–5 show that the stability of Method (16) is better than the
other methods and method WANM has the worst stability. The basins of attraction for our Method (16)
with memory are larger than the other methods. On the whole, our Methods (16) and (30) are better
than the other methods in this paper.
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Figure 1. The results are for the polynomial z2 − 1.
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5. Conclusions

In this paper, two new iterative methods with memory are proposed for solving nonlinear
equations, which are constructed by inverse interpolation method. We first propose a two-step iterative
method with convergence order 4.5616, which requires three function evaluations. By increasing
a function evaluation, a three-step method is obtained, which has the convergence order 10.1311.
New methods are compared in performance with the existing methods by numerical examples.
Numerical examples confirm the theoretical results. The basins of attraction of existing methods and
our methods are presented and compared to illustrate their performance.The basin of attraction for
our Method (16) is better than any of the other methods.
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