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Abstract: The heat transfer of a carboxymethyl cellulose aqueous solution (CMC-water) based Casson
nanofluid, flowing under the impact of a variable-strength magnetic field in mixed convection
around a solid sphere, has been examined in this work. Aluminum (Al), copper (Cu), and silver
(Ag) nanoparticles were employed to support the heat transfer characteristics of the host fluid.
A numerical approach called the Keller-box method (KBM) was used to solve the governing system
for the present problem, and also to examine and analyze the numerical and graphic results obtained
by the MATLAB program, verifying their accuracy through comparing them with the prior literature.
The results demonstrate that a Al–CMC-water nanoliquid is superior in terms of heat transfer
rate and skin friction. The velocity of CMC-water is higher with Ag compared to Al–CMC-water,
and Ag–CMC-water possesses the lowest temperature. Growing mixed parameter values result in a
rising skin friction, velocity and Nusselt number or decline in temperature.

Keywords: MHD; CMC-water; Casson fluid; mixed convection; solid sphere

1. Introduction

Carboxymethyl cellulose (CMC), also known as cellulose gum [1], has many features: a high
solubility, clarity of its solutions, the ability to hold water, controlled crystal growth, and it can modify
viscosity, in addition to its capacity to fit the required smooth texture or body. These multifunctional
aspects of a non-toxic cellulose derivative are why it is utilized in many industries and technical
applications. It is employed to enhance moisturizing impact due to its polymeric structure that works
as a film-forming factor [2,3]. CMC is utilized in paper industries and pharmaceuticals and is also used
to stabilize clay particles [2,4] and others [5–10]. In view of the massive uses of CMC, many researchers
have devoted their time to studying it. Saqib et al. [11,12] employed a Caputo–Fabrizio fractional
derivative (CFFD) approach and an Atangana–Baleanu fractional derivative (ABFD) approach alongside
the Laplace technique to investigate the convection flow of CMC-water nanofluid. They confirmed
that multiple wall carbon nanotubes are more effective in terms of improved heat transfer, and that the
velocity of CMC-water is higher with multiple wall carbon nanotubes. Rahmati et al. [13] examined
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the laminar flow of a CMC-aqueous solution in a horizontal 2D microtube. Their findings revealed that
the slip velocity coefficient contributed notably to the growth of the heat transfer rate, and significantly
reduced the friction factor of the horizontal microtube wall.

The real reason for using nanotechnology is its capacity to work at the molecular level,
atom-by-atom, to make large structures via essentially novel molecular organization. The actual
birth of nanotechnology was at the end of 1959 when it was introduced by physicist Richard P
Feynman [14]. He concluded that the physical properties of materials change depending on the scale of
its molecules, and also posed two challenges: writing “Encyclopedia Britannica” on the head of a pin
and making the nanometer. Two decades later, IBM Zurich scientists were able to invent the scanning
tunneling microscope, which enabled scientists for the first time to observe materials at the atomic scale,
a paradigm shift that had significantly contributed to the spread of nanotechnology in all industrialized
countries by the 1990s. In the heat transfer field, Choi and Eastman [15] incorporated nanotechnology
unprecedentedly through immersed metallic nanoparticles in a base fluid. These ultrafine particles
possessed extraordinary properties that made them notably improve the thermal conductivity of the
ordinary fluid. Buongiorno [16] developed a mathematical model that shows that the heat transfer
rate is affected by several factors other than the thermal conductivity impact. Tiwari and Das [17] also
developed a mathematical model to consider the solid volume fraction. Recently, many researchers
have used the Tiwari and Das model to examine the nanofluid flow behavior of nanoparticles.
Swalmeh et al. [18] used the Tiwari and Das model to investigate the behavior of micropolar nanofluid
from a sphere. Selimefendigil et al. [19] analyzed the magnetohydrodynamic (MHD) combined
convection flow of a nanofluid in a lid-driven triangular cavity by the use of the Tiwari and Das model.
Alwawi et al. [20] employed the Tiwari and Das model to simulate the flow behavior of a sodium
alginate based Casson nanofluid from a sphere. Metal nanoparticles are distinguished by excellent
electrical and thermal conductivity, chemical stability, optical and magnetic distinct properties and
also, they have a high surface-to-volume ratio. However, in this study aluminum (Al), copper (Cu),
and silver (Ag) metal nanoparticles were used because of their similar thermo-physical properties and
their common uses and many applications in polymers and pharmaceuticals [21–23], which may be
due to their presence accompanied with the presence of CMC-water in these applications.

In real life, mixed convection plays a pivotal role in many engineering and industrial applications.
It appears clearly in the cooling of electronic devices and nuclear reactors, food processing, and solar
collectors. In addition, Lorentz forces, generated by the passage of a magnetic field via a flowing
conducting fluid, has occupied a prominent place in several modern processes of metallurgy and
metalworking. Makinde and Aziz [24] analyzed mixed convection on a vertical plate in a porous
medium considering the MHD impact and convective boundary condition. Tham et al. [25] studied
the boundary layer flow of nanofluid with the MHD effect. Chamkha et al. [26] investigated the
magneto-mixed convection flow of ferrofluids in the presence of a partial slip. Here are some of the
most important recently conducted studies related to MHD mixed convection [27–32].

Casson’s model [33] was developed in 1959 to be able to predict the behavior of non-Newtonian
fluids efficiently, and since then it has demonstrated its competence by foretelling the behavior of
shear-thinning fluids, such as human blood, honey, concentrated fruit juice, ketchup, and others.
Later a considerable number of articles employed this model. Malik et al. [34] employed the
Runge–Kutta–Fehlberg technique to examine the flow of a Casson nanoliquid about a vertical cylinder.
Mukhopadhyay et al. [35] emphasized that the flow separation could be curbed by raising the Casson
parameter. Mustafa et al. [36] investigated the convection of Casson fluid from a stretching sheet taking
into account viscous dissipation. See also these recent and efficient studies [37–41].

To the best of our knowledge, and judging by the prior literature, no study has been conducted on
the heat transfer of a CMC-based Casson nanoliquid induced by combined convection past a solid
sphere with a MHD influence via the KBM that has been investigated in this work. It is also an
extension and development of these studies [20,25,42–44] which may be useful in academic studies,
polymer processes, pharmaceutical and food industries, and others.
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2. Basic Governing Equations

A MHD mixed convection flow of three types of metals (Al, Ag, Cu) in a host Casson fluid over an
isothermal sphere of radius a with a prescribed wall l temperature Tw and ambient l temperature T∞
were taken into account. Additionally, a heated and cooled sphere (Tw > T∞ & Tw < T∞, respectively)
was considered.

Figure 1 depicts the schematic configuration and geometrical coordinates, where U∞, and g are
the free stream velocity, and the gravity vector, respectively. The (ξ̃, η̃) coordinates were measured
along the circumference of the sphere at the stagnation point (ξ̃ ≈ 0), and the distance normal to the
surface of the sphere, respectively.
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Figure 1. Schematic configuration of the problem.

Based on the previous assumption, the governing PDEs. for the Casson nanofluid are:

∂

∂ξ̃
(rũ) +

∂

∂η̃
(rṽ) = 0, (1)

ũ
∂ũ

∂ξ̃
+ ṽ

∂ũ
∂η̃

= ũe
dũe

dξ̃
+ vn f

(
1 +

1
β

)
∂2ũ
∂η̃2 +

(
χρsβs + (1− χ)ρ fβ f

ρn f

)
g(T − T∞) sin

 ξ̃a
− σn f B2

0

ρn f
ũ, (2)

ũ
∂T

∂ξ̃
+ ṽ

∂T
∂η̃

= αn f
∂2T
∂η̃2 , (3)

When they are associated with the boundary conditions:

ũ = ṽ = 0, T = Tw, as η̃ = 0, ũ→ ũe(ξ̃), T→ T∞, as η̃→∞. (4)

where r̃(ξ̃) and ũe(ξ̃) are given by:

r̃(ξ̃) = a sin(ξ̃/a), and ũe(ξ̃) =
3
2

U∞ sin(ξ̃/a), (5)

The properties of the nanofluid (defined by [45]) are:

σn f
σ f

= 1 + 3(σ−1)χ
(σ+2)−(σ−1)χ , σ = σs

σ f
,

kn f
k f

=
(ks+2k f )−2χ(k f−ks)
(ks+2k f )+χ(k f−ks)

, µn f =
µ f

(1−χ)2.5 ,(
ρcp

)
n f

= (1− χ)
(
ρcp

)
f
+ χ

(
ρcp

)
s
, ρn f = (1− χ)ρ f + χρs, αn f =

kn f

(ρcp)n f
,

(6)
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The following non-dimensional variables that are expressed by Rashad et al. [46] were used:

x =
ξ̃
a

, y = Re1/2
(
η̃

a

)
, r(ξ̃) =

r̃(ξ̃)
a

, u =
ũ

U∞
,

v = Re1/2
(

ṽ
U∞

)
, ue(ξ) =

ue(ξ̃)

U∞
, θ =

T − T∞
Tw − T∞

, (7)

where Re = U∞ a
v f

is the Reynolds number.
By substituting Equation (7) into Equations (1)–(4) we get the following non-dimensional equations:

∂
∂ξ

(ru) +
∂
∂η

(rv) = 0, (8)

u∂u
∂ξ + v∂u

∂η = ue(ξ)
due
dξ +

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
∂2u
∂η2

+
(
χρsβs+(1−χ)ρ f β f

ρn f

)
λθ sin ξ−

ρ f σn f
ρn f σ f

Mu,
(9)

u
∂θ
∂ξ

+ v
∂θ
∂η

=
1
Pr

 kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

∂2θ

∂η2 , (10)

here M =
(
σ f β

2
0a

ρ f v f

)
, Pr =

v f
α f

, λ = Gr/Re2, and Gr = gβ f (Tw − T∞) a3

ν2
f

and the dimensionless boundary

conditions are:
u = v = 0, θ = 1, at η = 0,

u→
3
2

sin ξ̃, θ→ 0, as η→∞. (11)

To solve the non-dimensional Equations (8)–(10), associated with the boundary conditions in
Equation (11), defined the non-dimensional stream function ψ is defined as the following (defined by
Nazar et al. [43]):

ψ = ξ̃r(ξ̃)F(ξ̃, η̃), θ = θ(ξ̃, η̃),

u =
1
r
∂ψ

∂η̃
and v = −

1
r
∂ψ

∂ξ̃
(12)

By using Equation (12), the non-dimensional Equations (8)–(10) are reduced to:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
∂3F
∂η3 + (1 + ξ cot ξ)F∂

2F
∂η2 −

(
∂F
∂η

)2
−
ρ f σn f
ρn f σ f

M∂F
∂η

+
(
χρsβs/β f +(1−χ)ρ f

ρn f

)
λθ sin ξ

ξ + 9
4

sin ξ cos ξ
ξ = ξ

(
∂F
∂η

∂2F
∂ξ∂η −

∂F
∂ξ

∂2F
∂η2

)
,

(13)

1
Pr

 kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

∂2θ

∂η2 + (1 + ξ cot ξ)F
∂θ
∂η

= ξ

(
∂F
∂η
∂θ
∂ξ
−
∂F
∂ξ
∂θ
∂η

)
, (14)

and the boundary conditions become:

∂F
∂η

= F = 0, θ = 1 at η = 0,

∂F
∂η
→

3
2

sin ξ
ξ

, θ→ 0, as η→∞. (15)
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At the stagnation point of the sphere when (ξ ≈ 0), Equations (13)–(15) reduce to:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
F′′′ + 2FF′′ − (F′)2

−
ρ f σn f
ρn f σ f

MF′

+
(
χρsβs/β f +(1−χ)ρ f

ρn f

)
λθ+ 9

4 = 0,
(16)

1
Pr

 kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

θ′′ + 2Fθ′ = 0, (17)

The subject to
F′ = F = 0, θ = 1 at η = 0,

F′ →
3
2

, θ→ 0, as η→∞. (18)

In this work two physical quantities were taken into consideration, specifically the local skin
friction coefficient C f and the local Nusselt number Nu, which are given by Molla et al. [47]:

C f =

(
τw

ρU2
∞

)
, Nu =

(
aqw

k f (Tw − T∞)

)
, (19)

where

τw = µn f

(
∂ũ
∂η̃

)
η̃=0

, qw = −kn f

(
∂T
∂η̃

)
η̃=0

. (20)

Using Equations (7) and (11), C f and Nu are turned into:

Re1/2C f =
1

(1− χ)2.5

(
1 +

1
β

)
ξ
∂2F
∂η2 (ξ, 0), Re−1/2Nu =

−kn f

k f

(
∂θ
∂η

)
η=0

. (21)

3. Numerical Approach

In 1970 Keller [48] was first proposed the Keller-box method. About a decade later, this method
became more popular when Jones [49] found a solution for boundary layer problems. Cebeci and
Bradshaw [50] provided a detailed explanation of the Keller-box procedure, which we employed it in
the current paper to construct the solution for the problem.

3.1. The Finite-Difference Method

In order to transform Equations (13) and (14) to first order equations, new independent unknowns
will be defined as follows:

w(ξ, η), z(ξ, η), p(ξ, η), and g(ξ, η), where the temperature variable θ(ξ, η) is replaced by
g(ξ, η), and

F = w,
w′ = z,
g′ = p,

(22)

Thus, the Equations (13)–(15) are converted to:

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)
z′ + (1 + ξ cot ξ)Fz−w2

−
ρ f σn f
ρn f σ f

Mw

+
(
χρsβs/β f +(1−χ)ρ f

ρn f

)
λg sin ξ

ξ + 9
4

sin ξ cos ξ
ξ = ξ

(
w∂w
∂ξ − z∂F

∂ξ

)
,

(23)

1
Pr

 kn f /k f

(1− χ) + χ
(
ρcp

)
s
/
(
ρcp

)
f

p′ + (1 + ξ cot ξ)Fp = ξ

(
w
∂g
∂ξ
− p

∂F
∂ξ

)
, (24)
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Subject to:
w(ξ, 0) = F(ξ, 0) = 0, g(ξ, 0) = 1,

w(ξ,∞) =
3
2

sin ξ
ξ

, g(ξ,∞) = 0, (25)

where the prime notation denotes the 1st derivative with respect to η,
Next the finite-difference form of Equation (22) for the midpoint (ξn, η j−1/2) of the segment,

and find the finite difference form of Equations (23) and (24) about the midpoint (ξn−1/2, η j−1/2) of the
rectangle have been obtained as:

Fn
j − Fn

j−1 −
h j

2

(
wn

j + wn
j−1

)
= 0. (26)

wn
j −wn

j−1 −
h j

2

(
zn

j + zn
j−1

)
= 0. (27)

gn
j − gn

j−1 −
h j

2

(
pn

j + pn
j−1

)
= 0. (28)

ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

)(
zn

j − zn
j−1

)
+

(
A+α

4

)
h j(Fn

j + Fn
j−1)(z

n
j + zn

j−1) −
(

1+α
4

)
h j(wn

j + wn
j−1)

2

+
(
α
2

)
h jzn−1

j−1/2(F
n
j + Fn

j−1) +
1
2

(
χρs(βs/β f )+(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λh j(gn
j
+ gn

j−1
)

−
1
2
ρ f δn f
ρn f δ f

Mh j(wn
j + wn

j−1) −
(
α
2

)
h jFn−1

j−1/2(z
n
j + zn

j−1) +
9
4

sin xn−1l2 cos xn−1l2

xn−1l2 h j = (R1)
n−1
j−1/2

(29)

1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

) (pn
j − pn

j−1

)
−
α
4 h j(wn

j + wn
j−1)(gn

j + gn
j−1)

+A+α
4 h j(Fn

j + Fn
j−1)(p

n
j + pn

j−1) +
α
2 h j(wn

j + wn
j−1)gn−1

j−1/2 −
α
2 h jwn−1

j−1/2(gn
j + gn

j−1)

−
α
2 h j(pn

j − pn
j−1)F

n−1
j−1/2 +

α
2 h jpn−1

j−1/2(F
n
j + Fn

j−1) = (R2)
n−1
j−1/2

(30)

where

α =
xn−1l2

kn
, A =

(
1 + xn−1l2 cot xn−1l2

)
, kn is ∆ξ, and h j is ∆η

(R1)
n−1
j−1/2 = −h j



ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
zn

j −zn
j−1

)
h j

+ (A− α)Fn
j−1/2zn

j−1/2

+(α− 1)
(
wn

j−1/2

)2
−
ρ f σn f
ρn f σ f

Mwn
j−1/2 +

9
4

sin xn−1l2 cos xn−1l2

xn−1l2

+

(
χρs(βs/β f )+(1−χ)ρ f

ρn f

)
sin xn−1l2

xn−1l2 λgn
j−1/2



n−1

(R2)
n−1
j−1/2 = −h j


1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

)
(
pn

j −pn
j−1

)
h j

+(A− α)Fn
j−1/2pn

j−1/2 + αwn
j−1/2gn

j−1/2


n−1

(31)

when ξ = ξn the boundary conditions become:

Fn
0 = wn

0 = 0, gn
0 = 1,

wn
J =

3
2

sin ξ
ξ

, gn
J = 0, (32)
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3.2. Newton’s Method

Applying Newton’s method on the system shown in Equations (26)–(30) to obtains:

δF j − δF j−1 −
1
2

h j
(
δw j + δw j−1

)
= (r1) j−1/2 (33)

δw j − δw j−1 −
1
2

h j
(
δz j + δz j−1

)
= (r2) j−1/2 (34)

δg j − δg j−1 −
1
2

h j
(
δp j + δp j−1

)
= (r3) j−1/2 (35)

(a1) jδz j + (a2) jδz j−1 + (a3) jδF j + (a4) jδF j−1 + (a5) jδw j

+(a6) jδw j−1 + (a7) jδg j + (a8) jδg j−1 = (r4) j−1/2
(36)

(
b1

)
j
δp j +

(
b2

)
j
δp j−1 +

(
b3

)
j
δF j +

(
b4

)
j
δF j−1 +

(
b5

)
j
δw j

+
(
b6

)
j
δw j−1 +

(
b7

)
j
δg j +

(
b8

)
j
δg j−1 =

(
r5

)
j−1/2

(37)

where

(a1) j =

 ρ f

ρn f

1

(1− χ)2.5

(
1 +

1
β

)
+ h j

(
(A + α)

2
F j−1/2 −

α
2

Fn−1
j−1/2

)
(a2) j =

(a1) j − 2
ρ f

ρn f

1

(1− χ)2.5

(
1 +

1
β

)
(a3) j = h j

[
(A + α)

2
z j−1/2 +

α
2

zn−1
j−1/2

]
(a4) j = (a3) j

(a5) j = h j

[
−(1 + α)w j−1/2 −

1
2

ρ fσn f

ρn fσ f
M

]
(a6) j = (a5) j

(a7) j = h j

λ2
χρs

(
βs/β f

)
+ (1− χ)ρ f

(1− χ)ρ f + χρs

sin xn−1l2

xn−1l2


(a8) j = (a7) j (38)

(
b1

)
j
=

 1
Pr

kn f /k f(
(1− χ)(ρCp) f + χ

(
ρcp

)
s
/
(
ρcp

)
f

) + h j

(
(A + α)

2
F j−1/2 −

α
2

Fn−1
j−1/2

)
(
b2

)
j
=

[ 2
Pr
−

(
b1

)
j

]
(
b3

)
j
= h j

[
(A + α)

2
p j−1/2 +

α
2

pn−1
j−1/2

]
(
b4

)
j
=

(
b3

)
j(

b5

)
j
= h j

[
−
α
2

g j−1/2 +
α
2

gn−1
j−1/2

]
h j(

b6

)
j
=

(
b5

)
j(

b7

)
j
= h j

[
−
α
2

w j−1/2 −
α
2

h jwn−1
j−1/2

]
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(
b8

)
j
=

(
b7

)
j

(39)

(r1) j−1/2 = F j−1 − F j + h jw j−1/2

(r2) j−1/2 = w j−1 −w j + h jz j−1/2

(r3) j−1/2 = g j−1 − g j + h jp j−1/2

(r4) j−1/2 =
ρ f
ρn f

1
(1−χ)2.5

(
1 + 1

β

) (
z j−1 − z j

)
− (A + α)h j F j−1/2z j−1/2

+h j

(
αz j−1/2Fn−1

j−1/2 − αzn−1
j−1/2F j−1/2 −

9
4

sin xn−1l2 cos xn−1l2

xn−1l2

)
− h j

(
χρs(βs/β f )+(1−χ)ρ f

(1−χ)ρ f +χρs

)
λ
2

sin xn−1l2

xn−1l2 g j−1/2

+ h j

(
(1 + α)w2

j−1/2
+

ρ f σn f
ρn f σ f

Mw j−1/2

)
+ (R1)

n−1
j−1/2

(r5) j−1/2 = 1
Pr

kn f /k f(
(1−χ)(ρCp) f +χ(ρcp)s/(ρcp) f

) (p j−1 − p j

)
−(A + α)h jF j−1/2p j−1/2 − αh jpn−1

j−1/2F j−1/2 + αh jp j−1/2Fn−1
j−1/2

+αh jw j−1/2g j−1/2 − αh jw j−1/2gn−1
j−1/2 + αh jwn−1

j−1/2g j−1/2 + (R2)
n−1
j−1/2

(40)

3.3. The Block Tridiagonal Matrix

The matrix form of a linearized tridiagonal system is:

Aδ= r, (41)

where

S =



[A1] [C1]

[B2] [A2] [C2]
. . .
. . .
. . .

[BJ−1] [AJ−1] [CJ−1]

[BJ] [AJ]


, δ =



[δ1]

[δ2]
...

[δJ−1]

[δJ]


, r =



[r1]

[r2]
...

[rJ−1]

[rJ]


.

The boundary conditions in Equation (32) are satisfied precisely with no iteration. Due to these
suitable values being maintained in every iterate, we assume δF0 = 0, δw0 = 0, δp0 = 0, δwJ = 0,
δgJ = 0, and let dJ = −

1
2 hJ.

The entries of the matrices are

[A1] =


0 0 1 0 0
d1 0 0 d1 0
0 −1 0 0 d1

(a2)1 (a8)1 (a3)1 (a1)1 0
0 (b8)1 (b3)1 0 (b1)1


(42)

[
A j

]
=



d j 0 0 0 0
−1 0 0 0 0
0 −1 0 0 0

(a6) j (a8) j (a3) j (a1) j 0
(b6) j (b8) j (b3) j 0 (b1) j


, 2 ≤ j ≤ J, (43)
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[
B j

]
=



0 0 −1 0 0
0 0 0 d j 0
0 0 0 0 d j
0 0 (a4) j (a2) j 0
0 0 (b4) j 0 (b2) j


, 2 ≤ j ≤ J, (44)

[
C j

]
=



d j 0 0 0 0
1 0 0 0 0
0 1 0 0 0

(a5) j (a7) j 0 0 0
(b5) j (b7) j 0 0 0


, 1 ≤ j ≤ J − 1, (45)

[δ1] =


δz0

δg0

δF1

δz1

δp1


,
[
δ j

]
=


δw j−1

δg j−1

δF j−1

δz j−1

δp j−1


, 2 ≤ j ≤ J,

[
r j
]
=



(r1) j−(1/2)
(r2) j−(1/2)
(r3) j−(1/2)
(r4) j−(1/2)
(r5) j−(1/2)


, 1 ≤ j ≤ J (46)

The final step is to solve the system in Equation (41) by the LU (lower–upper) factorization method,
then implement numerical operations using MATLAB software (version 7, MathWorks, Natick, MA,
USA). In this work the wall shear stress parameter z(x, 0) is considered as the convergence criterion (as
it is usually considered, see Cebeci and Bradshaw [50]), so the calculations were repeated until the

convergence criterion was satisfied, and stopped when
∣∣∣∣δz(i)0

∣∣∣∣ < ε1, where ε1 is chosen to be 10−5 which
give precise values up to four decimal places.

4. Results and Discussion

This section aims to predict and analyze graphically the behavior of a CMC-based Casson nanofluid
under the impact of meaningfully related parameters with regard to the velocity, temperature,
skin friction coefficient, and local Nusselt number. The ranges of parameters that are taken into
consideration are the mixed parameter (λ > 0 & λ < 0), Casson parameter (β > 0), magnetic parameter
(M > 0) and nanoparticles volume fraction (0.1 ≤ χ ≤ 0.2).

Table 1 shows the thermo-physical properties of CMC-water and the nanoparticles. The numerical
results obtained were in a close agreement with the literature and can be seen in comparative
Tables 2 and 3.

Table 1. Thermo-physical properties of CMC-water (0.0–0.4%) and metals nanoparticles [51].

Thermo-Physical Property CMC-Water Al Ag Cu

ρ (kg/m3) 997.1 2701 10,500 8933
Cp (J/kgk) 4179 902 235 385
K (w/mK) 0.613 237 429 401

β× 10−5 (K−1) 21 2.31 1.89 1.67
σ (s/m) 5.5× 10−6 35× 106 63× 106 95.6× 106

Pr 6.2 - - -
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Table 2. Comparison of Re1/2C f with published findings by Nazar et al. [43] for several values of λ
(β→∞, M = 0, χ = 0, Pr = 0.7).

λ −4 −1 0 0.74 1

x [43] Present [43] Present [43] Present [43] Present [43] Present

0
◦

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
10
◦

0.0801 0.0780 0.3438 0.3443 0.4160 0.4167 0.4669 0.4545 0.4843 0.4851
20
◦

0.1149 0.1153 0.6564 0.6500 0.8014 0.8035 0.9031 0.8935 0.9380 0.9279
30
◦

0.9098 0.9076 1.1284 1.1244 1.2813 1.2759 1.3335 1.3277
40
◦

1.0790 1.0824 1.3733 1.3748 1.5775 1.5778 1.6471 1.6470
50
◦

1.1434 1.1537 1.5172 1.5253 1.7737 1.7806 1.8607 1.8672
60
◦

1.0866 1.1047 1.5477 1.5630 1.8580 1.8720 1.9627 1.9762
70
◦

0.8929 0.9202 1.4583 1.4811 1.8260 1.8470 1.9486 1.9691
80
◦

0.5280 0.5680 1.2480 1.2780 1.6800 1.7079 1.8216 1.8489
90
◦

0.9154 0.9530 1.4289 1.4656 1.5915 1.6284
100

◦

0.4308 0.4812 1.0847 1.1351 1.2732 1.3160
110

◦

0.6543 0.7241 0.8831 0.9559
120

◦

0.4220 0.5094

Table 3. Heat transfer coefficient Qw(ξ) = −(∂θ/∂η)η= 0 with published findings by Nazar et al. [43]
for several values of λ (β→∞, M = 0, χ = 0, Pr = 0.7).

λ −4 −1 0 0.74 1

x [43] Present [43] Present [43] Present [43] Present [43] Present

0
◦

0.6534 0.6519 0.7870 0.7858 0.8162 0.8150 0.8354 0.8342 0.8463 0.8406
10
◦

0.6440 0.6435 0.7818 0.7812 0.8112 0.8104 0.8307 0.8301 0.8371 0.8362
20
◦

0.6150 0.6158 0.7669 0.7670 0.7974 0.7974 0.8173 0.8174 0.8239 0.8239
30
◦

0.7422 0.7433 0.7746 0.7747 0.7955 0.7963 0.8024 0.8031
40
◦

0.7076 0.7097 0.7429 0.7447 0.7652 0.7669 0.7725 0.7741
50
◦

0.6624 0.6658 0.7022 0.7039 0.7267 0.7293 0.7345 0.7371
60
◦

0.6055 0.6103 0.6525 0.6565 0.6800 0.6837 0.6887 0.6922
70
◦

0.5224 0.5403 0.5934 0.5986 0.6253 0.6300 0.6352 0.6397
80
◦

0.4342 0.4432 0.5236 0.5287 0.5672 0.5671 0.5742 0.5784
90
◦

0.4398 0.4382 0.4920 0.4887 0.5060 0.5025
100

◦

0.3263 0.3197 0.4120 0.3978 0.4304 0.4152
110

◦

0.3179 0.3004 0.3458 0.3246
120

◦

0.2442 0.2314

Figures 2 and 3 display the influence of the mixed parameter in opposing and assisting flow cases
(λ > 0 & λ < 0) on the skin friction coefficient and Nusselt number, respectively. From these figures,
we found that the Al–CMC-water has the highest skin friction coefficient values in the case of assisting
flow and the lowest in the case of the opposing flow. For the Nusselt number, Al–CMC-water has the
highest value in both cases (λ > 0 & λ < 0) and this is due to the thermo-physical properties that the
aluminum possesses. It can also be observed that, in both the cases of opposing and assisting flow,
when λ increases, Re1/2C f and Re−1/2Nu increase due to increase in the buoyancy force.
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Figures 6 and 7 show the relationship between β and both the skin friction coefficient, and Nusselt
number respectively. It’s noticed that the Casson parameter β is inversely proportional to the skin
friction coefficient, but it is directly proportional to the Nusselt number. Physically, when the values of
β rise, the yield stress decreases and therefore the skin friction coefficient decreases.
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Figures 8 and 9 illustrate the graphical findings of Re1/2C f and Re−1/2Nu respectively, with
various values of the magnetic parameter (M). It is clear that as the values of M grow, both the skin
friction coefficient and Nusselt number decline. In fact, this decline is a result of the restraining that
occurred in the fluid flow, caused by the increase in intensity of the magnetic current which curbs
convection and thereby reduces the skin fraction coefficient and Nusselt number. Furthermore, these
figures demonstrate that, whatever the values of parameters λ, χ, β or M, Al–CMC-water has the
highest Re1/2C f and Re−1/2Nu.
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Figures 10 and 11 demonstrate the impact of the mixed parameterλ on the velocity and temperature
in both cases opposing and assisting flow (λ > 0 & λ < 0). Both the cases of flow indicate that an
increment in λ is accompanied by an improvement in the velocity or a decay in the temperature profiles.
In fact, the growth in the mixed parameter enhances the thermal buoyancy force—and, hence the
velocity increases.
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Figures 12 and 13 confirmed that the effect of the nanoparticles volume fraction (χ), on both
velocity and temperature, is a positive effect. A rise in χ leads to a quicker transfer of heat from the
outside of the sphere to the fluid and thus aids in the augmentation of the thickness of the thermal
layer due to the increase in the temperature of the fluid. In addition, the increase in χ enhances energy
transmission, which increases the fluid velocity. According to Figures 14 and 15, higher values of the
Casson parameter (β) cause a curb in the velocity and temperature, which is verifiable because the
augmentation in β creates a resistance force that restricts the flow of the fluid, which restrains the
nanofluid velocity.Mathematics 2020, 8, 1094 16 of 21 
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Figures 16 and 17 depict the graphical findings of temperature and velocity versus the magnetic
parameter (M), respectively. It is evident in these figures that as the value of M grows, the temperature
increases but the velocity decreases. This phenomenon occurs when a magnetic current passes through
a flowing nanofluid, which produces a kind of force known as the Lorentz force and, consequently,
resists the nanofluid movement. It is worth noting that, whatever the values of parameters λ, χ, β or
M, Silver–CMC-water is superior in terms of velocity, and we found that the Copper–CMC-water
temperature was the highest.
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5. Conclusions

In this research, we have explored the behavior of a CMC-water based Casson nanofluid from
a solid sphere produced by mixed convection under a MHD influence. The following meaningful
observations are worth mentioning:

1. The temperature profile increases when the values of each ofχor M parameters grow, and decreases
as the values of β or λ increase.

2. The nanoparticles volume fraction has a positive relationship with all the physical quantities
examined in this research.
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3. The skin friction, velocity, and Nusselt number are decreasing functions of the magnetic field
intensity, whereas temperature is an increasing function of it.

Regardless of the values of examined parameters, the values of temperature for Cu–CMC-water
were the highest and had the lowest velocity.
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Nomenclature

a Radius of Cylinder α Thermal diffusivity
B0 Magnetic field strength β Casson parameter
C f . Skin friction coefficient β f Thermal expansion of base fluid
r(ξ) Radial Distance βs Thermal expansion of nanoparticles
Gr Grashof number θ Temperature of nanofluid
g Gravity vector µβ Plastic Dynamic viscosity of base fluid
k Thermal conductivity µ f Dynamic viscosity of base fluid
M Magnetic parameter ρ Density
Nu Nusselt Number

(
ρcp

)
Heat capacity

Pr Prandtl number τw Wall shear stress
py Yield stress χ Nanoparticle volume fraction
T Temperature of the fluid ψ Stream function
Tw Wall temperature σ Electrical conductivity
T∞ Ambient temperature λ Mixed parameter
u ξ- component of velocity Subscript
v η- component of velocity s nanoparticles
v f Kinematic viscosity n f Nanofluid
ue Free stream velocity f Base fluid
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