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Abstract: We study an energy-dependent potential related to the Rosen–Morse potential. We give
in closed-form the expression of a system of eigenfunctions of the Schrödinger operator in terms of
a class of functions associated to a family of hypergeometric para-orthogonal polynomials on the unit
circle. We also present modified relations of orthogonality and an asymptotic formula. Consequently,
bound state solutions can be obtained for some values of the parameters that define the model.
As a particular case, we obtain the symmetric trigonometric Rosen–Morse potential for which there
exists an orthogonal basis of eigenstates in a Hilbert space. By comparing the existent solutions for
the symmetric trigonometric Rosen–Morse potential, an identity involving Gegenbauer polynomials
is obtained.

Keywords: orthogonal polynomials; Schrödinger equation; ordinary differential equations;
energy-dependent potential; hypergeometric functions; asymptotic expansions
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1. Introduction

An energy-dependent Schrödinger equation appears for the first time in relativistic quantum
mechanics with the Pauli–Schrödinger equation, given by Pauli [1] in the description of the spectrum of
an electron in the presence of a magnetic field. Further developments in relativistic and non relativistic
quantum mechanics was made by many authors [2–10]. The list is by no means exhaustive.

These classes of quantum potentials appear frequently in many areas of quantum mechanics.
A relativistic scalar particle in presence of an electromagnetic field can be studied by means of
a Klein–Gordon equation with an energy dependent potential [4,8]. In [11], the authors have applied
energy dependent potentials with emphasis on confining potentials to the description of heavy quark
systems. Furthermore, the description of systems of N bosons bound is considered in [12] and
the Hamiltonian formulation of the relativistic many-body problem in [4,5,13] also lead to energy
dependent potential models. For physical applications in hydrodynamics, see [14].

Mathematical aspects of wave equations with energy-dependent potentials have been studied
by several authors. The presence of an energy-dependence in the potential in the nonrelativistic
context requires a modification of the underlying quantum theory, principally affecting orthogonality
relation and norm [15]. An analogous modification is required in the relativistic framework [16].
An extension of the quantum mechanical formalism of systems with energy-dependent potentials
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to systems defined by generalized Schrödinger equations including a position-dependent mass was
studied in [7]. Energy-dependence in the framework of noncommutative quantum mechanics has
been recently considered in [17].

The search of solutions for energy dependent potentials in wave equations has attracted
considerable attention since the appearance of Pauli’s work. In the present manuscript we study
a quantum system with energy dependent potential related to the Rosen–Morse trigonometric
potential, used in describing the interatomic interaction of linear molecules and for describing
polyatomic vibration states and energies of the NH3 molecule [18]. It has long been known that
some mathematical features of quantum systems with an energy-dependent potential have several
non-trivial implications; for instance, it is necessary to modify the scalar product to guarantee the
conservation of the norm [15,19]. In the present manuscript we give closed-form of solutions, modified
relations of orthogonality given by a indefinite (in general) bilinear form and an asymptotic formula of
the solutions. Consequently, bound state solutions can be obtained for some values of the parameters
that define the model. The solutions are given in terms of a class of functions derived from a sequence
of hypergeometric para-orthogonal polynomials on the unit circle. We obtain, as a particular case, the
symmetric trigonometric Rosen–Morse potential. In such case, the solutions reduce to an orthogonal
basis of eigenfunctions defined in a Hilbert space and are expressed in terms of the Gegenbauer or
ultraspherical polynomials. By comparing this solution with other solutions given in the literature we
obtain, as a consequence, an identity involving Gegenbauer polynomials. Our procedure to obtain the
energy dependent potential is based in a classical technique developed by Bose in [20] to construct
solvable one-variable Schrödinger potentials.

The manuscript is organized as follows. In Section 2 we give some background, notations and
statement of the results, in Section 3 we give the proofs and in Section 4 we present a discussion and
concluding remarks.

2. Basic Notations and Statement of the Results

Let µ be a measure on the unit circle T = ∂D,D = {z ∈ C : |z| < 1} with support consisting of
an infinite number of points. We remind that (φn)∞

n=0 is the sequence of orthonormal polynomials on
the unit circle associated to µ (also termed as Szegő polynomials, after their introduction by G. Szegő), if∫

T
φm(z)φn(z)dµ(z) = δm,n,

where φn(z) = κnzn + an−1zn−1+ lower order terms and κn > 0.
An exposition of the theory of orthogonal polynomials systems on the unit circle is presented in

the monographs [21–23]. More recent surveys in [24,25].
If Pn is a polynomial of degree n, the reciprocal polynomial P∗n is defined as znPn(1/z),

or equivalently

P∗n (z) =
n

∑
k=0

akzn−k if Pn(z) =
n

∑
k=0

akzk and an 6= 0.

Let 2F1(a, b; c; z) denote the Gauss hypergeometric function of the variable z with parameters
a, b, c ∈ C, c /∈ Z≤0; cf. [26] (p. 56), given by

2F1(a, b; c; z) =
∞

∑
k=0

(a)k(b)k
(c)k

zk

k!
,

for z ∈ D and for other values of z ∈ C by analytic continuation appropriately; the Pochhammer
symbol is defined by (a)n = a(a + 1) · · · (a + n− 1), (a)0 = 1.

For α ∈ C, the function zα will be defined on the branch for which arguments are restricted
between −π and π. We also denote by bxc the floor function, defined as the greatest integer less than
or equal to x.
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A fundamental role in this manuscript is played by the sequence of functions

Gn(x; λ, η) =
(2λ)n

(λ)n
(4z)−n/2Rn(z; b), λ > −1

2
, η ∈ R, n ∈ N∪ {0}, (1)

where λ, η and x are such that b = λ + ηı and 2x =
√

z + 1√
z , z = eıθ , θ ∈ [0, 2π].

The functions Gn were introduced in [27] and are defined from the sequence (Rn)∞
n=0 of

para-orthogonal polynomials, cf. [28]

b + b
b

Rn(z; b) = Sn(z; b) +
b
b

S∗n(z; b), (2)

associated to the Szegő hypergeometric polynomials, cf. [29,30]

Sn(z; b) = 2F1(−n, b + 1; b + b + 1; 1− z). (3)

These polynomials satisfy the orthogonality relations in the unit disk through the parametrization
z = e2ıθ , θ ∈ [0, π]

1
π

∫ π

0
Sm(e2ıθ ; b)Sn(e2ıθ ; b)ω(θ; b)dθ =

n!
(b + b + 1)n

δm,n, λ > −1
2

; m, n ∈ N∪ {0} (4)

where

ω(θ; b) = τ(b)e−2ηθ sin2λ θ,

here the constant

τ(b) =
|Γ(b + 1)|2

Γ(b + b + 1)
4<(b)eπ=(b)

is such that the moment µ
(b)
0 = 1

π

∫ π
0 ω(θ; b)dθ = 1.

In the sequel, we denote by Ŝn and sn the monic and orthonormal polynomials of degree n
respectively associated to Sn. From (4) it follows that

κn(b) =
|(b + 1)n|√

n!(b + b + 1)n

, (5)

is the main coefficient of sn.
It should be noted that the Rn polynomials are of hypergeometric type. According to [30] (Th. 5.1),

one has
Rn(z; b) = 2F1(−n, b; b + b; 1− z), <[b] > −1

2
,<[b] 6= 0.

This last relation can also be extended to <[b] = 0, η 6= 0 if one takes

lim
<[b]→0

b + b
b

Rn(z; b) = Sn(z; ıη)− S∗n(z; ıη) = n(z− 1)2F1(−n + 1, 1 + ıη; 2; 1− z),

for n ≥ 1.
In the present manuscript we prove the following results.

Theorem 1. Let λ > − 1
2 , η ∈ R. Then, the stationary one-dimensional Schrödinger equation with energy

dependent potential
Ψ′′(θ) + (E−V(θ, E; λ, η))Ψ(θ) = 0, θ ∈ (0, π), (6)
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where

V(θ, E; λ, η) = −V0(θ; λ, η)− (−λ +
√

E(n; λ, η) + η2)V1(θ; λ, η),

V0(θ; λ, η) = 2λη cot θ + λ(1− λ)
1

sin2 θ
,

V1(θ; λ, η) = 2η cot θ,

E(n; λ, η) = (n + λ)2 − η2,

has by solution the system of wave functions

Ψn(θ; λ, η) = Gn (cos θ; λ, η) e−ηθ sinλ θ, n ∈ N∪ {0},

in L2[0, π].

The usual continuity equation
∂P(θ, t)

∂t
= −∂J(θ, t)

∂θ
,

where P denotes the probability density and J the probability current, governs the conservation
of mass, charge, and probability of any closed system. If the potential is energy-dependent, it is
necessary to modify the definition of the usual orthogonality relations in order to satisfy the continuity
equation, [5,15]. More precisely, let (Ψn)∞

n=0 be a system of normalizable wave functions solutions of
an energy dependent potential Schrödinger equation defined through the boundary value problem

Ψ′′(θ) + (E−V(θ, E))Ψ(θ) = 0, θ ∈ (a, b),

Ψ(a) = Ψ(b) = 0,

where V is of class C1(I) with respect to the variable E, being I an open interval of the real line and
a, b ∈ R.

The continuity equation read as

∂P(θ, t)
∂t

+ ı(V(θ, En2)−V(θ, En1))Ψ̂n1(θ, t)Ψ̂n2(θ, t) = −∂J(θ, t)
∂θ

, (7)

and is satisfied by the probability density P and probability current J

P(θ, t) = Ψ̂n1(θ, t)Ψ̂n2(θ, t),

J(θ, t) = −ı

(
Ψ̂n1(θ, t)

∂Ψ̂n2(θ, t)
∂θ

− ∂Ψ̂n1(θ, t)
∂θ

Ψ̂n2(θ, t)

)
,

where Ψ̂n(θ, t) = e−ıEntΨn(θ) is a solution to the time-dependent Schrödinger equation

ı
∂Ψ(θ, t)

∂t
=

(
− ∂

∂θ2 + V
(

θ, ı
∂

∂t

))
Ψ(θ, t).

The orthogonality relation between two states n and m, n 6= m reads as

〈Ψn, Ψm〉 =
∫ b

a
Ψn(θ)

(
1− V(θ, En)−V(θ, Em)

En − Em

)
Ψm(θ)dθ = 0,
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now, by using the smooth dependence of V in relation to E one obtains

〈Ψn, Ψn〉 =
∫ b

a
Ψ2

n(θ)

(
1− V(θ, E)

∂E

∣∣∣∣
E=En

)
dθ.

In that regard, for the present quantum model we have the following relations of orthogonality.
Notice that the presence of the function cot θ in the definition implies that the associated bilinear form
is not in general of a definite sign. When |η| < λ, we have bound states solutions.

Theorem 2. Let λ > 0, η ∈ R and (Ψn)∞
n=0 be the wave functions of Theorem 1. Then, (Ψn)∞

n=0 satisfy the
relation of orthogonality

〈Ψn, Ψm〉 =
∫ π

0
Ψn(θ; λ, η)

(
1− 2η cot θ

n + m + 2λ

)
Ψm(θ; λ, η)dθ = cn(λ, η)δn,m, (8)

where n, m ∈ N∪ {0}, cn ∈ R. When λ > 1
2 and η ∈ R one has

cn(λ, η) =

(
1− η2

(n + λ)2

)
πn!(λ + n)Γ(2λ + n)
22n−1Γ(2λ + 1)[(λ)n]2

∣∣∣∣ b
b + n

∣∣∣∣ .

For the particular case η = 0 we obtain the symmetric trigonometric Rosen–Morse potential,
cf. [31] (Prob. 12), [23,32,33] ((4.7.11) p. 81). Let P(λ)

n , λ > − 1
2 be the Gegenbauer polynomial of degree

n cf. [23] (p. 80). As a consequence of Theorem 1 we obtain

Corollary 1. The stationary one-dimensional Schrödinger equation

Ψ′′(θ) +
(

E− λ(λ− 1)
sin2 θ

)
Ψ(θ) = 0, θ ∈ (0, π), λ > −1

2
, (9)

admits the energy eigenstates

E(n; λ) = (n + λ)2, n ∈ N∪ {0}.

and the complete orthogonal system of wave functions

Ψn(θ; λ, 0) =
2−n(2λ)n

(n+2λ−1
n )(λ)n

P(λ)
n (cos θ) sinλ θ, n ∈ N∪ {0},

in the Hilbert space L2[0, π] with the inner product 〈 f , g〉 =
∫ π

0 f (t)g(t)dt.

Notice that from this corollary it follows immediately that the ground state energy for the
symmetric trigonometric Rosen–Morse potential reduces to

E(0; λ, 0) = λ2.

The asymmetric trigonometric Rosen–Morse potential or Rosen–Morse I potential, cf. [32,34,35]
whose associated Schrödinger equation reads as

Φ′′(θ) +
(

E−
(

2b cot θ + a(a− 1)
1

sin2 θ

))
Φ(θ) = 0, θ ∈ (0, π), a ≥ 3

2
, (10)

is among the exactly solvable potentials. Bound state solutions can be given in terms of the
Jacobi polynomials with purely imaginary arguments and complex conjugate parameters, cf. [32]
(pp. 296–297).
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This potential has also been studied in [36,37] and solved in terms of the real Romanovski
polynomials [38,39] R(a,b)

n (also known as Romanovsky–Routh or Pseudo–Jacobi polynomial as in [40]).
These polynomials are defined as the polynomial solution of degree n of the differential equation

(1 + x2)
d2y
dx2 + 2((1 + a)x + b)

dy
dx
− n(n + 2a+ 1)y = 0,

and can be expressed in terms of the Jacobi polynomials P(α,β)
n , cf. [24] [(20.1.1) p. 509], [23] [(4.21.2)

p. 62] as

R(a,b)
n (x) =(−ı)nP(a+bı,a−bı)

n (ıx)

=(−ı)n
(

n + a+ bı
n

)
2F1

(
−n, n + 2a+ 1; 1 + a+ bı;

1− ıx
2

) (11)

For convenience, we will adopt the parametrization given in [41] for the solution to (10) in terms
of the real Romanovski polynomials (expressed also in terms of author’s parametrization), which reads

Φn(θ; a, b) ∝ R
(− 2b

n+a ,1−n−a)
n (cot θ)e−

bθ
n+a sin(a+n) θ

∝ (−ı)nP
(−n−a− ıb

a+n ,−n−a+ ıb
a+n )

n (ı cot θ)e−
bθ

n+a sin(a+n) θ, (12)

for n ≥ 0, and the corresponding energies

EΦ(n; a, b) = (a+ n)2 − b2

(a+ n)2 . (13)

In particular, the symmetric trigonometric Rosen–Morse is obtained by taking η = 0 in (10). In such
case we have that

Φn(θ; a, 0) ∝ (−ı)nP(−n−a,−n−a)
n (ı cot θ) sin(a+n) θ,

is a solution for the Schrödinger equation associated to the symmetric Rosen–Morse potential.
By identifying the parameters λ = a we obtain

Φn(θ; λ) ∝ (−ı)nP(−n−λ+ 1
2 )

n (ı cot θ) sin(λ+n) θ, (14)

is also a solution of (9), which coincides, up to a multiplicative factor with Ψn, as shows the
following identity

Theorem 3. Let λ ∈ C and n ∈ N∪ {0}. Then,

(−ı)n
(λ + 1

2 )b n
2 c

(−n− λ + 1
2 )n

P(−n−λ+ 1
2 )

n (ı cot θ) sinn θ = (−1)b
n
2 c
(1− n− λ)b n

2 c
(λ)n

P(λ)
n (cos θ).

For those values of λ, say λ = λ0, for which we have a zero or pole in the expressions
(λ + 1

2 )b n
2 c

(−n− λ + 1
2 )n

or

(1− n− λ)b n
2 c

(λ)n
the formula may be interpreted as a limit when λ → λ0. In such cases, the limit exists and

is finite.

For the next result, let ε1, ε2 > 0 be fixed quantities sufficiently small so that the interval [ε1, π− ε2]

lies wholly in (0, π). We have that
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Theorem 4. Let λ > − 1
2 , η ∈ R. Then,

2n−1Ψn(θ; λ, η) = <
[

Γ(λ)
Γ(b)

eı(nθ+η ln n)(1− e−2ıθ)−b
]

e−ηθ sinλ θ + o(1), as n→ ∞.

The bound for the error holds uniformly in θ ∈ [ε1, π − ε2].

2.1. Some Basic Facts about the Functions Gn

We recall that a polynomial Pn(z) =
n

∑
j=0

ajzj, aj ∈ C is conjugate reciprocal if Pn satisfies

the identity,
Pn(z) = P∗n (z),

that is, aj = an−j, j = 0, 1, . . . , n. From (1), it follows that Gn, n ≥ 0 takes real values.
Let λ > 0, define the sequences

α
(λ)
n+1 =

1
4

n(n + 2λ− 1)
(n + λ− 1)(n + λ)

, β
(λ,η)
n =

η

λ + n− 1
, n ≥ 1,

it follows from [42] (Section 2) that the functions Gn satisfy the recurrence relation

Gn+1(cos θ; λ, η) =

(cos θ − β
(λ,η)
n+1 sin θ)Gn(cos θ; λ, η)− α

(λ)
n+1Gn−1(cos θ; λ, η), θ ∈ [0, π], (15)

where G0(cos θ; λ, η) = 1 and G1(cos θ; λ, η) = cos θ − β
(λ,η)
1 sin θ.

Let λ > 1
2 and n, m ∈ N∪ {0}. It follows from [42] (Th. 5.2),

∫ π

0
G2n (cos θ; λ, η) G2m+1 (cos θ; λ, η)

ω (θ; b)
sin θ

dθ = 0,∫ π

0
G2n (cos θ; λ, η) G2m (cos θ; λ, η)ω(θ; b)dθ = τ(b)δ

(b)
2n δn,m,∫ π

0
G2n+1 (cos θ; λ, η) G2m+1 (cos θ; λ, η)ω(θ; b)dθ = τ(b)δ

(b)
2n+1δn,m,

(16)

where

δ
(b)
n =

πn!(λ + n)Γ(2λ + n)
22λ+2n−1eηπ |Γ(b + n + 1)|2

1
[(λ)n]2

[(<[(b)n])
2 + (=[(b)n])

2].

Let µ be a finite positive Borel measure supported in [−π, π) and dµ = w(θ) dθ
2π + dνs its Lebesgue

decomposition. Recall that for z ∈ D, the Szegő function, cf. [25] (§2.4 p. 143, Part I), D(dµ; z) is
defined as

D(dµ; z) = exp
(

1
4π

∫ 2π

0

eıθ + z
eıθ − z

log(w(θ))dθ

)
,

whenever µ is the Szegő class. For almost every t ∈ [−π, π), the boundary value D(dµ; eıt) is defined
as the radial limit:

D(dµ; eıt) = lim
r↑1

D(dµ; reıt).

From [30] (Th. 4.3), the Szegő function D(ω(θ)dθ; z), (or D(z; b) for short) reads as

D(z; b) =
|Γ(b + 1)|√
Γ(b + b + 1)

(1− z)b. (17)
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The function Gn(x) satisfy the differential equation, [27] (Th. 2.2)

(1− x2)y′′ − ((2λ + 1)x− 2η
√

1− x2)y′ + n
(

n + 2λ +
2ηx√
1− x2

)
y = 0,

x ∈ (−1, 1), n ∈ N∪ {0}.
(18)

When η = 0, we obtain the differential equation that defines the ultraspherical polynomials
cf. [23] (p. 80). Notice that from (1) and (2), Gn reduces to a polynomial. Therefore, Gn coincides, up to
a constant factor, with the n degree Gegenbauer polynomial.

Remark 1. We remark that in [27] (Th. 2.2), the term m should be corrected in the last summand of the left
hand side of the differential equation.

The Schrödinger Invariant of a Second Order Differential Equation

Quantum systems with energy-dependent potentials have been studied following several
approaches such as supersymmetric quantum mechanics, Darboux transformations, exceptional
orthogonal polynomials, among others, see [7] for a review. In this subsection we summarize the
method we followed, introduced by Bose in [20] in order to construct one-variable Schrödinger
solvable potentials.

Let us have a second order differential equation

u′′(x) + p(x)u′(x) + q(x)u(x) = 0, x ∈ I, (19)

being I an open subset of the real line and where p and q are functions defined on I. A straightforward
calculation shows that the middle term in (19) can be eliminated by taking the substitution

u = ve−
1
2
∫

p(t)dt.

Under the above substitution, the Equation (19) transforms to the canonical form

v′′(x) + I(x)v = 0,

where I is given by

I(x) = q(x)− 1
2

p′(x)− 1
4
(p(x))2, (20)

the term I is named by Milson in [43] as the Bose invariant.
By applying now the transformation v =

√
x′ψ, x′ = dx

dθ , we obtain the normal form

ψ′′(θ) + IS(θ)ψ(θ) = 0,

being

IS = (x′)2 I(x) +
1
2
{x, θ},

the Schrödinger invariant, named by Bose in [20] and {x, θ} is the Schwartzian derivative

{x, θ} = x′′′

x′
− 3

2

(
x′′

x′

)2

.

3. Proof of the Results

Proof of Theorem 1. Under the transformation

y = v
(

1− x2
)− λ

2−
1
4 eη arccos(x), x ∈ (−1, 1), (21)
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the Equation (18) reduces to its normal form

v′′ + I(x)v = 0, (22)

where

I(x) =
2− 4η2 + 4λ + 4n2 + 8λn + x2 (4η2 − 4(λ + n)2 + 1

)
+ 8ηnx

√
1− x2

4 (x2 − 1)2 +
8ηλx

√
1− x2

4 (x2 − 1)2 .

By applying the transformations to (22)

x = cos θ, θ ∈ (0, π),

v = (x′)1/2Ψ,
(23)

we obtain the Schrödinger normal form

Ψ′′ + (κ(n; λ, η)−V(θ; n, λ, η))Ψ = 0, θ ∈ (0, π), (24)

where κ(n; λ, η) = (n + λ)2 − η2 and

V(θ; n, λ, η) = −V0(θ; λ, η)− nV1(θ; λ, η),

V0(θ; λ, η) = 2λη cot θ + λ(1− λ)
1

sin2 θ
,

V1(θ; λ, η) = 2η cot θ.

By identifying κ(n; λ, η) with the energy term we get

E(n; λ, η) = (n + λ)2 − η2, (25)

therefore

n = −λ +
√

E + η2. (26)

Substituting (25) and (26) into (24) we obtain (6).
Since Gn is a solution of (18), it follows from (21) and (23) that

Ψn(θ; λ, η) = Gn (cos θ; λ, η) e−ηθ sinλ θ, n ∈ N∪ {0},

is a solution of (24).

Proof of Theorem 2. On the one hand, by applying iterated integration to the left hand side of (7) and
taking into account the definition of P we obtain

∫ π

0

∫ t

0

(
∂P(θ, t′)

∂t′
+ ı(V(θ, Em)−V(θ, En))Ψ̂n(θ, t′)Ψ̂m(θ, t′)

)
dt′dθ =(

eı(En−Em)t − 1
) ∫ π

0
Ψn(θ)

(
1− V(θ, En)−V(θ, Em)

En − Em

)
Ψm(θ)dθ.

(27)

On the other hand, for the right hand side of (7) we have

∫ π

0

∫ t

0

∂J(θ, t′)
∂θ

dt′dθ =
∫ t

0

∫ π

0

∂J(θ, t′)
∂θ

dθdt′ (28)
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Now, from the definition of J and the fact that Ψn(0; λ, η) = Ψn(π; λ, η) = 0 when λ > 0 one has

∫ π

0

∂J(θ, t′)
∂θ

dθ = 0. (29)

Hence, from (27), (28) and (29)∫ π

0
Ψn(θ; λ, η)

(
1− V(θ, En)−V(θ, Em)

En − Em

)
Ψm(θ; λ, η)dθ = 0, n 6= m.

By substituting the value of V given in Theorem 1 we obtain (8).
To evaluate the numerical value of the constant cn, notice that if λ > 1

2 , η ∈ R, from the recurrence
relations (15) and (16) we have∫ π

0
Ψ2

n(θ; λ, η) cot θdθ =
η

λ + n

∫ π

0
Ψ2

n(θ; λ, η)dθ,

hence,

cn(λ, η) =

(
1− η2

(n + λ)2

)
πn!(λ + n)Γ(2λ + n)
22n−1Γ(2λ + 1)[(λ)n]2

∣∣∣∣ b
b + n

∣∣∣∣ .

This completes the proof of the theorem.

Proof of Corollary 1. From Theorem 1, the eigenstates are given by the system of real functions

Ψn(θ; λ) = Gn (cos θ; λ, 0) sinλ θ, n ∈ N∪ {0},

From (18), Gn reduces, up to a multiplicative constant cn factor, to the Gegenbauer polynomial of
degree n, cf. [23] (§4.7 p. 80). To find the multiplicative constant cn, note that from (1), (2) and (3) we
deduce that

Gn (1; λ, 0) = 2−n (2λ)n

(λ)n
= cnP(λ)

n (1),

therefore, from [23] [(4.7.3) p. 80] one obtains

cn =
2−n(2λ)n

(n+2λ−1
n )(λ)n

.

The corresponding energy eigenstates read as

E(n; λ) = (n + λ)2 , n ∈ N∪ {0}.

From the orthogonality relation for Gegenbauer polynomials

∫ 1

−1
P(λ)

n (x)(1− x2)λdx,

one has that Ψn(θ; λ) is an orthogonal system in the Hilbert space L2[0, π] with the scalar product

〈 f , g〉 =
∫ π

0
f (t)g(t)dt.

Proof of Theorem 3. From Corollary 1 and the relation (14) we have that Φn and Ψn are solutions of
the differential equation

Ψ′′(θ) +
(

E− λ(λ− 1)
sin2 θ

)
Ψ(θ) = 0, θ ∈ (0, π), λ ≥ 3

2
,
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hence, the transformations (21) and (23) give that

y1(x) = (x′)
1
2 (1− x2)−

λ
2−

1
4 Ψn(θ; λ), (30)

y2(x) = (x′)
1
2 (1− x2)−

λ
2−

1
4 Φnθ; λ), (31)

are solutions of the differential equation

(1− x2)y′′ − (2λ + 1)xy′ + n (n + 2λ) y = 0, x ∈ (−1, 1), λ ≥ 3
2

, (32)

notice that y1 reduces, up to a constant factor, to the Gegenbauer polynomial of degree n.
From (14) and (31) one has

y2(x) = (−ı)nP(−n−λ+ 1
2 )

n

(
ı

x√
1− x2

)
(1− x2)

n
2 , (33)

and from [44] [(6.4.12) p. 303],

P(−n−λ+ 1
2 )

n

(
ı

x√
1− x2

)
=

(−n− λ + 1
2 )n(2ı)n

n!
xn

(1− x2)
n
2

2F1

(
−n

2
,

1− n
2

; λ +
1
2

;
x2 − 1

x2

)
,

hence, from (33)

(1− x2)
n
2 P(−n−λ+ 1

2 )
n

(
ı

x√
1− x2

)
=

(−n− λ + 1
2 )n(2ı)n

n!
xn

2F1

(
−n

2
,

1− n
2

; λ +
1
2

;
x2 − 1

x2

)
. (34)

Notice that the relation (34) defines the left hand side as a polynomial of degree n whose
coefficients are rational functions of the variable λ varying in C.

Now, (33) is a solution to (32). Since this solution is a polynomial of degree n, it follows from [23]
(Th. 4.2.2 p. 61) that

y2 = const.y1, (35)

when <[λ] ≥ 3
2 . Using formula [44] [(6.4.12) p. 303], by comparing P(−n−λ−1)

2k (0) with P(λ)
2k (0) and(

P(−n−λ−1)
2k+1

)′
(0) with

(
P(λ)

2k+1

)′
(0), from (35) we obtain

(−ı)n
(λ + 1

2 )b n
2 c

(−n− λ + 1
2 )n

P(−n−λ+ 1
2 )

n (ı cot θ) sinn θ = (−1)b
n
2 c
(1− n− λ)b n

2 c
(λ)n

P(λ)
n (cos θ), <[λ] ≥ 3

2
. (36)

Let us consider n fixed. Since the coefficients of y2 and y1 are rational functions of λ and are
equal when <[λ] ∈ [ 3

2 ,+∞), it follows from [45] (Th. 17.1 p. 369) that the relation is valid for λ ∈ C,
with exception of a finite number of special values of λ. Notice that from [44] [(6.4.12) p. 303], the zeros
of the functions (−n− λ + 1

2 )n and (λ)n are removable singularities of the left hand side and right
hand side respectively of (36). Furthermore, when λ is a zero of (λ + 1

2 )b n
2 c or (1− n − λ)b n

2 c we
have simple poles in the main coefficients of the left hand side or right hand side accordingly. For
these values of λ0, the formula may be interpreted as a limit as λ→ λ0. This completes the proof of
the theorem.

To prove Theorem 4 a preliminary lemma is necessary.
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Lemma 1. Let λ > − 1
2 and η ∈ R be fixed and define for θ ∈ (0, π),

an(θ) =
D−1(0; b)

π

∫ π

0

D−1(eıθ′ ; b)− D−1(eıθ ; b)
1− eı(θ−θ′)

s∗n(eıθ′ ; b)ω(θ′; b)dθ′,

bn(θ) =
D−1(0; b)

π

∫ π

0

D−1(eıθ′ ; b)− D−1(eıθ ; b)
1− eı(θ−θ′)

sn(eıθ′ ; b)ω(θ′; b)dθ′.

Then,

lim
n→∞

an(θ) = 0, ∀θ ∈ [ε1, π − ε2],

lim
n→∞

bn(θ) = 0, ∀θ ∈ [ε1, π − ε2],

being ε1, ε2 > 0 any fixed quantities sufficiently small so that [ε1, π − ε2] ⊂ (0, π).

Proof. Let us denote

K(θ′, θ) = D−1(0; b)

(
D−1(eıθ′ ; b)− D−1(eıθ ; b)

1− eı(θ−θ′)

)
.

From (17), we have that for θ ∈ (0, π) fixed, K(θ′, θ) is continuous as a function of θ′ ∈ [0, π], hence

K(θ′, θ) ∈ L2(ω(θ′; b)dθ′),

therefore, from Lemma [21] (Lem. 4.2 p. 220)

lim
n→∞

an(θ) = 0, (37)

pointwise in the interval (0, π).
Let ε1, ε2 > 0 be any fixed quantities sufficiently small so that [ε1, π − ε2] ⊂ (0, π). Since K(θ′, θ)

is continuous in the compact set [0, π]× [ε1, π − ε2], the Heine–Cantor Theorem cf. [46] (Th. 2 p. 201)
implies that K(θ′, θ) is uniformly continuous in [0, π]× [ε1, π− ε2]. Hence, for every ε > 0 there exists
δ > 0 such that if θ1, θ2 ∈ [ε1, π − ε2], |θ1 − θ2| < δ, then

|K(θ′, θ1)− K(θ′, θ2)| < ε, ∀θ′ ∈ [0, π],

therefore,

|an(θ1)− an(θ2)| ≤
(

1
π

∫ π

0
|K(θ′, θ1)− K(θ′, θ2)|2ω(θ′; b)dθ′

) 1
2
< ε, ∀n ∈ N∪ {0},

this shows that the family (an(θ))n≥0, θ ∈ [ε1, π − ε2] is equicontinuous.
On the other hand, we have also that there exists M > 0 such that

|an(θ)| ≤
1
π

∫ π

0
|K(θ′, θ)|2ω(θ′; b)dθ′ ≤ M, ∀θ ∈ [ε1, π − ε2], ∀n ∈ N∪ {0},

this shows that the family (an(θ))n≥0, θ ∈ [ε1, π − ε2] is uniformly bounded.
From Arzela’s Theorem, cf. [47] (p. 54) it follows that the family of functions (an)n≥0 is compact in

C[ε1, π− ε2] equipped the uniform norm. Therefore, from (37) every uniform convergent subsequence
of (an)n≥0 converges to the same limit, hence for the whole sequence we have

lim
n→∞

an(θ) = 0, ∀θ ∈ [ε1, π − ε2].
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By using a similar argument, we also conclude that

lim
n→∞

bn(θ) = 0, ∀θ ∈ [ε1, π − ε2].

Proof of Theorem 4. From (2)–(4) it follows that

b + b
b

Rn(z; b) =
(b + 1)n

(b + b + 1)n
Ŝn(z; b) +

b
b

(b + 1)n

(b + b + 1)n
Ŝ∗n(z; b), n ≥ 1,

hence, from (1)

Gn(cos θ; λ, η) =

2−n−1(2λ)n

(λ)nκn(b)

(
b(b + 1)n

λ(b + b + 1)n
z−

n
2 sn(z; b) +

b(b + 1)n

λ(b + b + 1)n
z−

n
2 s∗n(z; b)

)
, z = e2ıθ , θ ∈ [0, π],

where κn is given by (5).
From [21] [(2.7) p. 200] we have that

lim
n→∞

κn(b) = δ−1(b), (38)

where δ(b) = e
1

2π

∫ π
0 log(ω(θ))dθ > 0 is the solution of the Szegő extremum problem, [21] (p. 200 & Th. 2.5

p. 204).
From the relation [21] (p. 206)

δ−2(b) = ∆(0; b),

where
∆(z; b) = D−1(z; b)δ−1(b),

cf. [21] [(3.4) p. 209], one finds that
δ(b) = D(0; b).

The representation [21] [(4.6) p. 220] gives

e−ınθsn(e2ıθ ; b) =
κn(b)eınθ D−1(e2ıθ ; b)− an(θ)eınθ D−1(e2ıθ ; b) + bn(θ)e−ınθ D−1(e2ıθ ; b)

δ(b)(|κn(b)− an(θ)|2 + |bn(θ)|2)
, (39)

with an and bn defined as in Lemma 1.
Taking into account the representation

(z)n =
Γ(z + n)

Γ(z)
,

from [26] [(4) p. 47] one has

(γ1)n

(γ2)n
=

Γ(γ2)

Γ(γ1)
nγ1−γ2

(
1 + O

(
1
n

))
, as n→ ∞. (40)

Hence, from (38)–(40)

2n+1Ψn(θ; λ, η) =(
2Γ(λ)
Γ(b)

nıηeınθ(1− e−2ıθ)−b +
2Γ(λ)
Γ(b)

n−ıηe−ınθ(1− e2ıθ)−b
)

e−ηθ sinλ θ + rn(θ).
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Now, Lemma 1 gives us that,

rn(θ) =

<
[(
− 1

Γ(b)
an(θ)eınθ(1− e−2ıθ)−b +

1
Γ(b)

bn(θ)e−ınθ(1− e−2ıθ)−b
)

O(1)
]
+ O

(
1
n

)
= o(1),

as n→ ∞,

uniformly in θ ∈ [ε1, π − ε2], being ε1, ε2 > 0 any fixed quantities sufficiently small so that
[ε1, π− ε2] ⊂ (0, π). This completes the proof of the theorem.

4. Discussion

The present work is devoted to the study an energy-dependent potential related to the
Rosen–Morse potential. The system is obtained by the addition of a potential term which depends on
the function cot θ and an energy dependence through a square root.

In order to show some numerical comparisons we will identify accordingly the parameters λ, η

of the quantum model given by Theorem 1 and the parameters a, b of the asymmetric trigonometric
Rosen–Morse model, following the form given in [41]. In effect, by identifying the parameters one has
b = −λη, a = λ. Consequently, the quantum system defined by Theorem 1, in terms of the parameters
a and b reads as,

Ψ′′(θ) +

E−

2b cot θ + a(a− 1)
1

sin2 θ
+ 2

b

a

−a+
√

E +

(
b

a

)2
 cot θ

Ψ(θ) = 0,

θ ∈ (0, π), a ≥ −1
2

, a 6= 0,

which has, when n ∈ N∪ {0}, the system of solutions

Ψn

(
θ; a,−b

a

)
= Gn

(
cos θ; a,−b

a

)
e
b
a θ sina θ =

(2a)n2−n

(a)n
×

(cos θ + ı sin θ)−n
2F1

(
−n, a− ı

b

a
; 2a; 1− (cos θ + ı sin θ)2

)
e
b
a θ sina θ, a ≥ −1

2
, a 6= 0,

(41)

and the corresponding energy levels,

EΨ

(
n; a,−b

a

)
= (n + a)2 −

(
b

a

)2
. (42)

On the other hand, following Theorem 3, we will multiply by an adequate numerical constant γn

the expression that defines the Φn functions (12),

γn = (−1)b
n
2 c

2−n(2a)n(a+
1
2 )b n

2 c

(n+2a−1
n )(−n− a+ 1

2 )n(1− n− a)b n
2 c

(1− 2n− 2a)n

(1− n− a)n
.

By (11) and (12), we have that the rescaled function Φn, n ∈ N∪ {0} can be expressed as

Φn(θ; a, b) = γn(−ı)nP
(−n−a− ıb

a+n ,−n−a+ ıb
a+n )

n (ı cot θ)e−
bθ

n+a sin(a+n) θ =

γn(−ı)n
(
−a− ıb

a+n
n

)
2F1

(
−n, 1− n− 2a; 1− n− a− ıb

a + n
;

1− ı cot θ

2

)
e−

bθ
n+a sin(a+n) θ.

(43)
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Notice that, by virtue of Corollary 1 and [23] [(4.7.1) p. 80] one has now that

Φn(θ; a, 0) = Ψn(θ; a, 0), a > −1
2

, a 6= 0,

we recover in particular, the symmetric trigonometric Rosen–Morse oscillator.
In Figures 1 and 2 we plotted the wave functions for several toy values of the parameters.

In Figures 3 and 4 we plotted the densities
(

1 + b cot θ
a(n+a)

)
|Ψn(θ; a, b)|2 (see Theorem 2) and

|Φn(θ; a, b)|2 for the same values of the parameters a, b with n fixed (n = 5). As can be appreciated,
by fixing b and making a variable, the abscissas of the local maxima of the densities tend to be localized
at the same points in both models, as a increases. These points correspond to the regions where it is
most likely the particle to be found. It should be also noticed from the expressions of the energies (13)
and (42) that

lim
a→∞

EΨ(n; a, b)− EΦ(n; a, b) = 0,

for b and n fixed. It could be interesting the further study of these facts.

Figure 1. Ψn(θ; a, b) in green and Φn(θ; a, b) in red with n = 5, b = 1 and a = 3, 5, 7.

Figure 2. Ψn(θ; a, b) in green and Φn(θ; a, b) in red with n = 5, b = 3 and a = 3, 5, 7.
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Figure 3. Density
(

1 + b cot θ
a(n+a)

)
|Ψn(θ; a, b)|2 with n = 5, b = 1 and a = 3, 5, 7.

Figure 4. Density |Φn(θ; a, b)|2 with n = 5, b = 1 and a = 3, 5, 7.
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