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Abstract: As one of the important techniques for protecting the copyrights of digital images, content-based
image copy detection has attracted a lot of attention in the past few decades. The traditional content-based
copy detection methods usually extract local hand-crafted features and then quantize these features to
visual words by the bag-of-visual-words (BOW) model to build an inverted index file for rapid image
matching. Recently, deep learning features, such as the features derived from convolutional neural
networks (CNN), have been proven to outperform the hand-crafted features in many applications of
computer vision. However, it is not feasible to directly apply the existing global CNN features for copy
detection, since they are usually sensitive to partial content-discarded attacks, such as copping and
occlusion. Thus, we propose a local CNN feature-based image copy detection method with contextual
hash embedding. We first extract the local CNN features from images and then quantize them to visual
words to construct an index file. Then, as the BOW quantization process decreases the discriminability
of these features to some extent, a contextual hash sequence is captured from a relatively large region
surrounding each CNN feature and then is embedded into the index file to improve the feature’s
discriminability. Extensive experimental results demonstrate that the proposed method achieves a
superior performance compared to the related works in the copy detection task.

Keywords: image copy detection; convolutional neural networks (CNN); contextual hash; local CNN
features; bag-of-visual-words (BOW)

1. Introduction

Due to the rapid development of Internet technology and the increasing popularity of personal
digital camera devices, the amount of digital media (images, audio, and video) grows exponentially
on the Internet [1-3]. With the help of various image processing tools such as Photoshop, it is very
easy for users to modify a copyrighted image (an original image) with a variety of manipulations such
as rescaling, rotation, cropping, noise addition, and text addition to produce various kinds of copy
versions of the image for illegal use. Figure 1 shows the toy examples of an original image and its copies.
In view of this, detecting image copies has become the first and key step for copyright protection.
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Figure 1. The toy examples of an original image and its copies. The left column is the original image,
and the right three columns correspond to the copy versions generated by three different kinds of
attacks, which are JPEG compression; cropping; and the combination of several manipulations, such as
rotation, cropping, noise addition, and screen-shooting.

Generally, two typical techniques are popularly applied to detectillegal copies: digital watermarking [4]
and content-based copy detection [5-8]. Digital watermarking embeds a watermark into the image file
before its distribution. Consequently, all the copies of the marked image contain the watermark, which can
be extracted and used as the proof of ownership. Instead of embedding additional information into the
image, content-based copy detection directly relies on the image itself. Generally, a content-based copy
detection system works as follows. It first collects numerous images downloaded from the networks to
build a database, and extracts content-based features from the database images as their unique information.
Then, for a given copyrighted image, the system compares its features to the features of the database
images to determine whether there are copy versions of the copyrighted image in the database. Compared
to the watermarking, the content-based copy detection does not need to embed the extra information but
the image itself, and copy detection can be conducted after distribution [5,9]. Therefore, this paper focuses
on content-based copy detection.

To resist various common copy attacks, the traditional content-based copy detection methods [6-14]
are usually based on local hand-crafted image features, such as scale-invariant feature transform
(SIFT) [15], principal component analysis on SIFT (PCA-SIFT) [16], and speeded-up robust feature
(SURF) [17]. However, as hundreds to thousands of high-dimensional hand-crafted features are
extracted from each image, directly matching these features between images for copy detection is very
time-consuming. To reduce the time consumption of the matching process, a bag-of-visual-words
(BOW) model [18] is adopted to quantize these features to visual words to build an inverted index file
for copy detection.

Recently, deep learning techniques, particularly convolutional neural networks [19], have achieved
great success in many applications of computer vision, such as image or scene classification [20],
human activity recognition [21], and object defect detection [22]. Since the CNN features have been
proven to be superior to hand-crafted features for content-based retrieval tasks [23], researchers prefer
to employ CNN features for content-based retrieval. Some earlier works [24-27] feed an image into a
pretrained CNN model and then use the output of the last fully-connected network layer as a global
image representation. In some other works [3,23,26], instead of focusing on the features extracted from
fully-connected layers, the features extracted from the deep convolutional layers are explored for the
tasks of content-based retrieval.
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Generally, the convolutional feature maps (CFMs) are first extracted from the deep convolutional
layers of CNNs with an inputimage, and a pooling strategy such as sum-pooling [23] or max-pooling [28]
is usually adopted to aggregate the feature maps into a single image representation. In our previous
work [3], instead of only generating a single global representation from each image, we extract
both the global and local CNN features from the CFMs and match these features between images
with a coarse-to-fine matching strategy for near-duplicate image detection. In another work [29],
the spatial-temporal CNN features are generated and matched for video copy detection. However,
since the global CNN features are sensitive to partial content-discarded attacks such as cropping
and occlusion, it is hard for these methods to detect the image copies generated by these attacks.
Consequently, the retrieval accuracy is compromised to some extent, and it is not a reasonable choice
to directly apply these global CNN features for copy detection.

Therefore, we attempt to propose a novel image copy detection method based on local CNN
features with contextual hash embedding. First, we extract the CFMs from the deep convolutional
layers of a pre-trained CNN model with an input image. Then, a number of local CNN features are
generated by sum-pooling the feature values within the image regions detected by the SURF region
detector [17]. Additionally, to improve the discriminability of the features, we extract a contextual hash
sequence from a relatively large region surrounding each local feature. Next, these local CNN features
are quantized to visual words by the BOW model to build an inverted index file, and the generated
hash sequence is embedded into the index file. Finally, the local CNN features are matched efficiently
between the images by looking up the inverted index file for copy detection. Our main contributions
are summarized as follows.

(1) The extraction and indexing of local CNN features. The local CNN features are extracted by
pooling the feature values of the convolutional feature maps (CFMs) within the regions detected by
the SURF region detector. In the feature extraction, the regions detected by the SURF region detector
change covariantly to the geometric transformations, including scaling and translation, and the feature
values in CFMs are robust to a variety of content-preserved attacks due to the powerful training
process. Therefore, the extracted local CNN features are not only robust to the partial content-discarded
attacks, but also to the common geometric transformations and content-preserved attacks. Therefore,
the extracted features have a high robustness, which will be beneficial to the accuracy of copy detection.
Then, we index these local CNN features by the BOW model to form an inverted index file. By looking
up the inverted index file, the feature matching process can be rapidly implemented for copy detection.

(2) The contextual hash embedding. To improve the discriminability of the quantized features,
we also generate a contextual hash sequence for each feature and embed it into the inverted index
file. Since the proposed contextual hash sequence is composed of a small number of hash values, it is
quite compact and thus does not need too much additional storage space. Moreover, different from
the CNN features that usually describe the complex patterns and semantic information of images,
the hash sequence captures the correlations between blocks divided from relatively large regions
surrounding the local CNN features, which can sufficiently characterize the contextual information of
these features and thus improve the features’ discriminability significantly. That will lead to a higher
detection accuracy.

The reminder of this paper is organized as follows. In Section 2, we introduce the proposed copy
detection method in detail. The experimental results and analysis are given in Section 3. Section 4
draws the conclusions.

2. The Proposed Copy Detection Method

In this section, the proposed copy detection method will be introduced. The framework of the
proposed copy detection method is illustrated by Figure 2. In Section 2.1, we introduce the generation
of the CFMs for a given image. In Section 2.2, we describe how to extract the local CNN features
from the CFMs. In Section 2.3, a contextual hash sequence is generated for each local CNN feature.
In Section 2.4, the extracted local CNN features are quantized by the BOW model to build an inverted
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index file, and the generated hash sequence is embedded into the index file. In Section 2.5, by looking
up the inverted index file, we match the features between images for copy detection.
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Figure 2. The framework of the proposed copy detection method.

2.1. CFM Generation

Generally, a typical CNN model is composed of a number of layers, including convolutional
layers, pooling layers, and fully connected layers. As illustrated in [23], the CNN features extracted
from deep convolutional layers perform better than the features from other layers in many retrieval
tasks. Thus, for a given image, it is fed into a pretrained CNN model and the output of the fifth
convolutional layer—i.e., a set of CFMs—is used for the local CNN feature extraction. In our method,
we adopt the famous CNN model—i.e., AlexNet [19].

From [19], by feeding an image into the AlexNet model, the output of the fifth convolutional layer is
K feature maps with the size of W x H, where K = 256 and W and H are proportional to the width and
height of the image, respectively. Denote the K feature maps as CFMs = {M;, My, --- ,M;,--- ,Mk}. These
CEFMs will be further used for local CNN feature extraction. Figure 3 illustrates the generation of CFMs.

CFMs

Input image

w
Figure 3. The illustration of convolutional feature maps (CFM) generation.

2.2. Local CNN Feature Extraction

To extract the local CNN features, we first detect a set of regions from the image and then extract
the local CNN features by pooling the feature values within the detected regions. To achieve a high
robustness of the common geometric transformations including rotation, rescaling, and translation,
the regions detected for feature extraction should change covariantly to these transformations.
To this end, the SURF region detector [17] is adopted to detect the regions from images, since the
SUREF detector can efficiently detect the regions that change covariantly to the above transformations,
as illustrated in [17].

Since the sizes of CFMs are proportional to the size of the image, for a region detected on the image
R, we can map the region to the CFMs to obtain its corresponding region Rp; on CFMs, according to
the ratio between the size of the image and its CFMs. Then, we adopt the sum-pooling strategy [23] to
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aggregate the feature values of each CFM within the region Ry to extract the K = 256 dimensional
local CNN feature Fp,,, by:

Fry = ) Mi(p)1 <i <K, (M)
peER

where, p represents a point located in the region Ry, and M;(p) means the feature value of p on the
i-th feature map. Finally, we normalize the extracted feature by L2-normalization. Figure 4 illustrates
the local CNN feature extraction. As hundreds to thousands of SURF regions are detected from each
image, the same number of local CNN features can be extracted by the above step.
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Figure 4. The illustration of local CNN feature extraction.
2.3. Contextual Hash Generation

In our method, the extracted CNN features will be quantized to visual words to construct an
inverted index file for rapid image matching. However, the BOW quantization process will decrease the
discriminability of the features to some extent. To improve the features’ discriminability, we generate
a contextual hash sequence of each local CNN feature and then embed it into the index file. In our
method, we use the correlations between blocks divided from the relatively large region surrounding
each local CNN feature to generate the contextual hash sequence. The algorithm of the contextual hash
generation is described as follows.

Suppose the radius of a detection SURF region is r. To capture the contextual information,
we expand the region proportionately, and the radius of the extended region Ry,” is denoted as:

' =rxa, 2)

where a is set as 3.2 by experiments.

For a given expended region Ry,’, we first divide it into M X N blocks with equal size in the
log-polar space and then compute the average gray intensities of these blocks. We denote the average
gray intensity of block b in the expended region as G, and those of the eight adjacent blocks of
block b as Gp(i), where i € [1,8]. Note that some adjacent blocks of an edge block do not exist,
and thus their average gray intensities are set as 0. Then, the hash values of block b denoted by
vp = {vp(1),0p(2),- -+ ,vp(i), -+, vp(8)} can be generated by Equation (3). Figure 5 shows an example
of the extraction of feature values from a block.

N 1, lf Gb(l) > Gy .
vy(i) = { 0, otherwise where i € [1, 8] ©)]

In the above manner, the hash values of all the blocks in the region Ry’ are computed.
Then, we concatenate the hash values of all the blocks to generate the contextual hash sequence
of the local CNN feature, denoted as CH, which will be further embedded into the index file. Since
the correlations of adjacent blocks that describe the comparative intensity relationships of adjacent
blocks are less likely to be changed by various transformations, the generated hash sequence has a
high robustness. Moreover, each hash sequence is composed of a small number of hash values, and
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thus we do not need too much additional memory space for storing it. In addition, the contextual
hash sequence sufficiently captures the contextual information of the local CNN feature, which can
significantly improve the feature’s discriminability for copy detection.

v, ={1,0,0,0,1,1,0,0}

Figure 5. The extraction of the hash values from a block.

2.4. Index File Construction

As hundreds to thousands of local CNN features are detected from each image, it is very
time-consuming to directly match these features between images for copy detection. Thus, in this
section, we quantize these features to visual words based on the BOW model and then build the
inverted index file for efficient copy detection.

Specifically, in the BOW model, numerous sample features are clustered to generate a set of
clusters by a clustering algorithm—i.e., K-means—and each cluster center is viewed as a visual word
to form a visual vocabulary. Then, we extract the local CNN features from all the database images, and
then quantize them to the corresponding nearest visual words of the vocabulary to build the inverted
index file.

The structure of the inverted index file of our method is illustrated by Figure 6. Each visual word
is followed by the indexed information, each of which stores the ID of the image where the visual word
occurs and the contextual hash sequence. Note that the generation of the contextual hash sequence for
each local CNN feature is described in next subsection.

Image

D Contextual hash sequance

l

Figure 6. The structure of the inverted index file.

2.5. Copy Detection

By the above steps, we can obtain the inverted index file for the database images. Next, we will
introduce the implementation of copy detection in detail.

For a query image, we also extract its local CNN features and the corresponding hash sequences
by the algorithms described in Sections 2.3 and 2.4, respectively. Then, by looking up the index file,
any two local CNN features from different images quantized to the same visual word are treated as a
candidate local match between the images.
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Next, we compute the distance between the corresponding contextual hash sequences of initially
matched local CNN features, denoted as CHp and CHp, to confirm whether they are a true match.
The distance is computed by:

8XMXN ) .
Y. |CHq(i) - CHp (i)
Dis(CHg, CHp) = ——

8xXMxN ’ @)
where CHg (i) and CHp (i) are the i-th elements in CHg and CHp, respectively. If the distance is smaller
than a preset threshold Dist, we determine that the match is a true one. Then, like the tradition
BOW-based retrieval methods [7,30], each matched feature casts the corresponding database image a
vote weighted by the inverted document frequency (IDF) [30]. The similarity of the query image to a
database image is measured by adding up all the weighted votes. Finally, we compare the similarity
with a pre-set threshold to determine whether a database image is a copy version of the query.

3. Experiments

In this part, the dataset and evaluation criteria used in our experiments are described first. Second,
the optimal parameter setting is determined by experiments. Third, the performance of the proposed
method is evaluated and compared to those of the state-of-the-art methods.

3.1. Datasets and Evaluation Criteria

In the experiments, two datasets are adopted, which are detailed as follows.

(1) Copydays dataset [31]. This dataset is composed of 3212 images. There are 157 original ones
and 3055 copies that are generated by different kinds of image attacks, such as JPEG compression,
cropping, and “strong” attacks. The “strong” attacks mean the different combinations of a variety
of manipulations such as scaling, blurring, and rotation. For each original image, it has nine copy
versions that are generated by JPEG compression with different quality factors, nine copy versions that
are generated by cropping the image from 10% to 80%, and 2 to 6 copy versions that are generated by
“strong” attacks. The 175 original images are used as query images for copy detection.

(2) DupImage dataset [32]. This dataset contains 1104 images. In this dataset, there are 33 image
groups. In each group, the first image is an original image, and the other images are the copy
regions, which are cropped from the original image with a variety of copy attacks such as rescaling,
noise addition, and compression. We use the 33 first images of these groups as query images for
copy detection.

In the experiments, we adopt Mean Average Precision (MAP) to test the performances of the different
methods. When detecting the copies of a given query in the database, by setting the image similarity
threshold to different values we can obtain a set of pairs of precision and recall rates. Thus, we can
compute the average precision across all the different recall levels. MAP is obtained by computing the
mean value of the average precisions of all queries.

Note that the experiments are implemented on a personal computer (3.2 GHz Core-i5 and 8 GB
RAM) with Windows 7 X 64 operation system.

3.2. Parameter Determination

In this part, the impacts of three key parameters are tested: the parameters used for block
generation—i.e., M and N—and the threshold used for feature matching—i.e., Dist. The size of the
visual vocabulary used for the index file construction is set as 20K.

First, the threshold Dist is fixed to a default value—i.e., 0.3—to observe the impacts of the
parameters M and N on the MAP values. From Figure 7, we can clearly observe that too large or too
small M and N lead to an inferior detection performance for the following reasons. A larger M and N
lead to more blocks divided from each region and a smaller number of pixels in each block, which will
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make the generated contextual hash sequence more sensitive to many copy attacks, such as nosing
addition and blurring. A smaller M and N cause fewer blocks from each region, which will decrease
the dimensionality of the generated contextual hash sequence. Thus, the accuracy of feature matching
will be affected to some extent. According to Figure 7, M = 4 and N = 4 provide the highest detection
accuracy, and thus we use the above settings in the following experiments.

N=2
—o— N=4
0.95¢ &— N=6
v N=8
=< 09t
]
0.85}
0.8 .
2 4 8 10

M

Figure 7. The effects of M and N on accuracy.

Then, we test the impact of the threshold Dist. Figure 8 shows the effects of Dist on the MAP.
From this figure, it can be clearly observed that the detection performance degrades when Disr is
too small or too large. The reason is that if Dist is too small, a considerable number of true feature
matches will be detected as false ones, and if Dist is too large, many false matches will be determined
as true ones. According to this figure, when Dist = 0.25, we can achieve the highest detection accuracy.
Thus, we set Dist = 0.25 in the following experiments.

1

095+

MAP

0.9+

0.85+

0.8 ' - '
0.20 0.25 0.30 0.35 0.40

Di(s‘]'

Figure 8. The effects of Dist on accuracy.
3.3. Performance Evaluation

In this part, we will compare the performance of the proposed method to those of five other
methods, which are listed as follows.

(1) SIFT + BOW [33]: This is the method based on the hand-crafted local features—i.e.,
SIFT features [15] and the BOW model [18]. First, a set of SIFT features are extracted from each image,
and then they are quantized by the BOW model to build an inverted index file for image copy detection.

(2) SIFT + BOW + GC [8]: This method is very similar to the previous one, but it has an additional
step—i.e., feature match verification by geometric coding (GC). Specifically, after obtaining feature
matches between images by inverted index file, a geometric coding algorithm is adopted for feature
match verification to filter false matches. The remaining feature matches are used to evaluate the image
similarity for copy detection.
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(3) Global CNN + Local CNN + CF [3]: This method extracts both the global and local CNN
features from the CFMs generated by a pre-trained CNN model—i.e., Alexnet [19]—and match these
features between images with a coarse-to-fine (CF) strategy for copy detection.

(4) Global CNN + VDSH [27]: In this method, we extract the global CNN features from the last
fully connected layer of the same pre-trained CNN model—i.e., Alexnet [19]—and index these global
features by the BOW model. Then, the VDSH algorithm [34] is employed to calculate the hash codes of
images to improve the discriminability of the global features for copy detection.

(5) Local CNN + BOW: Different from SIFT + BOW, this method uses the local CNN features
extracted by the algorithm in Section 2.2 instead of the SIFT features.

(6) Local CNN + BOW + CHE: This method is the proposed method, which extracts the local
CNN features and then quantizes them to visual words by the BOW model to build the inverted index
file, and the contextual hash sequences are generated and embedded into the index file.

We set the size of visual vocabulary as 20K to test the detection performances of those methods on
the two datasets. The comparison results are shown in Tables 1 and 2, where the average time cost per
query is adopted to evaluate the time efficiency, while the memory consumption per indexed feature
is used to measure the space efficiency of those methods. From Table 1, it can be clearly observed
that our method—i.e., Local CNN + BOW + CHE—achieves the highest accuracy among all of these
methods on the Copydays dataset. Our method achieves a higher accuracy than the SIFT + BOW and
SIFT + BOW + GC, mainly because our method uses the local CNN features, which have a higher
discriminability than the local hand-crafted features. The accuracy of our method is higher than those
of Global CNN + Local CNN + CF and Global CNN + VDSH. That is because the proposed local
CNN features are more robust than the global CNN features to the partial content-discarded attacks,
such as cropping and occlusion. Additionally, our method outperforms Local CNN + BOW, since the
contextual hash sequence embedded into the index file can significantly improve the discriminability
of the local CNN features.

From Table 2, our method still achieves the highest accuracy on the Dupimage dataset. All of
the above methods, especially Global CNN + Local CNN + CF and Global CNN + VDSH, achieve
worse performances on the Dupimage dataset than on the Copydays dataset. That is because the
Dupimage dataset contains a lot of image copies generated by the partial content-discarded attacks
such as cropping and occlusion, and the global CNN features are much more sensitive to these attacks
than the proposed local features.

From Tables 1 and 2, we can also observe that the time efficiency of our method is higher
than that of SIFT + BOW + GC and Global CNN + Local CNN + CF, and is slightly lower than
that of Global CNN + VDSH and Local CNN + BOW, since our method needs the additional
verification step to confirm the local CNN feature matches by computing the distances between the
contextual hash sequences. Our method requires comparable memory space to SIFT + BOW + GC
and Global CNN + VDSH, and a higher memory space than SIFT + BOW and Local CNN + BOW.
That is because the additional contextual hash sequence needs to be embedded into the inverted index
file in our method.

In conclusion, our method provides a higher accuracy than the five other methods, while maintaining
a desirable performance in the aspects of both space and time efficiency. Some examples of copy detection
results of our method are shown in Figure 9.
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Table 1. Comparison between different methods on the Copydays dataset.

SIFT + BOW  SIFT + BOW + GC  Global CNN + Local CNN + CF  Global CNN + VDSH Local CNN + BOW  Local CNN + BOW + CHE
MAPs 0.783 0.882 0.762 0.681 0.827 0.935
Average Time cost (second) 0.139 0.385 0.552 0.203 0.258 0.304
Memory consumption per 8 16 3 16 8 20
feature (Bytes)
Table 2. Comparison between different methods on the Dupimage dataset.
SIFT + BOW  SIFT+ BOW + GC  Global CNN + Local CNN + CF ~ Global CNN + VDSH  Local CNN + BOW  Local CNN + BOW + CHE
MAPs 0.491 0.689 0.543 0.324 0.587 0.861
Average Time cost (second) 0.158 0.866 0.943 0.235 0.284 0.328
Memory consumption per 8 16 3 16 8 20
feature (Bytes)
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Figure 9. The examples of our detection results (four queries and the corresponding four detected
images) on the Copydays dataset. All of these detected images are the image copies.

4. Conclusions

We have presented a local CNN feature-based copy detection method with contextual hash
embedding. The local CNN features show a higher discriminability than the traditional hand-crafted
features, which is beneficial to the accuracy of copy detection. Thus, instead of using the traditional
hand-crafted features, we quantize the extracted local CNN features by the BOW model to build
the inverted index file. To further improve the discriminability of CNN features, the corresponding
contextual hash sequences of each CNN feature are generated and embedded into the index file.
The experimental results show that the proposed copy detection method achieves a promising accuracy,
while maintaining good performances in the aspects of time and space efficiency. However, the extracted
local CNN features still show limited robustness to the “strong” copy attacks, because the CNN features
are extracted from a pre-trained CNN model, which does not take these attacks into account during
the training process. To extract more robust CNN features, one of feasible solutions is to train a proper
CNN model with a transfer learning technique for feature extraction. Future work will focus on how
to further improve the robustness of the local CNN features. Moreover, also a significant research
direction is how to extend the proposed method for emerging applications—i.e., cross-media retrieval.
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