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Abstract: Treating trauma to the cranio-maxillofacial region is a great challenge and requires expert
clinical skills and sophisticated radiological imaging. The aim of reconstruction of the facial fractures
is to rehabilitate the patient both functionally and aesthetically. Bio-modeling is an important tool
for constructing surfaces using 2D cross sections. The aim of this manuscript was to show 3D
construction using 2D CT scan contours. The fractured part of the cranial vault were constructed
using a Ball curve with two shape parameters, later the 2D contours were flipped into 3D with an
equidistant z component. The surface created was represented by a bi-cubic rational Ball surface with
C2 continuity. At the end of this article, we present two real cases, in which we had constructed the
frontal and parietal bone fractures using a bi-cubic rational Ball surface. The proposed method was
validated by constructing the non-fractured part.

Keywords: CT scan data; rational Ball curves; bi-cubic Ball surface; 2D fractured part curves;
3D craniofacial reconstruction

1. Introduction

The etiology of craniofacial fractures stretch from road traffic accidents, fist fights, falls and sports
injury. Craniofacial fractures are a common site when compared with fractures of the rest of the
body.Craniofacial fractures are more sensitive and complicated than fractures on other parts of the
body. The complexity of the craniofacial region and the random complex patterns of its fractures
are always a challenge to diagnose and treat. To diagnose a craniofacial fracture, various tools are
available, such as MRIs, X-rays and CT scans. To understand the complexity of the maxillo-craniofacial
region, Figure 1 explains the various bones. The most common bones included in the region are
maxilla, mandible, frontal bone, orbital cavity (made of nine bones), nasal cavity, and parietal bone.
In this manuscript, the cases included had frontal and parietal bone fractures.

Emerging virtual reconstruction technologies opened new avenues for mathematicians,
physicists and software engineers to reconstruct the fracture defects. The already established
approaches for implant design are based on the Computer Aided Design (CAD)/Computer Aided
Manufacturing (CAM) process chain [1,2]. Heavy tools and technical staff are required for this
process, which causes high cost and low efficiency. Sauret et al. [3] proposed the mirroring method.
The mirroring method is useful for the fracture on one side of the skull only. The authors in [4] used
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the adaptive deformation method for fracture reconstruction. In this method, firstly, the author has
constructed a reference model according to patients skull, and, later, performed a 3D matching for
the correlation.

Figure 1. Craniofacial bones.

The method, based on a reference skull, is used by [5] for fracture reconstruction. By this method,
a user can not get custom made implants. Carr et al. [6,7] used the Radial Basis Functions (RBF) for the
reconstruction and representation of 3D objects. Multiple bone fractures in 2D were constructed by [8]
using Non-Uniform Rational B-Spline (NURBS) curves. Occipital bone fractures were constructed
by [9] using B-spline curves. Rational Ball curves were used in [10] for image reconstruction and have
constructed different images like a Bear, vase and the Arabic word “Dal”. A virtual craniofacial model
was constructed by [11] using an algorithm based on the Iterative Closest Point (ICP). The author
constructed a mandible bone fracture using this method. King et al. [12] explained the statistical
analysis of a patient with a mandible bone fracture based on the age and gender of patients, and the
causes of fractures. Pascoletti et al. [13] constructed a 3D mandible model by using a limited number
of control points through principal component analysis. Computerized craniofacial reconstruction
was done by [14] using a CT-derived implicit surface representation. Klein et al. [15] used contours to
reconstruct the fractures. A dense surface point distribution model was used by [16] for anatomical
shape reconstruction. The authors in [17,18] used a reverse engineering method for the construction
of different parts of the human body. Lian et al. [19] used a computer modeling approach for the
construction of artificial human bones.

In our study, we used a bi-cubic rational Ball surface to reconstruct the 3D fractured craniofacial
site. The given CT scan Digital Imaging and Communications in Medicine (DICOM) data are in
2D form, so first we construct the fracture part curves of skull in its 2D form, using rational cubic
curves based on the Ball basis. The free parameters were optimized using the Genetic Algorithm (GA).
Then, we converted the given 2D data into 3D form, taking the equidistant z component and then
constructed the 3D craniofacial fracture.

Using the proposed method, there is no need to use a reference model, mirroring,
statistical analysis or technical staff. The construction is just based on the CT scan data in 2D format.
The proposed method provides a custom made implant for every unique patient. Table 1 represents
the comparison between the existing method and proposed method. To validate the proposed method,
real cases with frontal and parietal bone fractures were used in this paper.
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Table 1. Comparison of existing methods and proposed method.

Sr.No Existing Methods Proposed Method

1

The method based on CAD/CAM is
used by [1,2] for fracture reconstruction.
Technical staff/tools are required for this
method, and this method suffers from a
high cost and low efficiency

In the proposed method, there is no need for
staff/tools, only a patient’s CT scan DICOM
data are required for construction.

2

The authors in [3] constructed a fractured part
using the mirroring method. This method
works well for unilateral fractures and will
not work for bilateral fractures

The proposed method works independently
of mirroring and will work well for both
unilateral and bilateral fractures.

3
Wu et al. [4] and Shui et al. [5] used the
adaptive deformation method for construction.
This method is based on a reference skull

There is no need for a reference skull using the
proposed method, only 2D CT scan data are
required.

4
Shui et al. [5] used a thin plate spline; this
method also depends on a reference skull

The proposed method is independent of
reference skull construction and directly uses
patient data.

5

Carr et al. [6] employed radial basis function.
A large number of data points are required
for this method and they use the average
thickness of skull bone

The thickness of bone varies slice to slice and
can be controlled using the free parameters
of proposed method with no need for
average thickness.

6
A mandible bone fracture was constructed
by King et al. [12] using ICP, taking the
non-fractured part as a reference

The proposed method is independent of a
reference skull. The constructed fractured
part can be controlled and adjusted by shape
parameters in proposed method. It is a custom
made implant, time-saving and efficient.

7

Majeed et al. [8,9] used NURBS and B-spline
curves for the construction of multiple and
occipital bones fractures. The constructed
parts in both papers are in 2D form.

In this paper, we constructed the frontal and
parietal bone fractures in 3D form using the
bi-cubic Ball surface.

2. The Cubic Ball Basis Functions, Curves and Surfaces

In this section, we construct the cubic Ball curves and surfaces using Ball basis functions [20].
These functions satisfy the basic properties like symmetry, invariant under affine transformation,
coordinate system independence, convex hull property, end point interpolation and variation
diminishing property. In this paper, we used the cubic Ball basis functions for fracture reconstruction.
Figure 2 explains the graphical behavior of these functions. The cubic ball basis functions are defined as:

=0(ψ) = (1− ψ)2,
=1(ψ) = 2ψ(1− ψ)2,
=2(ψ) = 2ψ2(1− ψ),
=3(ψ) = ψ2.

(1)
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Figure 2. Ball basis functions.

2.1. Properties of Ball Basis Functions and Curve

• Linearly Independent: The cubic Ball bases are linearly independent. We can not get constants
ai 6= 0, for which.

3

∑
i=0

ai=i(ψ) = 0.

• Non-negative: Cubic Ball functions are always positive for ψ ∈ [0, 1].
• Symmetric: The cubic Ball functions are symmetric as

=i(ψ) = =3−i(1− ψ).

• Monotonicity: =3(ψ) is monotonically increasing and =0(ψ) is monotonically decreasing for
ψ ∈ [0, 1].

• Partition of Unity: Sum of cubic Ball basis functions is 1.

3

∑
i=0
=i(ψ) = 1.

Let ℵi be the set of control points and =i(ψ), i = 0, ..., 3 are cubic Ball functions defined in (1).
The cubic Ball curve =(ψ) = ∑3

i=0 ℵi=i(ψ) obey the following properties [21,22]
• Coordinate system independence: The Ball curve is independent of coordinate systems.

By changing the coordinates of control points curve remains same.
• Convex Hull Property: The Ball curve obeys the convex hull property means curve will always

lies within the convex hull of its control polygon.
• Variation Diminishing Property (VDP): Variation Dimension Property is obeyed by Ball curves

as shown in Figure 3.
• Endpoint Interpolation: The cubic Ball curve interpolates the first and last control point.
=(0) = ℵ0, =(1) = ℵ3.
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Figure 3. Variation diminishing property with b = 1 p = 3 k = 1.

2.2. The Rational Cubic Ball Curve

A rational cubic Ball curve used for the fracture reconstruction is defined as:

=i(ψ) =
ℵi(ψ)
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192 C0 À \‘{A}

193 C1 Á \’{A}
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202 CA Ê \^{E}

203 CB Ë \"{E}
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207 CF Ï \"{I}

208 D0 Ð \DH (T1)

Dec Hex Char LATEX 2ε

209 D1 Ñ \~{N}
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226 E2 â \^{a}

227 E3 ã \~{a}

228 E4 ä \"{a}
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233 E9 é \’{e}

234 EA ê \^{e}
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, i = 1, ...n− 1 with 0 ≤ ψ ≤ 1, (2)

where, {
ℵi(ψ) = h̄i(1− ψ)2 + Vi(1− ψ)2ψ + Wi(1− ψ)ψ2 + h̄i+1ψ2,
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201 C9 É \’{E}

202 CA Ê \^{E}
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i(ψ) = (1− ψ)2 + ai(1− ψ)2ψ + bi(1− ψ)ψ2 + ψ2

and 0 = ψ0 < ψ1 < ψ2 < ψ3.... < ψn = 1, Vi = ai h̄i + hidi, Wi = bi h̄i+1 − hidi+1.
Equation (2) satisfies the following conditions{

=i(ψ0) = h̄i, =i(ψn) = h̄i+1,

=′i(ψ0) = di, =′i(ψn) = di+1.
(3)

where ai, bi are free parameters, h̄i, h̄i+1 are the endpoints of each segment, and di, di+1 are unit tangent
vectors at h̄i and h̄i+1, respectively.

The given DICOM data are in 2D form. To construct the surface patch one have to convert the
data in 3D form, for this we took the non-decreasing z component of each 2D contours as a height
like z0 < z1 < ... < zmax. The ith contour is defined by the sequence of distinct data points, which are
counterclockwise ordered in the contour at the height zi.

2.3. Bi-Cubic Rational Ball Surface

Frontal and parietal bone fractures are constructed using bi-cubic rational Ball surface, which is
defined as:

=ij(x, y) =
XBB∗BTYT

ρ(x)ζ(y)
, (4)

where,
X =

[
x3 x2 x 1

]
Y =

[
y3 y2 y 1

]
The Matrix B is the Ball matrix

ρ(x) = (1− x)2 + αiu(1− x)2 + βix2(1− x) + x2,
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ζ(y) = (1− y)2 + αjy(1− y)2 + β jy2(1− y) + y2,

and

B∗ =


h̄∗i,j h̄∗i,j+1 h̄∗yi,j h̄∗yi,j+1

h̄∗i+1,j h̄∗i+1,j+1 h̄∗yi+1,j h̄∗yi+1,j+1
h̄∗xi,j h̄∗xi,j+1 h̄∗xy

i,j h̄∗xy
i,j+1

h̄∗xi+1,j h̄∗xi+1,j+1 h̄∗xy
i+1,j h̄∗xy

i+1,j+1


where h̄∗ij are the control points of the curves along x and y direction. h̄x

ij ,h̄y
ij are the first derivatives

along x and y defined as follows



h̄∗x00 = 2(h̄∗10 − h̄∗00)− (h̄∗20 − h̄∗00)/2,

h̄∗y00 = 2(h̄∗01 − h̄∗00)− (h̄∗02 − h̄∗00)/2,

h̄∗xnm = 2(h̄∗nm − h̄∗n−1m)− (h̄∗nm − h̄∗n−2m)/2,

h̄∗ynm = 2(h̄∗nm − h̄∗nm−1)− (h̄∗nm − h̄∗nm−2)/2,

h̄∗xij = a∗ij(h̄∗ij − h̄∗i−1j)− (1− a∗ij)(h̄∗i+1j − h̄∗ij), i = 1, ...n− 1, j = 1, ...m− 1

h̄∗yij = a∗∗ij (h̄∗ij − h̄∗ij−1)− (1− a∗∗ij )(h̄∗ij+1 − h̄∗ij),

where,

a∗ij =
|h̄∗i+1j − h̄∗ij|

|h̄∗i+1j − h̄∗ij|+ |h̄∗ij − h̄∗i−1j|
, i = 1, ...n, j = 1, ...m

a∗∗ij =
|h̄∗ij+1 − h̄∗ij|

|h̄∗ij+1 − h̄∗ij|+ |h̄∗ij − h̄∗ij−1|
,

where h̄∗xy
ij are the second derivatives defined [23] as:

h̄∗(x, y) = h̄∗ij(1− x)(1− y) + h̄∗ij+1(1− x)y + h̄∗i+1jx(1− y) + h̄∗i+1j+1xy. (5)

Partially differentiate Equation (5) with respect to x and y, we get

h̄∗xy
ij = (h̄∗ij − h̄∗ij+1) + (h̄∗i+1j+1 − h̄∗i+1j).

For more detail, readers can see [23]. The method proposed in this section has shape parameters,
which help in adjusting and changing the surface.

3. Craniofacial Fractures Reconstruction

This section discusses the validity of proposed method, 3D fracture reconstruction and the
proposed algorithm.

3.1. Validity of Proposed Method

The proposed method was validated by reconstructing the non-fractured part of real data as
shown in Figure 4. Figure 4a shows that around one fourth of the data are non-fractured. We have
successfully constructed that part using the proposed bi-cubic rational Ball surfaces as shown in
Figure 4b.
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(a) CT scan data in 3D form (b) Non-fractured part reconstruction

Figure 4. Validity of the proposed method.

3.2. Reconstruction Accuracy

Normalized mean squares error is used to find the error of constructed surface as in Figure 4.
The normalized mean squares error is computed by

E2 =
∑ |=ij(x, y)− Di|2

∑ |Di|2
, (6)

The errors for different patches of constructed surface lies between 10−3 to 10−1. The average error for
complete surface is about 10−2.

3.3. Case Study: 3D Craniofacial Fractures Construction

In this section, the frontal and parietal bone fractures were constructed in 3D form using proposed
bi-cubic Ball surface. The given 2D CT scan data are in slices, as shown in Figure 5. A flow chart for
craniofacial fracture reconstruction is shown in Figure 6. First, we constructed the boundary curves of a
complete skull using the rational cubic Ball with C1 continuity at each knot as shown in Figure 7. Then,
the rational cubic Ball curve with C1 continuity was used to construct the boundary curves of fractured
part of all CT scan slices, as shown in Figure 8. Figure 8a shows CT scan slice 171. For reconstruction,
first we extracted the boundary of each CT scan slice using mathematical morphology as shown in
Figure 8b. Then, rational cubic Ball curves were used to construct the fractured part boundary curves,
as shown in Figure 8c. In a similar way, the boundary curves of different slices were constructed, as
shown in Figures 9 and 10. To construct the fractured part in 3D form, 2D contours were switched to
3D form by taking equidistant z component, as shown in Figure 11. Figures 12 and 13 represent the
constructed 3D craniofacial fracture using the proposed scheme.

The proposed method was applied to the patient with a parietal bone fracture, as shown in
Figure 14. The rational cubic Ball curve was used to construct the boundary curves of the fractured
part, as shown in Figure 15. The constructed boundary curves of the parietal bone fracture for different
slices is shown in Figure 16. The effect of shape parameters are observed and shown in Figure 17. It is
observed that shape parameters have a good effect on fracture reconstruction and by increasing the
value of shape parameters the curves moves toward out side and curves move inner side by decreasing
the values. Figure 18 represents the parietal bone fracture in 3D form with and without fractured
part curves. The constructed fracture part of parietal bone is represented by Figure 19. Two different
craniofacial fractures have been constructed using the proposed method to show its applicability.
The constructed part can be changed or adjust by using free parameters.
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The execution time for the construction of fractured part curves of one CT scan image is 0.03 s
and for 3D craniofacial fracture reconstruction is 2.59 s. The system used for this work had a Processor
2.80 GHz; RAM 8 GB; 64-bit operating system. Matlab was used for programming.

Figure 5. CT scan images of patient.

Figure 6. Flow chart of proposed algorithm.
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(a) Original image (b) Boundary

100 150 200 250 300 350 400 450
−300

−250

−200

−150

−100

−50

0

50

100

(c) Reconstructed image using rational
Ball interpolant

Figure 7. Reconstructed image of CT scan data slice 176.

(a) Original image (b) Boundary
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(c) Constructed fracture part curves of CT
scan data slice 171

Figure 8. CT scan data slice 171.

(a) Original image (b) Boundary
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(c) Constructed fracture part curves of CT
scan data slice 160

Figure 9. CT scan data slice 160.
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(a) Original image (b) Boundary
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(c) Constructed fracture part curves of CT
scan data slice 147

Figure 10. CT scan data slice 147.
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(a) CT scan data in 3D form
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(b) CT scan data in 3D form
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(c) Fractured part curves in 3D form
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(d) Fractured part curves in 3D form

Figure 11. CT scan data in 3D format.
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Figure 12. Reconstructed frontal bone in 3D.
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Figure 13. Reconstructed frontal bone in 3D.

Figure 14. CT scan images of patient with parietal bone fracture.
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(a) Original image of parietal bone
fracture
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(c) Parietal bone fractured part curves
construction

Figure 15. Construction of parietal bone fractured part curves using rational cubic Ball curves.
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Figure 16. Construction of fractured parietal bone curves for different CT scan slices using a rational
cubic Ball curves.

3.4. Proposed Algorithm

The algorithm for craniofacial fracture reconstruction is explained in this section. A flow chart for
the proposed algorithm is shown in Figure 6.

1. Input: 2D CT scan DICOM data.
2. Output: Craniofacial fracture reconstruction in 3D form.
3. Read CT scan image as in Figure 5.
4. Boundary extraction as in Figure 7b.
5. Each segment is fitted using rational Ball interpolant. The unknown parameters ai, bi in (2) are

optimized using genetic algorithm (Figure 7c).
6. Step 5 is repeated until a desired solution is obtained.
7. Reconstruction of fractured part boundary curves for each CT scan slice.
8. Swapping 2D CT scan DICOM data to 3D form Figure 11.
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9. 3D craniofacial fracture reconstruction Figures 12 and 13 and Figure 19.
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Figure 17. Effect of shape parameters.

(a) Parietal bone fracture CT scan data in 3D form (b) Fractured part curves in 3D form

Figure 18. Parietal bone fracture data in 3D form.
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Figure 19. Reconstructed 3D craniofacial fracture of parietal bone fracture.

4. Conclusions

This manuscript proposed a bi-cubic Ball surface for the construction of 3D craniofacial fractures.
One patient with a frontal bone fracture and another with a parietal bone fracture as case studies
were illustrated to show its applicability. The given data was in 2D form so first we constructed the
fracture part curve of each contour in 2D form using rational Ball curves. Then, we converted it into
3D form taking equidistant z component for fracture reconstruction. The genetic algorithm was used
to optimize the free parameters. The proposed method saves time because, in this method, there is no
need to use a reference skull, mirroring or any technical support. Using this method, any type of fracture
can be constructed, and we applied this method on frontal and parietal bone fractures successfully.
The constructed fracture is flexible due to the presence of shape parameters. One can change or alter the
constructed part.
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The following abbreviations are used in this manuscript:

2D two dimensional
3D three dimensional
CAD computer-aided design
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RDF Radial bases functions
NURBS non-uniform rational B-spline
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DICOM Digital Imaging and Communications in Medicine
ICP iterative closest point
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