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Abstract: Polynomials that are orthogonal with respect to a perturbation of the Freud weight function
by some parameter, known to be modified Freudian orthogonal polynomials, are considered. In this
contribution, we investigate certain properties of semi-classical modified Freud-type polynomials
in which their corresponding semi-classical weight function is a more general deformation of
the classical scaled sextic Freud weight |x|α exp(−cx6), c > 0, α > −1. Certain characterizing
properties of these polynomials such as moments, recurrence coefficients, holonomic equations
that they satisfy, and certain non-linear differential-recurrence equations satisfied by the recurrence
coefficients, using compatibility conditions for ladder operators for these orthogonal polynomials,
are investigated. Differential-difference equations were also obtained via Shohat’s quasi-orthogonality
approach and also second-order linear ODEs (with rational coefficients) satisfied by these polynomials.
Modified Freudian polynomials can also be obtained via Chihara’s symmetrization process from the
generalized Airy-type polynomials. The obtained linear differential equation plays an essential role in
the electrostatic interpretation for the distribution of zeros of the corresponding Freudian polynomials.

Keywords: semi-classical orthogonal polynomials; Freud-type weights; moments; recurrence
coefficients; difference equations; differential equations; zeros

1. Introduction

The theory of orthogonal polynomials on finite intervals, which was studied in the seminal
works of G. Szegö [1], is essentially not the same as the theory of orthogonal polynomials on large
intervals. In the late 1970s, Géza Freud has done prominent work on polynomials orthogonal
with respect to exponential weights on the real line, which referred to as Freud-type orthogonal
polynomials [2]. At that time, the aim of Freud’s work was to extend the theory of best approximation
and Jackson-Bernstein type estimates to the real line; by expecting that orthogonal expansion may
serve as a near-best approximation (cf. [2–5]).

Classical orthogonal polynomials have their weight function that satisfies Pearson’s equation

[σ(x)w(x)]′ = τ(x)w(x), (1)

where σ(x) is a monic polynomial of degree at most 2 and τ(x) is a polynomial with degree 1. However
for semi-classical orthogonal polynomials, the weight function w(x) satisfies the Pearson Equation (1)
with either deg(σ) > 2 or deg(τ) 6= 1 (cf. [6–10]). The information we presently know about classical
orthogonal polynomials on infinite intervals is largely due to the presence of generating functions,
differential equations and recursive formulas that can be exploited to discover certain properties of such
polynomials. For instance, Hermite, Laguerre, Pollaczek, Sonine, Stieltjes–Wigert, Poisson–Charlier,
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Krawtchouk, Meixner, Lommel, Askey–Wilson, and Al-Salam–Carlitz polynomials are some of the
classical examples of orthogonal polynomials with non-compact support. On the other hand, the study
of semi-classical orthogonal polynomials associated with various deformed weights is still active
research since some of the properties are not yet explicitly studied. For some work on semi-classical
weights, we refer the reader to [11–16].

Géza Freud (1973) considered class of weight functions

Wα,m(x) = K|x|α exp
(
−x2m

)
, α > −1, m > 0, x ∈ R, (2)

where K is a positive constant [5,10,16]. Certain properties of Freud-type polynomials can be found
in [12,15,17–19]. The authors in [12] considered monic orthogonal polynomials with respect to the
quartic Freud-type weight function; that is, (m = 2 in Equation (2)) upon measure deformation by
exp

(
tx2). Some approximation-theoretic properties of orthonormal Freud-type polynomials is given

in [19]. It is noted in [20] that slight generalizations of the weights of some of the classical orthogonal
polynomials present great difficulties in exploring their properties, most of which have not been
conquered yet.

Following the work in [21], a new semi-classical deformation for semi-classical Freudian weight
function has been essential because of their practical applications and connections to random matrix
theory, integrable systems and Painlevé equations. Motivated by the above facts, we investigate certain
properties of monic orthogonal polynomials associated with the modified Freud-type inner product

〈p, q〉W =
∫ ∞

−∞
p(x) q(x) |x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx, (3)

with real parameters λ > 0, c > 0, t ∈ [0, K], (K ∈ R+). The modified Freudian weight in (3) emerges
from deformation of the scaled Freudian weight exp(−cx6), c > 0. (see also [3,5,12]).

The motive for the choice of the orthogonality weight in Equation (3) is as follows. First, from some
of the well-known classical orthogonal polynomials (for e.g., Laguerre polynomials), a new class
of semi-classical orthogonal polynomials can be obtained by making slight modifications of the
orthogonality measure; for example, the semi-classical Laguerre measure, which is well-studied
in [11,22–24]. Knowing the fact that such measure modification usually leads to difficulties as
mentioned in the papers of P. Nevai [5,20]; and motivated by the work in [20], a slight modification
of a new orthogonality measure on non-compact support always leads to a new class of orthogonal
polynomials provided the corresponding moments are finite [1,10,25]. We noticed that the generic
semi-classical weights in [8] are special instances of such measure modification given in [20]. Secondly,
perturbation of an orthogonality measure allows one to investigate certain fresh properties such as
new-type of Toda-like differential-recurrence relations, new non-linear higher-order recursions as
well as differential equations, and some properties of the zeros. For more on this, one can refer
to [26,27] and the references therein. The obtained non-linear differential/difference equations for
such orthogonal polynomials have considerable applications in modeling non-linear phenomena,
Soliton Theory, Random matrix theory, Quantum oscillators and in the crystal structure in solid-state
physics (for e.g., see the works by Chen and Its [13], Clarkson and Jordaan [11], Van Assche [10],
Marcellán [28] and others).

Our aim in this paper is to investigate certain results on the recurrence coefficients for the
semi-classical modified Freudian polynomials and to explore some properties for these polynomials
including differential, differential-recurrence and difference equations and the zeros. For the
semi-classical weight under consideration, it is not easy to obtain a concise formulation of the
recurrence coefficients straightforwardly (see [11,12,15,29] for some related works). Related to the
weight in (3), we accomplish some new work, by investigating Toda-type relations, differential,
and differential-recurrence relations for the recurrence coefficients and the polynomials themselves.
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The paper is organized as follows. In Section 2, we give some background for semi-classical
modified Freud-type orthogonal polynomials. Section 3 gives some results that the recurrence
coefficients for the weight in (3) obey nonlinear recursion relations. Besides, nonlinear
differential-recurrence relations as well as differential equations satisfied by the recurrence coefficients
as well as the polynomials are also obtained. Section 4 employs both the methods of ladder operators
as well as Shohat’s quasi-orthogonality approach to derive the ladder relations associated with the
modified weight in (3) and note that the results obtained by both methods are the same. In Section 5,
we show that the modified Freudian polynomials can be obtained from the semi-classical generalized
Airy type polynomials using Chihara’s symmetrization process [30]. Section 6 gives an electrostatic
interpretation of the zeros of the modified Freudian polynomials from the obtained differential equation.
Section 7 provides the discussion of the results and the final section ends with conclusions.

2. The Modified Sextic Freud-Type Weight

Consider {Sn(x; t)}n≥0 be sequence of monic polynomials that are orthogonal with respect to the
semi-classical weight function

dµλ(x) = Wλ(x; t) dx = |x|2λ+1 exp
(
−[cx6 + t(x4 − x2)]

)
dx, (4)

with real parameters λ > 0, c > 0, and the orthogonality condition is given by∫
R
Sn(x; t) Sm(x; t) Wλ(x; t)dx = ζ̂n δmn, ζ̂n > 0, m, n ∈ {0, 1, 2, . . .}, (5)

where δmn denotes the Kronecker delta, and ζ̂n is the square of L2-norm of the polynomial Sn(x, t).
Then the three-term recurrence relation follows as

Sn+1(x; t) = xSn(x; t)− βn(t; λ) Sn−1(x; t), n ≥ 1, (6)

subject to the initial conditions S0(x; t) := 1 and β0S−1(x; t) := 0. Multiplying both sides of
Equation (6) by Sn−1(x; t)Wλ(x; t) and integrating this with respect to x on R, which, due to the
orthogonality condition (5), gives us

βn(t; λ) =
1

ζ̂n−1(t)

∫
R

xSn(x; t) Sn−1(x; t) Wλ(x; t) dx =
ζ̂n(t)

ζ̂n−1(t)
> 0. (7)

One can see that Sn(x; t) contains only the terms xn−j, j ≤ n and is even, since the weight function
Wλ(x; t) is even on R. This implies that

Sn(−x; t) = (−1)nSn(x; t) and Sn(0; t) Sn−1(0; t) = 0.

Then we note the monic polynomials Sn(x; t), associated with Wλ(x; t),

Sn(x; t) = xn + L(n; t) xn−2 + . . . + Sn(0; t), (8)

can be given equivalently as [30],

S2j(x; t) = x2j + L(2j; t) x2j−2 + · · ·+ S2j(0; t),

and

S2j+1(x; t) = x2j+1 + L(2j + 1; t) x2j−1 + · · ·+ k.x = x
(

x2j + L(2j + 1; t) x2j−2 + · · ·+ k
)

,
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where k is a real constant. If we substitute Equation (8) into Equation (6), we have

βn(t) = L(n; t)− L(n + 1; t), (9)

where L(0; t) := 0 and taking a telescoping sum of Equation (9) yields

n−1

∑
j=0

β j = −L(n; t).

2.1. Pearson’s Equation and Finite Moments for the Weight (4)

The semi-classical modified Freud-type weight in (4) obeys Pearson’s differential equation in
Equation (1)

[xWλ(x; t)]′ =
(
−6cx6 − 4tx4 + 2tx2 + 2λ + 2

)
Wλ(x; t), (10)

where the prime here denotes differentiation with respect to x. From Equations (1) and (10), one can see
that deg(σ) = 1 and deg(τ) = 6. Hence, sequence of monic polynomials {Sn}∞

n=0 with (10) constitute
a family of semi-classical orthogonal polynomials (cf. [6–12,15]).

The following proposition is about the finiteness of moments for the semi-classical weight (4).

Proposition 1. Let x ∈ R, λ > 0 and c > 0. The first moment η0(t; λ) for the modified Freudian weight given
in (4) is finite.

By using the theory of integration [31], the higher order moments ηk, k ∈ N are also finite.
The even moments η2n(t; λ), n ∈ N for the weight (4) are

η2n(t; λ) =
∫ ∞

−∞
x2n|x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx = 2

∫ ∞

0
x2n|x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx, (11)

while the odd moments η2n+1(t; λ) are

η2n+1(t; λ) =
∫ ∞

−∞
x2n+1|x|α|x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx = 0, n ∈ N. (12)

For t = 0, the moments for the symmetric weight w(x) = |x|2λ+1 exp
(
−cx6) , c > 0 are given by

η2n(λ) =
1
3

c
−2n−2λ−2

6 Γ
(

2n + 2λ + 2
6

)
; η2n+1(λ) = 0.

However, finding the moments explicitly has not been an easy task for some semi-classical
weights. We refer to an interesting work in [15], which shows that the moments for the modified sextic
and dodic weights are expressed in terms of generalized hypergoemetric functions and for quartic
Freudian weights, see [12] (see also [18]).

The Hankel determinant of moments ηk for the symmetric weight in (4) is defined by [11,32]

Hn(t; λ) := det
[∫ ∞

−∞
xj+k Wλ(x; t)dx

]n−1

j,k=0
= det

[
ηj+k

]n−1

j,k=0
,

where

ηr(t; λ) =
∫ ∞

−∞
xr Wλ(x; t) dx =

0 if r is odd,

2
∫ ∞

0
xr Wλ(x; t)dx if r is even,
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The following factorization for the determinants holds for the given weight in (4):

H2m(t; λ) = H(0)
m (t; λ)H(1)

m (t; λ), H2m+1(t; λ) = H(0)
m+1(t; λ)H(1)

m (t; λ),

whereH(0)
m (t; λ) andH(1)

m (t; λ) are the Hankel determinants of order m:

H(θ)
m (t; λ) = det

[∫ ∞

0
x2i+2j W(θ)(x)dx

]m−1

i,j=0
, θ = 0, 1, (13)

where
W(0)(x, t) = 2Wλ(x; t), W(1)(x, t) = 2x2Wλ(x; t).

The following lemma shows the recurrence coefficients in terms of moment determinants for
symmetric weights in general. See the recent work by Clarkson and Jordaan [15] for its proof and the
references therein.

Lemma 1. GivenH(0)
m andH(1)

m be the moment determinants as given in Equation (13), then the recurrence
coefficient βn corresponding to the semi-classical weight (4) is given by

β2n(t; λ) =
d
dt

ln

(
H(1)

n (t; λ)

H(0)
n (t; λ)

)
; β2n+1(t; λ) =

d
dt

ln

H(0)
n+1(t; λ)

H(1)
n (t; λ)

 .

Since the modified Freud-type weight in (4) depends on the parameter t, which means that
the recurrence coefficients, Hankel determinants as well as the polynomials themselves also rely
on t. However, unless it is mandatory we do not always state the t-dependence. For the Hankel
determinantal characterization of the recurrence coefficients in terms of tau functions, we refer to the
recent work in [15] (see also [10] and the references therein).

2.2. Explicit Formulation of the First Few Polynomials

In view of Equation (6), the first few monic polynomials are given by

S1(x; t, λ) = x,

S2(x; t, λ) = x2 − β1(t, λ),

S3(x; t, λ) = x3 −
(

β1(t, λ) + β2(t, λ)
)
x,

S4(x; t, λ) = x4 −
(

β1(t, λ) + β2(t, λ) + β3(t, λ)
)
x2 + β1(t, λ)β3(t, λ),

S5(x; t, λ) = x5 −
(

β1(t, λ) + β2(t, λ) + β3(t, λ) + β4(t, λ)
)
x3

+
(

β1(t, λ)β3(t, λ) + β1(t, λ)β4(t, λ) + β2(t, λ)β4(t, λ)
)

x.

The following proposition, with its proof given for completeness, provides a concise formulation
for modified Freudian polynomials Sn(x; t). For a similar result, see also [32–34].

Proposition 2. For modified Freudian polynomials, we have the following concise formulation:

Sn(x; t) =
b n

2 c

∑
k=0

Ψk(n) xn−2k, (14)
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where Ψ0(n) = 1 and, for k ∈ {1, 2, . . . , b n
2 c},

Ψk(n) = (−1)k
n+1−2k

∑
j1=1

β j1(t; λ)
n+3−2k

∑
j2=j1+2

β j2(t; λ)
n+5−2k

∑
j3=j2+2

β j3(t; λ) · · ·
n−1

∑
jk=jk−1+2

β jk (t; λ), (15)

with the recurrence coefficient β j(t; λ) given in Equation (7).

Proof. From the fact that the Freudian polynomials Sn(x; t) are symmetric and monic of degree n; i.e.,

Sn(−x; t) = (−1)nSn(x; t),

we obtain, for a fixed t ∈ R,

S2n(x; t) =
n

∑
`=0

e2n−2` x2n−2`; S2n+1(x; t) =
n

∑
`=0

e2n−2`+1 x2n−2`+1, (16)

where en−2k = Ψk(n) with Ψ0(n) = 1 and Ψk(n) = 0 for k > b n
2 c. Substituting Equation (14) into the

recursion relation Equation (6) and comparing the coefficients yields

Ψk(n + 1)−Ψk(n) = −βn(t; λ)Ψk−1(n− 1). (17)

By applying induction on k, we prove Equation (15). For k = 1, we see that

Ψ1(n)−Ψ1(n− 1) = −βn−1, (18)

By using a telescopic sum on Equation (18), we obtain

Ψ1(n) = −
n−1

∑
j1=0

β j1 (t; λ), for every n ≥ 1.

Suppose that Equation (15) is true for values up to k− 1 for every n ∈ N, i.e.,

Ψk−1(n) = (−1)k−1
n+3−2k

∑
j1=1

β j1(t; λ)
n+5−2k

∑
j2=j1+2

β j2(t; λ)
n+7−2k

∑
j3=j2+2

β j3(t; λ) · · ·
n−1

∑
jk−1=jk−2+2

β jk−1
(t; λ). (19)

Now, iterating Equation (17), we obtain

Ψk(n) = Ψk(n− 1)− βn−1Ψk−1(n− 2),

= Ψk(n− 2)− βn−2Ψk−1(n− 3)− βn−1Ψk−1(n− 2),

= Ψk(n− 3)− βn−3Ψk−1(n− 4)− βn−2Ψk−1(n− 3)− βn−1Ψk−1(n− 2),
...

= −β2k−1Ψk−1(2k− 2)− β2kΨk−1(2k− 1)− · · · − βn−2Ψk−1(n− 3)− βn−1Ψk−1(n− 2). (20)

Substituting Equation (19) into Equation (20) yields Equation (15). Thus, the result is valid for
k ∈ N.

An alternate representation for Proposition 2 is given in the result below.
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Proposition 3. For monic modified Freudian polynomials Sn(x; t), we have

Sn(x; t) = xn +
b n

2 c

∑
m=1

(−1)m

 ∑
k∈W(n,m)

βk1 βk2 · · · βkm−1 βkm

 xn−2m,

where
W(n, m) = {k ∈ Nm | kj+1 ≥ kj + 2 for 1 ≤ j ≤ m− 1, 1 ≤ k1, km < n},

and

bn
2
c =

{
n
2 , n is even,
n−1

2 , n is odd.

The normalization constant ζ̂n in Equation (5) for the semi-classical weight (4) is given by

ζ̂n = 〈Sn,Sn〉|x|2λ+1 exp(−[cx6+t(x4−x2)]) = ‖Sn‖2
|x|2λ+1 exp(−[cx6+t(x4−x2)])

=
b n

2 c

∑
k=0

Ψk(n) η2n−2k(t; λ), (21)

where Ψk(n) is given in Equation (15).

3. Recurrence Coefficients of the Sextic Freud-Type Polynomials

In this section, we derive a non-linear discrete equation satisfied by the recursion coefficient
βn(t; λ) for the semi-classical weight (4), which is one of the main results of this paper.

Theorem 4. The recurrence coefficient βn(t; λ) in Equation (6) satisfies the non-linear difference equation

n + (2λ + 1)Ωn = 6c [βn (Qn−1 + Qn + Qn+1) + βn−1βnβn+1] + 4tQn − 2tβn (22)

where β0 = 0 and β1(t; λ) is given by

β1(t; λ) =
‖x2‖2

t
‖1‖2

t
=

η2(t; λ)

η0(t; λ)
=

∫ ∞

−∞
x2|x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx∫ ∞

−∞
|x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx

,

where the expressions Qn and Ωn are, respectively, given by

Qn = βn(t; λ) [βn−1(t; λ) + βn(t; λ) + βn+1(t; λ)] , (23)

and

Ωn =
1− (−1)n

2
=

{
1, for n is odd

0, for n is even.
(24)

Proof. (i) By employing Freud’s method in [16,20], we consider, for t ∈ R+,

In =
1
ζ̂n

∫ ∞

−∞
[Sn(x; t) Sn−1(x; t)]

′
Wλ(x; t)dx, (25)

where {Sn(x; t)}n≥0 are sequences of monic modified Freudian polynomials and ζ̂n is given in
Equation (21). Then we have
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In =
1
ζ̂n

∫ ∞

−∞

(
S
′
n(x; t) Sn−1(x; t) + Sn(x; t) S ′n−1(x; t)

)
Wλ(x; t) dx

=
1
ζ̂n

∫ ∞

−∞
(nxn−1 + Rn−2) Sn−1(x; t) Wλ(x; t)dx =

ζ̂n−1

ζ̂n
n, (26)

where Rn−2 ∈ Pn−2. On the other hand, by employing technique of integration on Equation (25),
we obtain

In ζ̂n = [Sn(x; t) Sn−1(x; t)wλ(x; t)]∞−∞ −
∫ ∞

−∞
Sn(x; t) Sn−1(x; t) W

′
λ(x; t) dx

= −(2λ + 1)
∫ ∞

−∞

Sn(x; t) Sn−1(x; t)
x

Wλ(x; t) dx + 6c
∫ ∞

−∞
x5Sn(x; t) Sn−1(x; t) Wλ(x; t) dx

+ 4t
∫ ∞

−∞
x3Sn(x; t) Sn−1(x; t) Wλ(x; t) dx− 2t

∫ ∞

−∞
xSn(x; t) Sn−1(x; t) Wλ(x; t) dx,

(27)

where
[
Sn(x; t) Sn−1(x; t)Wλ(x; t)

]∞

−∞
= 0, since the boundary terms vanish as the expression

−cx6 − t(x4 − x2) (for c > 0) in the weight Wλ(x; t) only consists of even powers of x and hence
will dominate the limit as x → ±∞.

Since the Freudian measure given in (4) is symmetric, the integral expression∫ ∞

−∞
Sn(x; t) Sn−1(x; t)

1
x

Wλ(x; t) dx = 0, (28a)

when n is even. For n is odd, the expression
Sn(x; t)

x
is a polynomial of degree n− 1 and hence

∫ ∞

−∞

Sn(x; t)
x

Sn−1(x; t) Wλ(x; t) dx = ζ̂n−1. (28b)

Thus, ∫ ∞

−∞

Sn−1(x; t) Sn(x; t)
x

Wλ(x; t) dx = Ωn ζ̂n−1, (28c)

where Ωn is given in Equation (24). Using the recurrence iterated relation from Equation (6),
we do have

x2Sn(x; t) = Sn+2(x; t) + (βn + βn+1) Sn(x; t) + βnβn−1Sn−2(x; t), (29a)

x3Sn(x; t) = Sn+3(x; t) + (βn + βn+1 + βn+2) Sn+1(x; t)

+ βn (βn−1 + βn + βn+1) Sn−1(x; t) + βnβn−1 βn−2Sn−3(x; t), (29b)

x4Sn(x; t) = Sn+4(x; t) + (βn + βn+1 + βn+2 + βn+3)Sn+2(x; t)

+
[
βn(βn−1 + βn + βn+1) + βn+1(βn + βn+1 + βn+2)

]
Sn(x; t)

+ βnβn−1(βn−2 + βn−1 + βn + βn+1)Sn−2(x; t) + (βnβn−1βn−2βn−3)Sn−4(x; t), (29c)
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x5Sn(x; t) = Sn+5(x; t) + (βn + βn+1 + βn+2 + βn+3 + βn+4) Sn+3(x; t)

+ [βn (Qn−1 + Qn + Qn+1) + βn−1βnβn+1] Sn+1(x; t)

+ [βnβn−2Qn−1 + βn−2βn−1βnβn+1 + βnβn−1βn−2βn−3] Sn−3(x; t)

+ (βnβn−1βn−2βn−3βn−4) Sn−5(x; t), (29d)

where Qn is given in Equation (23). Applying the identities in Equation (29) and the Pearson
equation for the weight (4) together with Equation (28) into Equation (27), we obtain

nζ̂n−1 = In ζ̂n = 6c [(βnQn+1 + βnβn−1βn−2) + (βn + βn−1) Qn] ζ̂n−1

+ 4t [βn (βn−1 + βn + βn+1)] ζ̂n−1 − 2tβn ζ̂n−1 − (2λ + 1)Ωn ζ̂n−1, (30)

which simplifies to

n + (2λ + 1)Ωn = 6c [(βn + βn−1) Qn + (βnQn+1 + βnβn−1βn−2)] + 4t [βn (βn−1 + βn + βn+1)]− 2tβn, (31)

from the fact that ζ̂n−1 6= 0 and Ωn is given in Equation (24). Note that Equations (30) and (26)
yield Equation (22).

Remark 5. Quite similar non-linear discrete equations like Equation (31) can be given in [10,12,17,26].

We obtain the following result for recurrence coefficients for the modified Freudian weight in (4).

Theorem 6. The recurrence coefficients βn(t; λ) obey the differential-difference formula

dβn

dt
= βn

[
(βn+1 −Qn+1)− (βn−1 −Qn−1)

]
, (32)

where the expression Qn is given by Equation (23).

Proof. By differentiating the normalization constant ζ̂n(t) with respect to t, we have

d ζ̂n

dt
= 2

∫
R

dSn(x; t)
dt

Sn(x; t) Wλ(x; t)dx +
∫
R
(x2 − x4) S2

n(x; t) Wλ(x; t)dx,

=
∫
R

x2 S2
n(x; t) Wλ(x; t)dx−

∫
R

x4 S2
n(x; t) Wλ(x; t)dx, (33)

where the first integral vanishes by orthogonality since dSn(x;t)
dt is a monic polynomial in x of degree

n− 1. By using orthogonality and the recurrence relation in Equation (6), we rewrite Equation (33)

d ζ̂n

dt
= (βn + βn+1) ζ̂n − (Qn + Qn+1) ζ̂n = [(βn −Qn) + (βn+1 −Qn+1)] ζ̂n, (34)

On the other hand, applying differentiation on both sides of Equation (7) with respect to t gives

dβn

dt
=

d
dt

(
ζ̂n

ζ̂n−1

)
= βn

[
d
dt

ln ζ̂n −
d
dt

ln ζ̂n−1

]
= βn

[
(βn+1 − βn−1)− [Qn+1 −Qn−1]

]
,

and substituting Equation (34) into above equation, we obtain the desired result.

Remark 7. The discrete equation in Equation (6) is also known to be non-linear discrete mKdV-like equation
(see [26] for similar equations).



Mathematics 2020, 8, 1250 10 of 29

Our next result provides a higher order non-linear differential-recurrence relation satisfied by the
recursion coefficients βn(t; λ) in reference to the semi-classical weight (4).

Theorem 8. For the modified Freud-type weight in (4), the recursion coefficients βn(t; λ) satisfy the following
differential-recurrence equation

d2βn

dt2 =
1
6c

[n + (2λ + 1)Ωn − ϑ(t)] + (−βn−1 − βn+1) β4
n

+
(
−βn−2βn−1 − β2

n−1 − 6βn−1βn+1 − β2
n+1 − βn+1βn+2 + 2βn−1 + 2βn+1

)
β3

n

+

(
βn−3βn−2βn−1 + β2

n−2βn−1 + 2βn−2β2
n−1 − 4βn−2βn−1βn+1 + β3

n−1 − 5β2
n−1βn+1 − 4βn−1βn+1βn+2

− 5βn−1β2
n+1 + β3

n+1 + 2β2
n+1βn+2 + βn+1β2

n+2 + βn+1βn+2βn+3 + 8βn−1βn+1 − βn−1 − βn+1

)
β2

n

+

(
βn−4βn−3βn−2βn−1 + β2

n−3βn−2βn−1 + 2βn−3β2
n−2βn−1 + 2βn−3βn−2β2

n−1 + β3
n−2βn−1

+ 3β2
n−2β2

n−1 + 3βn−2β3
n−1 − 2βn−2βn−1β2

n+1 − 2βn−2βn−1βn+1βn+2 + β4
n−1 − 2β2

n−1β2
n+1

− 2β2
n−1βn+1βn+2 + β4

n+1 + 3β3
n+1βn+2 + 3β2

n+1β2
n+2 + 2β2

n+1βn+2βn+3 + βn+1β3
n+2

+ 2βn+1β2
n+2βn+3 + βn+1βn+2β2

n+3 − 2β2
n−2βn−1 + βn+1βn+2βn+3βn+4 − 2βn−3βn−2βn−1

− 4βn−2β2
n−1 + 2βn−2βn−1βn+1 − 2β3

n−1 + 2β2
n−1βn+1 + 2βn−1β2

n+1 + 2βn−1βn+1βn+2 − 2β3
n+1

− 4β2
n+1βn+2 − β2

n − 2βn+1β2
n+2 − 2βn+1βn+2βn+3 − 2βn−1βn+1 − 2βn βn−1 − 2βn βn+1 − βn+1βn−1

)
βn, (35a)

where Ωn and Qn are given in Equations (24) and (23), respectively and the expression ϑ(t) is given by

ϑ(t) = 4tQn − 2βnt = 2tβn [2(βn−1 + βn + βn+1)− 1] . (35b)

Proof. The above result is obtained by applying differentiation of Equation (32) with respect to t; i.e.,

d2βn

dt2 =
d
dt

(
βn

[
(βn+1 −Qn+1)− [βn−1 −Qn−1]

])
=

d
dt

(
βn

[
(βn+1 − βn−1)− [Qn+1 −Qn−1]

])
,

together with employing the following identity (22)

βn

(
β2

n−1 + β2
n+1 + βn−1βn−2 + βn+1βn+2

)
=

1
6c

[n + γΩn − ϑ(t)]− βn

(
β2

n + 2βnβn−1 + 2βnβn+1 + βn+1βn−1

)
,

where γ := 2λ + 1 and Ωn is given in (24) and the expression ϑ(t) is given in (35b).

4. The Differential-Difference Equation Satisfied by Modified Sextic Freud-Type Polynomials

In view of an extension of the ladder operators technique given in [35], Chen and Feigin [13]
examined the weight w̃(x)|x− t|K, x, t, K ∈ R, for any smooth reference weight w̃(x). They indicated
that when w̃(x) is the Gaussian (Hermite) weight (e−x2

, x ∈ R), the recurrence coefficients fulfill a
particular two-parameter Painlevé IV condition. Filipuk et al. [23] found that the recurrence coefficients
for the quartic Freudian weight |x|2α+1e−x4+tx2

, x, t ∈ R, α > −1 are identified with solutions of
the Painlevé IV and the first discrete Painlevé equation. Clarkson et al. [12,15] gave a methodical
investigation on Freud weights and some generalized work for [13] (see also [18,36]).

The following result gives the differential-difference equation (i.e., lowing operator) satisfied by
the modified Freud-type polynomials corresponding to the weight given in Equation (4). This result
works also for semi-classical polynomials Φn(z) that are orthogonal with reference to a general
symmetric weight in the semi-classical class, and specifically, it holds for the modified Freudian
polynomials Sn(x, t).
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Lemma 2. For α ≥ 1, consider a sequence of monic polynomials Φn(z), which are orthogonal with respect to
the semi-classical weight of the form

w(z) = |z|α w0(z), (36)

(where the modified weight in (4) is a special case when w0(z) := exp (−v0(z)) with v0(z) := cz6 + t(z4 −
z2), c > 0 on R). Then the orthogonal polynomials Φn(z) associated with the weight in (36) satisfy the
differential-difference relation

Φ′n(z) = βn An(z) Φn−1(z)− Bn(z) Φn(z), (37a)

where

An(z) :=
1
ζn

∫ ∞

−∞

v′0(z)− v′0(y)
z− y

Φ2
n(y) w(y)dy, (37b)

Bn(z) :=
1

ζn−1

∫ ∞

−∞

v′0(z)− v′0(y)
z− y

Φn(y) Φn−1(y) w(y)dy +
α [1− (−1)n]

2z
. (37c)

Proof. Since the derivative of Φn(z) is a polynomial of degree n− 1 in z, hence Φ′n(z) can be given by

Φ′n(z) =
n−1

∑
j=0

cn,j Φj(z). (38)

From orthogonality and integrating by parts, we have

cn,j =
1
ζ j

∫ ∞

−∞
Φ′n(y) Φj(y) w(y)dy =

1
ζ j

∫ ∞

−∞
Φn(y) Φj(y)

[
v′0(y)−

α

y

]
w(y)dy, (39)

where
v0(y) :=

[
cy6 + t(y4 − y2)

]
.

By substituting Equation (39) into Equation (38) and summing over j applying the Christoffel-Darboux
formula [25]

n−1

∑
j=0

Φj(z) Φj(y)
ζ j

=
Φn(z) Φn−1(y)−Φn(y)Φn−1(z)

(z− y)ζn−1
,

we have

Φ′n(z) =
∫ ∞

−∞
Φn(y)

n−1

∑
j=0

Φj(z) Φj(y)
ζ j

[
v′0(y)−

α

y

]
w(y) dy,

=
Φn−1(z)

ζn−1

∫ ∞

−∞
Φ2

n(y)
v′0(z)− v′0(y)

z− y
w(y) dy− α

z
Φn(z)
ζn−1

∫ ∞

−∞

Φn(y) Φn−1(y)
y

w(y) dy,

− Φn(z)
ζn−1

∫ ∞

−∞
Φn(y) Φn−1(y)

v′0(z)− v′0(y)
z− y

w(y)dy. (40)
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Besides, by an inductive argument based on the recursion relation in Equation (6) with the initial
conditions Φ0(z) := 1, and β0 Φ−1(z) = 0, we obtain

1
ζn−1

∫ ∞

−∞

Φn(y) Φn−1(y)
y

w(y) dy =
1

ζn−1

∫ ∞

−∞

[y Φn−1(y)− βn−1 Φn−2(y)] Φn−1(y)
y

w(y)dy

=


1, n = 1,

1− 1
ζn−2

∫ ∞

−∞

Φn−1(y)Φn−2(y)
y

w(y)dy, n ≥ 2,

=


0, n = 2,

1
ζn−3

∫ ∞

−∞

Φn−2(y) Φn−3(y)
y

w(y)dy, n ≥ 3,

...

=

0, n even,

1, n odd.
(41)

Therefore, (noting that βn = ζn/ζn−1) the result follows from Equations (40) and (41)
immediately.

Lemma 3. The ladder coefficients An(z) and Bn(z) defined by Lemma 2 obey the relation

An(z) =
v′0(z)

z
+

Bn(z) + Bn+1(z)
z

− α

z2 . (42)

Proof. From the definition of An(z), we have that

An(z) =
1

zζn

{∫ ∞

−∞

v′0(z)− v′0(y)
z− y

y Φ2
n(y)w(y)dy +

∫ ∞

−∞

[
v′0(z)− v′0(y)

]
Φ2

n(y) w(y) dy
}

=
1

zζn

{ ∫ ∞

−∞

v′0(z)− v′0(y)
z− y

[Φn+1(y) + βn Φn−1(y)] Φn(y) w(y) dy + v′0(z) ζn

−
∫ ∞

−∞
Φ2

n(y)
[

α

y
w(y)− w′(y)

]
dy
}

=
v′0(z)

z
+

1
z

{
Bn+1(z)−

α

2z

[
1− (−1)n+1

]
+ Bn(z)−

α

2z
[1− (−1)n]

}
=

v′0(z)
z

+
Bn(z) + Bn+1(z)

z
− α

z2 ,

which completes the proof.

Remark 9. Equation (42) is the well-known supplementary condition (S1), which given in [25,35]. The other
supplementary condition [25] is given by

1 + (z− αn) (Bn+1(z)− Bn(z)) = βn+1 An+1(z)− βn An−1(z), (43)

where v(z) = − ln w(z), since w(x) is non-negative in an interval [a, b] ⊆ R.

We next recall an important identity involving
n−1

∑
k=0

Ak(z) by combining Equations (42) and (43).
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Lemma 4. ([14], Lemma 1). The functions An(z), Bn(z) and
n−1

∑
k=0

Ak(z) satisfy the identity

B2
n(z) + v′(z) Bn(z) +

n−1

∑
k=0

Ak(z) = βn An(z) An−1(z). (44)

Lemma 5. ([35], Theorem 2.2). The monic polynomials Φn(z) that are orthogonal with respect to the
semi-classical weight in Equation (36) satisfy a linear second-order differential equation

d2Φn(z)
dz2 +

(
−v′(z)− A′n(z)

An(z)

)
dΦn(z)

dz
+

(
B′n(z)− Bn(z)

A′n(z)
An(z)

+
n−1

∑
j=0

Aj(z)

)
Φn(z) = 0,

4.1. Lowering Operator for the Modified Freud-Type Weight in (4)

For the modified Freud-type weight in (4),

v(x) = − ln Wλ(x; t) = −(2λ + 1) ln |x|+ cx6 + t(x4 − x2), (45)

for x ∈ R, we obtain

v′(x) = − (2λ + 1)
x

+ 6cx5 + t(4x3 − 2x),

and hence

ψ(x, y) :=
v′(x)− v′(y)

x− y
=

2λ + 1
xy

+ 6c{x4 + x3y + x2y2 + xy3 + y4}+ 4t(x2 + xy + y2)− 2t. (46)

Theorem 10. For monic modified Freudian polynomials Sn(x; t), we have the differential-difference relation

S ′n(x; t) = −Bn(x; t) Sn(x; t) + βn(t) An(x; t) Sn−1(x; t),

where

An(x; t) = 6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn) + 4tx2 + 4t(βn + βn+1)− 2t, (47a)

Bn(x; t) = 6cβnx3 + 6cQnx + 4txβn +

(
2λ + 1

x

)
Ωn, (47b)

where the expressions Qn and Ωn are given in Equations (23) and (24) respectively.

Proof. From Equations (37b) and (46), we have that

An(x; t) =
1
ζ̂n

∫
R
S2

n(y) ψ(x, y) Wλ(y; t) dy

=
1
ζ̂n

∫
R
S2

n(y)
( 2λ + 1

xy
+ 6c{x4 + x3y + x2y2 + xy3 + y4}+ 4t(x2 + xy + y2)− 2t

)
Wλ(y; t) dy

= 6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn) + 4tx2 + 4t(βn + βn+1)− 2t, (48)

and the integrand in Equation (48) is odd and hence it vanishes.
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Similarly, from Equation (37c), using orthogonality and three-term recurrence relation Equation (6),
we obtain

Bn(x; t) =
1

ζ̂n−1

∫
R
Sn(y) Sn−1(y)

( 2λ + 1
xy

+ 6c{x4 + x3y + x2y2 + xy3 + y4}+ 4t(x2 + xy + y2)− 2t
)

Wλ(y; t) dy

= 6cβnx3 + 6cQnx + 4txβn +

(
2λ + 1

x

)
Ωn, (49)

where the expressions for Qn and Ωn are given respectively in (23) and (24).

4.2. More Non-Linear Difference Equations for the Recursion Coefficients

This subsection provides several nonlinear difference equations fullfilled by the recurrence
coefficients corresponding to the weight (4).

Theorem 11. For sextic Freud-type weight (4), the recurrence coefficients βn in Equation (6) satisfy the
following system of difference equations

βn+1

[
6c (Qn+2 + Qn+1)− 2t

]
− βn

[
6c (Qn + Qn−1)− 2t

]
+ 4t (Qn+1 −Qn) = 1 + (2λ + 1)(−1)n, (50)

n + (2λ + 1)Ωn = 6cβn (Qn−1 + Qn + Qn+1) + 4tQn + 6cβn−1βnβn+1 − 2tβn, (51)

Qn (6cQn − 2t) + βn (2γΩn − 1) +
n−1

∑
k=0

(βk + βk+1)

= βn

[
(βn + βn+1) [6cQn + 6cQn−1 − 2t] + (βn + βn−1) [6cQn + 6cQn+1 − 2t] + 4t (Qn + βn−1βn+1)

]
, (52)

βn (6cQn−1 + 6cQn − 2t) (6cQn+1 + 6cQn − 2t)

= 6c
n−1

∑
k=0

(Qk + Qk+1) + (6cQnγ + 4tβnγ− 4tβn) (2Ωn − 1)− 4t [Qn (6cQn − 2t)]− 2t (n + γΩn) , (53)

where γ = 2λ + 1, Ωn and Qn are given in Equations (23) and (24) respectively.

Proof. Substituting Equations (48) and (49) into Equation (43) and taking into account the modified
Freud-type weight (4) is symmetric; i.e., αn = 0, and comparing the constant coefficients, we obtain
Equation (50). If we also substitute Equations (48) and (49) into Equation (44) together with
Equation (45), and comparing the coefficients of x4, x2, x0, we obtain Equations (51), (52) and (53)
respectively.

Remark 12. It is important to acknowledge the work of Clarkson and Jordaan [15] on differential-difference and
differential equations as we have similar results (see also [12] for the quartic case). In this contribution, our choice
of the modified Freud-type weight (4) is a more general measure modification by dµ(x; t) = et(x4−x2)dµ(x; 0),
(a similar one is given in [21]); while the one in [15] is measure deformation by dµ(x; t) = etx2

dµ(x; 0).
This choice led us to a different version of results of new type of Toda-like relations, new non-linear recursion
relations, differential equations and some properties of the zeros for the polynomials. For the semi-classical
weight under consideration, we have obtained differential-recurrence relations using two different methods;
the method ladder operators and Shohat’s quasi-orthogonality method [37]. In the following subsection, we show
that both methods provide us same results.
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4.3. The Method of Quasi-Orthogonality Due to J. A. Shohat

Shohat [37] gave a strategy using quasi-orthogonality to determine Equation (37a) for
semi-classical weight functions w(x; t) with the fact that w′(x; t)/w(x; t) is a rational function that we
apply to the modified Freudian weight in (4) ([12], Section 4.5). In recent years, this method has gained
the attention of some experts including Bonan, Freud, Mhaskar and Nevai to list, but a few. See [5] for
more details. The concept of quasi-orthogonality is studied in [9] (see also [37,38]). By using the ideas
given in [5,37], one can see that the monic polynomials Sn(x; t) that are orthogonal with respect to the
modified Freudian weight (4) are quasi-orthogonal of order m = 7 and henceforth we can write

x
dSn

dx
(x; t) =

n

∑
j=n−6

fn,j Sj(x; t), (54)

where the expression fn,j is obtained by

fn,j =
1
ζ j

∫ ∞

−∞
x
(

d
dx
Sn(x; t)

)
Sj(x; t) Wλ(x; t)dx, (55)

with n− 6 ≤ j ≤ n and ζ j 6= 0. By using the technique of integration, which gives for n− 6 ≤ j ≤
n− 1,

ζ j fn,j =
[

x Sj(x; t) Sn(x; t) Wλ(x; t)
]∞

−∞
−
∫ ∞

−∞

d
dx
[
xSj(x; t)Wλ(x; t)

]
Sn(x; t)dx

= −
∫ ∞

−∞

[
Sn(x; t) Sj(x; t) + x Sn(x; t)

dSj

dx
(x; t)

]
Wλ(x; t)dx−

∫ ∞

−∞
xSn(x; t) Sj(x; t)

dWλ

dx
(x; t)dx,

= −
∫ ∞

−∞
xSn(x; t) Sj(x; t)

dWλ

dx
(x; t)dx

= −
∫ ∞

−∞
Sn(x; t) Sj(x; t)

(
−6cx6 − 4tx4 + 2tx2 + 2λ + 1

)
Wλ(x; t)dx

=
∫ ∞

−∞

(
6cx6 + 4tx4 − 2tx2 − (2λ + 1)

)
Sn(x; t) Sj(x; t) Wλ(x; t)dx, (56)

since
x

dWλ

dx
(x; t) =

[
− 6cx6 − 4tx4 + 2tx2 + 2λ + 1

]
Wλ(x; t).

The following relations follow from iterating the three-term recurrence relation Equation (6):

x2Sn(x; t) = Sn+2(x; t) + (βn + βn+1) Sn(x; t) + βnβn−1Sn−2(x; t), (57a)

x4Sn(x; t) = Sn+4(x; t) + (βn + βn+1 + βn+2 + βn+3) Sn+2(x; t)

+
[
βn(βn−1 + βn + βn+1) + βn+1(βn + βn+1 + βn+2)

]
Sn(x; t)

+ βnβn−1(βn−2 + βn−1 + βn + βn+1)Sn−2(x; t) + (βnβn−1βn−2βn−3)Sn−4(x; t). (57b)

x6Sn(x; t) = Sn+6(x; t) + (βn + βn+1 + βn+2 + βn+3 + βn+4 + βn+5) Sn+4(x; t)

+

[
βn+3 (βn + βn+1 + βn+2 + βn+3 + βn+4) + βn+2 (βn + βn+1 + βn+2 + βn+3) + Qn + Qn+1

]
Sn+2(x; t)

+

[
βn+1βn+2 [βn + βn+1 + βn+2 + βn+3] + [(βn + βn+1)(Qn + Qn+1)]

+ βn βn−1 (βn−2 + βn−1 + βn + βn+1)

]
Sn(x; t)

+ βn βn−1

[
Qn−1 + Qn + Qn+1 + βn−1βn+1 + βn−2 (βn−3 + βn−2 + βn−1 + βn + βn+1)

]
Sn−2(x; t)

+ βn βn−1βn−2βn−3

[
βn−4 + βn−3 + βn−2 + βn−1 + βn + βn+1

]
Sn−4(x; t)

+ (βn βn−1βn−2βn−3βn−4βn−5) Sn−6(x; t), (57c)
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where the expression Qn is as given in Equation (23). Substituting Equation (57) into Equation (56)
yields the coefficients {fn,j}n−1

j=n−4 in Equation (54) as:

fn,n−6 = 6c

(
5

∏
j=0

βn−j

)
= 6c

[
βnβn−1βn−2βn−3βn−4βn−5

]
, (58a)

fn,n−5 = 0, (58b)

fn,n−4 = 6c

(
3

∏
j=0

βn−j

) [
βn−4 + βn−3 + βn−2 + βn−1 + βn + βn+1

]
, (58c)

fn,n−3 = 0, (58d)

fn,n−2 = βnβn−1

[
6c
{

Qn−2 + Qn−1 + Qn + Qn+1 + βn−1βn−2 + βn+1 (βn−2 + βn−1)
}

+ 4t (βn−2 + βn−1 + βn + βn+1)− 2t

]
, (58e)

fn,n−1 = 0. (58f)

Finally we take the case into consideration for j = n. Using the technique of integration in
Equation (55), we get

ζnfn,n =
∫ ∞

−∞
x

dSn

dx
(x; t)Sn(x; t)Wλ(x; t)dx = − 1

2

∫ ∞

−∞
S2

n(x; t)
[

Wλ(x; t) + x
dWλ

dx
(x; t)

]
dx

= − 1
2 ζn +

∫ ∞

−∞
S2

n(x; t)
(
3cx6 − 2tx4 + tx2 − λ− 1

2
)

Wλ(x; t)dx

= 3c
∫ ∞

−∞
x6S2

n(x; t)Wλ(x; t)dx− 2t
∫ ∞

−∞
x4S2

n(x; t)Wλ(x; t)dx

+ t
∫ ∞

−∞
x2S2

n(x; t)Wλ(x; t)dx− (λ + 1)ζn. (59)

Again employing the recursion relation in Equation (6) for Equation (59), we obtain

x2S2
n = (Sn+1 + βnSn−1)

2 = S2
n+1 + 2βnSn+1Sn−1 + β2

nS2
n−1, (60)

x4S2
n = x2(S2

n+1 + 2βnSn+1Sn−1 + β2
nS2

n−1) = x2S2
n+1 + 2βn(xSn+1)(xSn−1) + β2

nx2S2
n−1

=
(
Sn+2 + βn+1Sn

)2
+ 2βn

(
Sn+2 + βn+1Sn

)(
Sn + βn−1Sn−2

)
+ β2

n
(
Sn + βn−1Sn−2

)2

= S2
n+2 + 2(βn+1 + βn)Sn+2Sn + (βn+1 + βn)

2S2
n + 2βnβn−1Sn+2Sn−2

+ 2βnβn−1(βn + βn+1)SnSn−2 + β2
nβ2

n−1S2
n−2, (61)
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x6S2
n = x2

[
S2

n+2 + 2(βn+1 + βn)Sn+2Sn + (βn+1 + βn)
2S2

n + 2βnβn−1Sn+2Sn−2

+ 2βnβn−1(βn + βn+1)SnSn−2 + β2
nβ2

n−1S2
n−2

]
=
(
S2

n+3 + 2βn+2Sn+3Sn+1 + β2
n+2S2

n+1
)
+ (βn+1 + βn)

2(S2
n+1 + 2βnSn+1Sn−1 + β2

nS2
n−1)

+ 2(βn+1 + βn) [Sn+4 + (βn+3 + βn+2)Sn+2 + βn+2βn+1Sn] Sn

+ 2βnβn−1 [Sn+4 + (βn+2 + βn+3)Sn+2 + βn+2βn+1Sn] Sn−2

+ 2βnβn−1(βn + βn+1) [Sn+2 + (βn + βn+1)Sn + βnβn−1Sn−2] Sn−2

+ β2
nβ2

n−1(S
2
n−1 + 2βn−2Sn−1Sn−3 + β2

n−2S2
n−3). (62)

and so by orthogonality, we have that
∫ ∞

−∞
x6S2

n(x; t)Wλ(x; t)dx = (ζn+3 + β2
n+2ζn+1) + 2(βn+1 + βn)βn+1βn+2ζn + (βn+1 + βn)

2(ζn+1 + β2
nζn−1)

+ 2β2
n β2

n−1(βn+1 + βn)ζn−2 + β2
nβ2

n−1(ζn−2 + β2
n−2ζn−3)

= (βnβn+1βn+2)ζn + Qn+2βn+1ζn + βn+1(Qn + Qn+1)ζn + βn(Qn + Qn+1)ζn

+ βn−1βnβn+1ζn + βnQn−1ζn, (63)

∫ ∞

−∞
x2 S2

n(x; t) Wλ(x; t) dx = ζn+1 + β2
n ζn−1 = (βn+1 + βn) ζn, (64)∫ ∞

−∞
x4S2

n(x; t) Wλ(x; t) dx = ζn+2 + (βn+1 + βn)
2ζn + β2

nβ2
n−1 ζn−2

=
[
(βn+1 + βn + βn−1)βn + (βn+2 + βn+1 + βn)βn+1

]
ζn

= (Qn + Qn+1) ζn, (65)

using ζn+1 = βn+1ζn, the difference equation in Equation (22) and the expression Qn is given by
Equation (23).

By rewriting Equation (22) and employing n→ n− 1 in Equation (22), we have

2tQn − tβn =
n + (2λ + 1)Ωn

2
− 3c [βn (Qn−1 + Qn + Qn+1) + βn−1βnβn+1] , (66a)

2tQn+1 − tβn+1 =
n + 1 + (2λ + 1)Ωn+1

2
− 3c [βn+1 (Qn + Qn+1 + Qn+2) + βnβn+1βn+2] . (66b)

By using Equations (66a) and (66b), we obtain

−2t
∫ ∞

−∞
x4S2

n(x; t)Wλ(x; t)dx + t
∫ ∞

−∞
x2S2

n(x; t)Wλ(x; t)dx

= − (tβn − 2tQn)− (tβn+1 − 2tQn+1)

= −3c

[
βn (Qn−1 + Qn + Qn+1) + βn−1βnβn+1 + βn+1 (Qn + Qn+1 + Qn+2) + βnβn+1βn+2

]

+
2n + 1 + (2λ + 1) (Ωn + Ωn+1)

2

= −3c

[
βn (Qn−1 + Qn + Qn+1) + βn−1βnβn+1 + βn+1 (Qn + Qn+1 + Qn+2) + βnβn+1βn+2

]
+ n + (λ + 1), (67)
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where Ωn is as given in Equation (24). Hence from Equations (63) and (67), Equation (59) becomes

fn,n =
1
ζn

{
3c
∫ ∞

−∞
x6S2

n(x; t)Wλ(x; t)dx− (λ + 1)ζn − 2t
∫ ∞

−∞
x4S2

n(x; t)Wλ(x; t)dx + t
∫ ∞

−∞
x2S2

n(x; t)Wλ(x; t)dx
}

= 3c

[
(βn βn+1βn+2) + Qn+2βn+1 + βn+1(Qn + Qn+1)ζn + βn(Qn + Qn+1) + βn−1βn βn+1ζn + βnQn−1

]

− (λ + 1)− 3c

[
βn (Qn−1 + Qn + Qn+1) + βn−1βn βn+1 + βn+1 (Qn + Qn+1 + Qn+2) + βn βn+1βn+2

]

+ n + (λ + 1)

= n. (68)

By combining Equation (58) with Equation (54), we have that

x
dSn

dx
(x; t) = fn,n−6 Sn−6(x; t) + fn,n−4 Sn−4(x; t) + fn,n−2 Sn−2(x; t) + fn,n Sn(x; t). (69)

Rewriting Sn−4 and Sn−2 in Equation (69) in terms of Sn and Sn−1 using Equation (6), we obtain

Sn−2(x; t) =
xSn−1(x; t)− Sn(x; t)

βn−1
, (70)

Sn−3(x; t) =
xSn−2(x; t)− Sn−1(x; t)

βn−2
=

x2 − βn−1
βn−1βn−2

Sn−1(x; t)− x
βn−1βn−2

Sn(x; t), (71)

Sn−4(x; t) =
xSn−3(x; t)− Sn−2(x; t)

βn−3
=

x3 − (βn−1 + βn−2)x
βn−1βn−2βn−3

Sn−1(x; t)− x2 − βn−2
βn−1βn−2βn−3

Sn(x; t), (72)

Sn−6(x; t) =

{
x5 − (βn−1 + βn−2 + βn−3 + βn−4)x + (βn−1βn−3 + βn−1βn−4 + βn−2βn−4)

βn−1βn−2βn−3βn−4βn−5

}
Sn−1(x; t)

−
{

x4 − (βn−2 + βn−3 + βn−4)x + βn−2βn−4
βn−1βn−2βn−3βn−4βn−5

}
Sn(x; t). (73)

Substituting Equations (58), (68), (70), (72) and (73) into Equation (69) yields

x
dSn

dx
(x; t) = An(x; t) Sn−1(x; t)− Bn(x; t) Sn(x; t), (74)

where the ladder coefficients An(x; t) and Bn(x; t) are defined in Equation (47).

4.4. The Differential Equation Satisfied by Modified Sextic Freud-Type Polynomials

Theorem 13. For the modified Freudian weight (4), the monic orthogonal polynomials Sn(x; t) satisfy the
linear second-order ODE (with rational coefficients):

d2

dx2Sn(x; t) + R̃n(x; t)
d

dx
Sn(x; t) + T̃n(x; t) Sn(x; t) = 0, (75)

where

R̃n(x; t) = −6cx5 − t(4x3 − 2x) +
(2λ + 1)

x
−
[

24cx3 + 2 [6c(βn + βn+1) + 4t] x
6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn)− 2t + 4t (x2 + βn + βn+1)

]

≡ −v′(x)− d
dx

ln (An(x; t)) , (76a)

and
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T̃n(x; t) = 18cβnx2 + 6cQn −
(2λ + 1)Ωn

x2 + 4tβn

+ βn

(
6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn)− 2t + 4t

(
x2 + βn + βn+1

))

×
(

6cx4 + 6c(βn + βn−1)x2 + 6c (Qn−1 + Qn)− 2t + 4t
(

x2 + βn + βn−1

))

−
[(

6cx5 + (6cβn + 4t)x3 − 2λ + 1
x

+ (6cQn + 4tβn − 2t) x +
(2λ + 1)Ωn

x

+
24cx3 + 2 [6c(βn + βn+1) + 4t] x

6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn)− 2t + 4t (x2 + βn + βn+1)

)
×
(

6cβnx3 + (6cQn + 4tβn) x +
(2λ + 1)Ωn

x

)]

≡ B′n(x; t)− Bn(x; t)
[

v′(x) + Bn(x; t) +
A′n(x; t)
An(x; t)

]
+ βn An(x; t)An−1(x; t), (76b)

where Qn and Ωn are given as in (23) and (24) respectively.

Proof. The result can be proved using Equations (45), (48) and (49) where

v′(x) = − (2λ + 1)
x

+ 6cx5 + t(4x3 − 2x), (77)

An(x; t) = 6cx4 + [6c(βn + βn+1) + 4t] x2 + 6c (Qn+1 + Qn) + 4t(βn + βn+1)− 2t, (78)

Bn(x; t) = 6cβnx3 + 6cQnx + 4txβn +

(
2λ + 1

x

)
Ωn, (79)

and later substituting Equations (77), (78) and (79) into Lemma 5. (Note that the expressions Qn and
Ωn are given as in (23) and (24) respectively).

One can see that a more expanded expression of the coefficients of the differential equation in
Equation (76) can be obtained using the symbolic package in Maple but will be very cumbersome.

Remark 14. (i) For the semi-classical weight in (4), the lowering operator (cf. Theorem 10) is rewritten as

S ′n(x, t) = Ã(x, n)Sn−1(x, t)− B̃(x, n)Sn(x, t), (80)

where the coefficients Ã(x, n) and B̃(x, n) are given by

Ã(x, n) = 6cβnx4 + 6c(βn + βn+1)βnx2 + 6cβn (Qn+1 + Qn)

+ 4tβnx2 + 4tβn(βn + βn+1)− 2tβn ≡ βn An(x), (81)

B̃(x, n) = Bn(x) = 6cβnx3 + 6cQnx + 4txβn +

(
2λ + 1

x

)
Ωn, (82)

where the coefficients An(x) and Bn(x) are given in Equation (47).
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(ii) The holonomic representation [15,25] of the differential Equation (75) satisfied by semi-classical modified
Freudian polynomials can be given by

M̃(x, n, t)
d2Sn(x; t)

dx2 + Ñ(x, n, t)
dSn(x; t)

dx
+ R̃(x, n, t)Sn(x; t) = 0, n ≥ 0, (83)

where

M̃(x, n, t) = x2

[
6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn) + 4tx2 + 4t(βn + βn+1)− 2t

]
,

= 6cx6 + 6c(βn + βn+1)x4 + 6c (Qn+1 + Qn) x2 + 4tx4 + 4t(βn + βn+1)x2 − 2tx2,

≡ x2 An(x)R̃n(x; t),

Ñ(x, n, t) = x2

[
6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn) + 4tx2 + 4t(βn + βn+1)− 2t

]
R̃n(x; t),

≡ x2 An(x)R̃n(x; t),

Ũ(x, n, t) = x2

[
6cx4 + 6c(βn + βn+1)x2 + 6c (Qn+1 + Qn) + 4tx2 + 4t(βn + βn+1)− 2t

]
T̃n(x; t),

≡ x2 An(x)T̃n(x; t),

where R̃n(x; t) and T̃n(x; t) are given in Equation (76).

5. Symmetrizing Semi-Classical Modified Airy-Type Weight

Orthogonal polynomials associated with a symmetric measure can be obtained from classical
orthogonal polynomials by means of quadratic transformation (cf. [12,30]) and for general case,
we refer to [39]. For instance, a class of generalized Hermite polynomials is generated from
Laguerre polynomials while a class of generalized Ultraspherical polynomials is obtained from Jacobi
polynomials [30].

We will, next, show that symmetrizing the semi-classical generalized Airy-type weight function
(cf. [34])

wλ(x; t) = xλ exp
(
−[cx3 + t(x2 − x)]

)
, λ > 0, (84)

gives rise to the modified sextic Freud-type weight function (4).
Suppose {P (λ)

n (x; t)}∞
n=0 be a sequence of monic semi-classical generalized Airy-type polynomials,

orthogonal with reference to the semi-classical weight in (84).
Let’s define the monic polynomials

S2n(x; t) = P (λ)
n (x2; t); S2n+1(x; t) = xQ(λ)

n (x2; t),

where the polynomial

Q(λ)
n (x; t) =

1
x

P (λ)
n+1(x; t)−

P (λ)
n+1(0; t)

P (λ)
n (0; t)

P (λ)
n (x; t)


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is of degree n and monic in nature. Since xP (λ+1)
n ∈ Pn+1, we now write xP (λ+1)

n in terms of the
semi-classical generalized Airy-type basis {P (λ)

k }
n+1
k=0 as

xP (λ+1)
n (x; t) =

n+1

∑
k=0

an+1,k(t) P
(λ)
k (x; t),

where the expression an+1,k(t), with fixed t ∈ R, is given by

an+1,k(t) 〈P
(λ)
k (x; t),P (λ)

k (x; t)〉 =
∫ ∞

0
xP (λ)

k (x; t) P (λ+1)
n (x; t) xλ exp

(
−[cx3 + t(x2 − x)]

)
dx

=
∫ ∞

0
P (λ)

k (x; t) P (λ+1)
n (x; t) xλ+1 exp

(
−[cx3 + t(x2 − x)]

)
dx

= 0, for k < n. (85)

Using Equation (85), we have that

x P (λ+1)
n (x; t) = an+1,n+1(t) P

(λ)
n+1(x; t) + an+1,n(t) P

(λ)
n (x; t). (86)

We see that an+1,n+1(t) = 1 since P (λ+1)
n (x; t) is monic, and Equation (86) becomes

xP (λ+1)
n (x; t) = P (λ)

n+1(x; t) + an+1,n(t) P
(λ)
n (x; t). (87)

Computing Equation (87) at x = 0, we obtain an+1,n(t) = −
P (λ)

n+1(0; t)

P (λ)
n (0; t)

and hence

xP (λ+1)
n (x; t) = P (λ)

n+1(x; t)−
P (λ)

n+1(0; t)

P (λ)
n (0; t)

P (λ)
n (x; t) := x Qλ

n(x; t).

Now,∫ ∞

0
P (λ)

m (x; t) P (λ)
n (x; t) xλ exp

(
−[cx3 + t(x2 − x)]

)
dx

= 2
∫ ∞

0
P (λ)

m (x2; t) P (λ)
n (x2; t) |x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx

=
∫ ∞

−∞
P (λ)

m (x2; t) P (λ)
n (x2; t) |x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx

=
∫ ∞

−∞
S2m(x; t) S2n(x; t) |x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx

= Kn(t) δmn.

Hence, the polynomial sequence {S2m(x; t)}∞
m=0 is orthogonal with respect to the symmetric

weight Wλ(x; t) = |x|2λ+1 exp
(
−[cx6 + t(x4 − x2)]

)
on R. It is proved in [30] that

the kernel polynomials Q(λ)
m (x; t) are orthogonal with respect to the weight xWλ(x; t) =

x2λ+2 exp
(
−[cx6 + t(x4 − x2)]

)
. Hence

Kn(t) δmn =
∫ ∞

0
Q(λ)

m (x; t)Q(λ)
n (x; t) xλ+1 exp

(
−[cx3 + t(x2 − x)]

)
dx

= 2
∫ ∞

0
Q(λ)

m (x2; t) Q(λ)
n (x2; t) x2λ+3 exp

(
−[cx6 + t(x4 − x2)]

)
dx

=
∫ ∞

−∞
S2m+1(x; t) S2n+1(x; t) |x|2λ+1 exp

(
−[cx6 + t(x4 − x2)]

)
dx.
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Finally, we obtain∫ ∞

−∞
S2m+1(x; t) S2n(x; t)Wλ(x; t)dx =

∫ ∞

−∞
S2m(x; t) S2n+1(x; t)Wλ(x; t)dx = 0,

since the integrand is odd. Thus, the polynomial sequence {Sn(x; t)}∞
n=0 is orthogonal with reference to

the modified weight (4). We note that W̃λ(x, t) = |x|−1Wλ(x2; t) = |x|2λ−1 exp
(
−[cx6 + t(x4 − x2)]

)
is

another symmetric dual weight for the semi-classical generalized Airy-type weight function (cf. [32]).

Remark 15. By employing quadratic transformation to the non-symmetric measure (84), we can see that the
symmetrization process due to Chihara [30] preserves orthogonality and hence the modified sextic Freud-type
polynomials follows from generalized Airy-type polynomials [34].

6. Electrostatic Interpretation of the Zeros

In this section, let’s first consider a sequence of orthonormal polynomials {Ψn(x)}n≥0 with respect
to a weight function w(x) = exp(−v(x)) satisfying a three-term recurrence relation [40]

xΨn(x) = an+1Ψn+1(x) + bnΨn(x) + anΨn−1(x), n ≥ 0, an > 0,

with Ψ−1(x) ≡ 0 and Ψ0(x) ≡ 1. It is known in [25,41] that under certain assumptions on w the
polynomials Ψn satisfy differential-difference relation

Ψ′n(x) = An(x)Ψn−1(x)−Bn(x)Ψn(x) ,

where the coefficients An and Bn are explicitly given in terms of w, the recurrence coefficients an,
and the values of Ψn at the endpoints c and d. Consequently, Ψn obeys a linear differential equation [42]

Ψ′′n(x)− 2Rn(x)Ψ′n(x) +Qn(x)Ψn(x) = 0 , (88)

with

Rn(x) =
v′(x)

2
+
A′n(x)
2An(x)

,

Qn(x) = B′n(x)−Bn(x)
A′n(x)
An(x)

−Bn(x)[v′(x) + Bn(x)] +
an

an−1
An(x)An−1(x) .

(see Lemma 5 for its equivalent monic form). Specifically, if X∗ ⊂ (α, β)n is the ordered set of zeros of
Ψn, then

Ψ′′n(x)− 2Rn(x)Ψ′n(x) = 0 for x ∈ X∗ . (89)

By considering an electrostatic model for X∗ with logarithmic interaction between particles and
an external field

ϕ(x) =
v(x)

2
+

ln (knAn(x))
2

= ϕlong(x) + ϕshort(x) (90)

(kn is any appropriate standardization constant, taken in [43] equal to a−1
n ), one can see that this external

field has two components: the first term in the right hand side of Equation (90) has its origin in the
orthogonality weight w(x) = exp(−v(x)), and Ismail [25] named it the long range potential. The second
term, known to be the short range potential, is slightly troublesome, but informs many features of
the classical models and at the same time, allows to provide a generalization of the electrostatic
interpretation (see [42–44] for more details). M. E. H. Ismail in [43] states that, assuming w(x) > 0 on
(a, b), both v and ln(An) in C2(a, b), and the external field (90) convex, the total energy has a unique
point of global minimum, which is precisely X∗ (that is, the zeros of the orthonormal polynomial Ψn).
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Clearly, what is used here is in fact the relation (89) equivalent to the fact that X∗ is a critical point for
E(X), and convexity assures that this is the unique point of minimum (see also [25,43,45]).

Properties of Electrostatic Properties of the Zeros for the Modified Freud-Type Weight

For electrostatic interpretation of the zeros for classical orthogonal polynomials, we refer to [1].
In this discussion, an electrostatic representation of distribution of the zeros for modified Freudian
polynomials is provided.

In [40], the authors considered a perturbation of the quartic Freud weight (w(x) = exp(−x4)) by
the addition of a fixed charged point of mass λ at the origin. (See also [43] and the recent work in [28] for
the Freudian-Sobolev case). It was shown in [40] that the semi-classical quartic Freud polynomials obey
a differential equation of the form Equation (88), and the electrostatic model was studied. Recall from
Equation (45) that the potential v for the modified Freudian weight (4) is given by

v(x) = − ln Wλ(x; t) = −(2λ + 1) ln |x|+ cx6 + t(x4 − x2), x ∈ R.

The following result immediately follows from Remark 14.
Proposition 16. For the semi-classical weight (4), we have the following equation that corresponds to
Equation (80):

x2S ′n(x, t) = −B̄(x, n) Sn(x, t) + Ā(x, n) Sn−1(x, t), (91)

where the ladder coefficients Ā(x, n) and B̄(x, n) are given by

Ā(x, n) = 6cβn x6 + [6c(βn + βn+1) + 4t] βn x4 + [6c (Qn+1 + Qn) + 4t(βn + βn+1)− 2t] βn x2

≡ x2 βn An(x), (92)

B̄(x, n) = 6cβn x5 + (6cQn + 4tβn) x3 +

(
2λ + 1

x

)
Ωn x2 ≡ x2 B(x, n), (93)

where the coefficients An(x) and Bn(x) are given in Equation (47) and the expression for Qn and Ωn are also
given in Equations (23) and (24) respectively.

The electrostatic interpretation of the zeros corresponding to the semi-classical Freudian weight
(4) is attained by finding the zeros of the coefficient Â(x, n), which provide us the location of some
fixed charges.

Corollary 1. For n ≥ 1, the coefficient Ā(x, n) in Equation (92) has the following six roots {rj}6
j=1 are given by

r1,2(n) = 0, r2
3,4(n) =

−B +
√

B2 − 4AE
2A

, r2
5,6(n) =

−B−
√

B2 − 4AE
2A

,

where the values of A, B and E are respectively

A := 6cβn

B := [6c(βn + βn+1) + 4t] βn

E := [6c (Qn+1 + Qn) + 4t(βn + βn+1)− 2t] βn

 , (94)

where the parameter t is assumed to be a positive constant, c > 0 and Qn are given in (23) respectively.

Remark 17.

(i) Generally, one can see that the coefficient Ā(x, n) in Corollary 1 has one double root 0, and the
other four roots in the complex plane. We also see from Equation (94) that A > 0, B > 0 and
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Qn > 0 since the recurrence coefficient βn is always positive. For the particular cases, we have
the following:

(ii) When B2 − 4AE > 0, the coefficient Ā(x, n) in Corollary 1 has a root r1,2(n) = 0 of multiplicity 2,
two real roots r3,4(n) and the remaining two roots r5,6 which are complex for

√
B2 − 4AE > B.

(iii) When B2 − 4AE < 0, the coefficient Ā(x, n) in Corollary 1 has a root r1,2(n) = 0 of multiplicity 2,
the remaining other roots r1,2,3,4(n) are entirely complex.

We now propose an electrostatic model in the presence of a varying external potential from the
second-order linear differential equation obtained in Section 4.4. In other words, the electrostatic
interpretation of the zeros for polynomials orthogonal with respect to (4) using Theorem 13 and
Remarks 14 is studied.

We begin by denoting {xn,k}n
k=1 for the zeros of Sn(x) associated with the semi-classical weight (4).

Evaluating the second-order differential equation at xn,k, we have

M(x, n, t)
d2Sn(x)

dx2 + N(x, n, t)
dSn(x)

dx
= 0, 1 ≤ k ≤ n. (95)

Then

S ′′n (xn,k)

S ′n(xn,k)
= −

N(xn,k, n, t)
M(xn,k, n, t)

= − λ

xn,k
− 1

2xn,k
+ 3cx5

n,k + t(2x3
n,k − xn,k) +

A′(xn,k, n)
2An(xn,k, n)

, 1 ≤ k ≤ n. (96)

Applying the following property (cf. [43,46])

S ′′n (xn,k)

S ′n(xn,k)
= −2

n

∑
j=1,j 6=k

1
xn,j − xn,k

,

Equation (96) becomes

n

∑
j=1,j 6=k

1
xn,j − xn,k

+
A′n(xn,k, n)

4An(xn,k, n)
− λ

2xn,k
− 1

2
txn,k −

1
4xn,k

+ tx3
n,k +

3
2

cx5
n,k = 0, (97)

for 1 ≤ k ≤ n, and where t is assumed to be a fixed positive real constant.
For the semi-classical weight in (4), the total external potential V(x) is the sum of an external field,

v(x) = − ln Wλ(x; t) = −(2λ + 1) ln |x|+ cx6 + t(x4 − x2),

and a varying external potential
1
2

ln |A(x, n)| − ln |x|, called by Ismail [43] long range field and short
range field respectively; i.e.,

ϕ(x) =
v(x)

2
+

ln (kn An(x))
2

= ϕlong(x) + ϕshort(x),



Mathematics 2020, 8, 1250 25 of 29

which turns out to be

V(x) = ϕlong(x) + ϕshort(x),

=
−(2λ + 1) ln |x|+ cx6 + t(x4 − x2)

2
+

1
2

ln

∣∣∣∣∣ Â(x, n)
x2

∣∣∣∣∣ ,

=
−(2λ + 1) ln |x|+ cx6 + t(x4 − x2)

2
+

1
2

ln
∣∣Â(x, n)

∣∣− ln |x| ,

=
−(2λ + 1) ln |x|+ cx6 + t(x4 − x2)

2

+
1
2

ln |(x− r1(n))(x− r2(n))(x− r3(n))(x− r4(n))(x− r5(n))(x− r6(n))| − ln |x| ,

=
−(2λ + 1) ln |x|+ cx6 + t(x4 − x2)

2
+

1
2

ln |(x− r1(n))|+
1
2

ln |(x− r2(n))|+
1
2

ln |(x− r3(n))|

+
1
2

ln |(x− r4(n))|+
1
2

ln |(x− r5(n))|+
1
2

ln |(x− r6(n))| − ln |x| , x ∈ R\{0}, (98)

We consider the potential energy at x of a point charge q located at s is −q ln |x− s|. We notice
from Equation (98) that the zeros of the coefficient Ā(x, n) give us the position relying on n of six fixed
charges.Then the external field is generated by a fixed charge +1 at the origin—due to a perturbation
of the weight function- plus six fixed charges of magnitude −1/2; two of them located at the real
positions r3(n), r4(n), and the remaining ones at the complex positions r1,2(n), r5,6(n) (see Remark 17).

Let us introduce the following electrostatic model corresponding to the weight (4):
Consider the system of n movable unit positive charges in n distinct points {xn,i}n

i=1 of the real line in the
presence of the total external potential V(x).

By finding the zeros of Ā(x, n), we obtain the position relying on n of six fixed charges distributed
on the real line. By denoting the position vector as

x = (xn,1, xn,2, . . . , xn,n)

where xn,j < xn,k if j < k and considering the total energy of the system as

E(x) =
n

∑
k=1

V(xn,k)− ∑
1≤j<k≤n

ln |xn,j − xn,k|, (99)

we attain Equation (97), which is the derivative of the energy function. This means the zeros of the
modified Freud-type orthogonal polynomials are critical points of the energy function. From the
physical point of view, these kind of possibilities may want to correspond to the steady or unstable
equilibrium situations. The equilibrium is understood as the zero gradient of the complete energy of
the system. Stable equilibrium means the existence of a global minimum of the total energy. However,
studying the stability for the equilibrium configuration (global minimum) seeks a thorough discussion,
which we will pass over here. Nevertheless, we partly resolve this quest by targeting in the study of
the local minima of the energy function. For this purpose, the Hessian matrix is considered as

H =
(

hi,j

)
, hi,j =

∂2E
∂xi∂xj

,

we will infer when E(x) attains local minima at the zeros of the monic polynomials Sn(x) with reference
to the weight (4). Indeed, taking into account

hk,` =


1
4

∂

∂xn,k

( Ā′(xn,k, n)
Ā(xn,k, n)

)
− 2λ+1

8x2
n,k
− 1

2 t + 3tx2
n,k +

15
2

cx4
n,k +

n

∑
j=1,j 6=k

1

(xn,` − xn,k)
2 , if k = `,

− 1

(xn,` − xn,k)
2 , if k 6= `,



Mathematics 2020, 8, 1250 26 of 29

and the matrix H is a symmetric real matrix. It is noted in [47] that the Hessian matrix H is positive
definite when the matrix H is strictly diagonally dominant and all its diagonal terms are positive.
In this case, by setting conditions, which guarantee the equilibrium position of the proposed system
will be reached at the zeros of the monic Freud-type polynomial [40] and coming along this way,
one can find the electrostatic equilibrium position in the presence of the external field at the zeros
{xn,k}n

k=1 for the semi-classical modified Freud-type polynomials.

7. Discussion

In this work, we have investigated certain properties of monic orthogonal polynomials associated
with a scaled Freud-type weight upon deformation of the Freudian measure |x|α exp

(
−Cx6) , C > 0

by exp
(
t(x4 − x2)

)
. This slightly different Freudian measure could be considered as a generalization

in some sense for the weights in (2). For this case, we have investigated certain properties of orthogonal
polynomials corresponding to the semiclassical weight given in (4). Of these properties, we have
studied the finite moments, nonlinear recursion relations and differential-recurrence relations for
the recurrence coefficients as well as a linear differential equation for the polynomials themselves.
This work has certain similarity with the work in [12]. However, the motive of the current work
is different as it deals with the modified Freud-type weight function, which already involves a
higher-order of the polynomial in the exponential factor in the semi-classical weight (4). A similar
work for semi-classical Laguerre weight has been given in [11] and for the Freud-type weight in [18,36].

Besides, this work mainly shows the relation between both the semi-classical polynomials that
are orthogonal with respect to the modified weight in (4) as well as the expression of the recurrence
coefficients corresponding to these polynomials. Since the recurrence coefficients for sextic Freudian
measure (4) are not explicitly found, it is important to obtain several nonlinear recursion relations as
well as differential-recurrence relations associated with the weight function (4). Following the method
given by J. A. Shohat [12,37] using quasi-orthogonality, we applied this technique as a powerful tool to
obtain the ladder relations associated with the weight under investigation. The differential-difference
equations obtained are good references to characterize the corresponding semi-classical modified
Freudian polynomials. The second-order linear differential equation also follows by combining the
ladder relations with the three-term recurrence relation in a similar way to the work in [12]. As an
application of the results, an electrostatic interpretation of the zeros from the obtained linear differential
equation with rational coefficients is also explored.

8. Conclusions

In this paper, we have investigated certain properties of modified sextic Freudian polynomials.
Knowing the fact that the recurrence coefficients associated with modified Freudian measure are
not straightforwardly formulated; we have derived certain properties such as several non-linear
recursion equations, Toda-like equation, differential and difference equations satisfied by the
recurrence coefficients as well as the polynomials that are orthogonal with respect to the considered
weight function.

Special attention, using the method of ladder operators, is given for the recurrence
coefficients associated with the modified Freudian weight given in (4) as this weight function is
derived from the generalized Airy-type weight (84) using Chihara’s symmetrization process [30].
A differential-difference equation as well as linear second-order differential equation associated with
the semi-classical weight (4) were obtained, both via methods of ladder operators as well as Shohat’s
method of quasi-orthogonality [37]. As an application of the properties, we have investigated an
electrostatic interpretation of the zeros from the obtained linear second differential equation with
rational coefficients. Following the work and methods used in [15], some asymptotic properties of
the recurrence coefficients in terms of Hankel determinants, asymptotics of the differential equation
satisfied by the studied orthogonal polynomials will be addressed in a future contribution. We also
hope our results motivate further investigation of the recurrence coefficients via Hankel moments
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of semi-classical orthogonal polynomials in relation to certain (discrete) integrable systems and
identifying these connections would also be an interesting continuation of this work.
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