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Abstract: Both cell-wise and case-wise outliers may appear in a real data set at the same time.
Few methods have been developed in order to deal with both types of outliers when formulating a
regression model. In this work, a robust estimator is proposed based on a three-step method named
3S-regression, which uses the comedian as a highly robust scatter estimate. An intensive simulation
study is conducted in order to evaluate the performance of the proposed comedian 3S-regression
estimator in the presence of cell-wise and case-wise outliers. In addition, a comparison of this
estimator with recently developed robust methods is carried out. The proposed method is also
extended to the model with continuous and dummy covariates. Finally, a real data set is analyzed for
illustration in order to show potential applications.

Keywords: case-wise contamination; comedian; MAD; Monte Carlo simulation; R software; robustness;
Rocke S-estimator; 3S-regression

1. Introduction

Regression models are one of most used statistical tools for diverse practitioners [1]. A well-known
assumption to infer the parameters of these models is that the error term follows a normal distribution.
However, as it was discussed in [2], the presence of outliers could affect the estimation of parameters
under normality and lead to inaccurate results [3]. Because outliers frequently are present in real data
sets, robust estimation methods are called to be considered in practice to avoid this inaccuracy [4–7].

A type of model introduced in [8] is known as three-step (3S) regression, which proceed as
follows. In the first step, a univariate filter is applied to remove cell-wise outliers. In the second step,
a generalized S-estimator (GSE) is used to down-weight the effect of case-wise outliers. In the third
step, the regression coefficients are estimated. Nevertheless, some limitations of the 3S-regression
method are mentioned in [9]. For instance, the GSE employed in the second step loses robustness
against case-wise outliers, when the dimension is greater than ten. In addition, the extended minimum
volume ellipsoid (EMVE) estimator, also utilized by the GSE as an initial value, is computationally
slow and it does not scale well to higher dimensions. Hence, a new robust estimator, called generalized
Rocke S-estimator (GRE), is proposed in [9] to replace the GSE in the second step. Furthermore,
a cluster-based algorithm introduced in [9] for faster and more reliable sampling when computing
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the EMVE estimator, named EMVE-C, is used as an initial value for the GRE algorithm. To our best
knowledge, the comedian [10,11] has not been employed as an initial estimate in 3S-regression methods.

In robust linear regression, the case-wise contamination model is known as Tuckey-Huber
contamination (THC). This model has been broadly studied in the literature, but its use in practice is
not frequent. In the THC model, a small proportion of cases are contaminated. When the contamination
is carried out using cell-wise, the independent contamination (IC) model arises. Note that the IC model
has a small proportion of individual cells in the covariates that are independently contaminated [12].
However, the literature about the IC model is limited. To our best knowledge, there is few works that
can deal with both types of outliers (case-wise and cell-wise) at the same time.

A classical robust regression for case-wise contamination is the least median of square (LMS)
method. The LMS regression was proposed in order to optimize the median of the squares of residuals
and it allows for a breakdown point of 50%, but it is computationally inefficient [13,14]. Two alternative
methods that use iterative strategies are the regressions via the estimation of: (i) the minimal covariance
determinant (MCD) [15,16]; and (ii) the iterative re-weighted least square (IRLS) [17,18]. The MCD
regression minimizes the covariance matrix determinant of the central points. The IRLS regression
includes additional information regarding error variance and covariance by incorporating a weight
matrix into the model estimation, whose diagonal elements depend on a loss function. High breakdown
affine equivariant estimators provide down-weighting to outlying cases, such as the least trimmed
square (LTS) regression [14], S-regression [19], and MM-regression [20]; see also [21,22] for M-estimators
in regression. All of these methods work well in practice under the THC model.

A number of authors [8,23–28] have proposed robust regression models that are resilient to
case-wise and cell-wise outliers by robustifying the components of the covariance matrix in the
solution of the least square (LS) optimization problem. Additionally, the multivariate S-estimator
is incorporated instead of the empirical covariance and mean [24,25]. It has been also showed that,
under mild assumptions (including symmetry and independence in the residuals), the 2S-regression
estimator [8] is Fisher consistent and asymptotically normal, even if the multivariate S-estimators
are not. Based on incomplete data, two kinds of estimators were constructed [26]: (i) the GSE and
(ii) the extended S-estimator (ESE), which match with the multivariate S-estimator under complete
data. Note that the GSE needs a robust initial estimate. Furthermore, the extended EMVE estimator
is introduced in [26] as a particular case of the ESE. The EMVE estimator can be considered to be
an initial value and a generalization of the minimum volume ellipsoid (MVE) estimator proposed
in [15]. Moreover, the shooting S-estimator that is derived in [28] assigns individual weights to each
cell in the data table, combining the shooting algorithm [29] and the simple S-regression [19]. Observe
that the data may be snipped replacing cell-wise outliers by missing values NA [27]. Moreover,
the Gervini-Yohai univariate filter [30] can be used followed by the GSE [26,31]. Notice that the
3S-regression [8] considers an estimator which is analogous to one defined in [26], but with the filter
that is consistent for a broader range of distributions.

Based on this bibliographical review, the objective of this study is to propose a comedian-three-step
(C3S) regression estimator that considers the comedian as the initial robust scatter value for the GRE
algorithm. The proposed estimation method: (i) utilizes an adaptive consistent univariate filter to
control the effect of extreme cell-wise outlier propagation; (ii) applies the GRE algorithm, but modified
using the sample comedian matrix and wise-median as an initial robust scatter estimate for the filtered
data; and (iii) estimates the regression coefficients using the GRE algorithm in the previous step.

This paper is organized, as follows. In Section 2, the general context and notations are provided.
Then, the consistent factor in median absolute deviation (MAD), the comedian function, and the
empirical comedian covariance matrix are defined. Section 3 introduces the models with continuous
and dummy covariates and proposes an estimator based on the C3S-regression, as well as its
asymptotic properties. In Section 4, an extensive simulation study is conducted in order to compare
the performance of proposed estimator with recently developed robust methods. Additionally,
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in this section, a real data example is used for illustration and for showing potential applications.
Section 5 describes some conclusions and ideas for possible future works.

2. Comedian Covariance Matrix and Comedian Matrix

In this section, the general context and notations used in this work are presented. The consistent
factor in MAD, the comedian function, and the empirical comedian covariance matrix are also
defined here.

2.1. General Context and Notations

Let X and Y be two continuous random variables. Subsequently, the MAD of X, the comedian
between X and Y, and the correlation median between X and Y (δ) are, respectively, given as [10]

MAD(X) = median(|X−median(X)|),
COM(X, Y) = median((X−median(X))(Y−median(Y))), (1)

δ =
COM(X, Y)

MAD(X)MAD(Y)
.

Note that the MAD(X) defined in Equation (1) is a robust measure of dispersion (or scatter) of
X, COM(X, Y) is a robust measure of the covariance between X and Y, while δ is a robust measure
of the correlation between X and Y. When X = Y, (COM(X, X))1/2 can be used as a robust measure
of variability, such as it occurs with the standard deviation (SD) and the covariance of X, that is,
SD(X) = (COV(X, X))1/2. Then, a robust measure of the covariance and correlation matrices for any
random vector may be obtained by utilizing the robust measures defined in (1). Notice that the usual
covariance between X and Y can be obtained as

ς = COV(X, Y) =
MAD(X)MAD(Y)

g(1)
g($), (2)

where g is the comedian function stated as g($) = COM(X, Y) (see Lemma 2.1 in [10]) and $ is the
correlation coefficient between X and Y. Observe that $ may be represented in terms of the correlation
median as

$ = COR(X, Y) = g−1(g(1)δ). (3)

The comedian function under a non-degenerate bivariate normal distribution was studied
in [10], obtaining g(1) = (Φ−1(0.75))2, where Φ is the standard normal cumulative distribution
function and Φ−1 is the inverse of Φ or normal quantile function. In this work, we also
extend g(1) to other non-normal distributions. Note that Equation (2) can be written as ς =

bXMAD(X)bYMAD(Y)g($), where
g(1) = (bXbY)

−1 (4)

and the consistent factors bX and bY depend upon the marginal distributions of X and Y, respectively.
The consistent factors for some distributions have been obtained and are presented in Table 1. Detailed
calculations of these factors are available upon request from the authors.

Notice that the comedian can be considered as a robust initial scatter estimate for the GRE
algorithm. Let (X1, Y1), . . . , (Xn, Yn) be independent random vectors following a bivariate distribution.
Subsequently, the empirical comedian is established by

ĈOMn(X, Y) = mediani∈{1,...,n}(Xi − ̂mediann(X))(Yi − ̂mediann(Y)), (5)

where ̂mediann(X) and ̂mediann(Y) denote the sample medians of X1, . . . , Xn and Y1, . . . , Yn,
respectively. Thus, the covariance matrix that is defined in Equation (2) is a sophisticated scatter
estimate based on the comedian matrix.
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Table 1. Consistent factor bX of the indicated distribution.

Distribution of X Notation bX

Exponential X ∼ Exp(λ) 1/ log
(
(1 +

√
5)/2

)
Logistic X ∼ Logistic(µ, s)

√
3π/(3 log(3))

Normal X ∼ N(µ, σ) 1/Φ−1(3/4)

Student-t X ∼ t(ν) * ≈
√

ν
ν−2 /mmedian(ν), ν > 2

Uniform X ∼ U(a, b) 2/
√

3

Weibull X ∼Wei(α, β) * ≈
(

α

√
Γ (1 + 2/β)− (Γ (1 + 1/β))2

)
/mmedian(α, β)

* mmedian is the solution of m to the non-linear equations for t(ν) and Wei(α, β) given, respectively, by
2mΓ( ν+1

2 )
√

πνΓ(ν/2) 2 F1

(
1
2 , ν+1

2 ; 3
2−

m2
ν

) − 1
2 = 0, exp

(
−
(
(log(2))1/β − m

α

)β
)
− exp

(
−
(
(log(2))1/β + m

α

)β
)
− 1

2 = 0.

2.2. The Consistent Factor in MAD

The MAD is a very robust scatter estimate, which has 50% breakdown point (the best possible).
According to [32], if we want to estimate the SD consistently, the MAD must be multiplied by a
correction factor. Thereby, an alternative robust estimate of the SD of X is given by ŜX = bXM̂ADn(X),
where M̂ADn(X) = median{|Xi − ̂mediann(X)|, i ∈ {1, . . . , n}}. The consistent factor bX depends
exclusively on the distribution of the random variable X. If the marginal distribution of X is unknown,
the consistent factor can be estimated via the non-parametric bootstrapping method [33]. Let F̂n be the
empirical cumulative distribution function of the random variable X. Subsequently, the bootstrapping
process used to obtain the consistent factor bX is summarized in Algorithm 1.

Algorithm 1 Bootstrapping process used in order to obtain the consistent factor bX .

1: Generate X∗1 , . . . , X∗n ∼ F̂n(x) randomly.

2: Compute T∗n = g(X∗1 , . . . , X∗n) = M̂ADn(X∗1 , . . . , X∗n)/Ŝn(X∗1 , . . . , X∗n).

3: Repeat steps 1–2 B times to get T∗n,1, . . . , T∗n,B.

4: Evaluate b̂X = (1/B)∑B
b=1 T∗n,b.

2.3. The Comedian and Empirical Comedian Covariance

The comedian function g($) is needed in order to estimate the correlation median defined in
Equation (3). The empirical correlation median δ̂n = ĈOMn(X, Y)(M̂ADn(X)M̂ADn(Y))−1 stated in
Equation (5) can be seen as a robust estimate of the correlation coefficient by

$̂n = g−1(g(1)δ̂n). (6)

The function g was analyzed in [10] when (X, Y) has a bivariate normal distribution, but an
explicit form was not obtained. However, it may be approximated through Monte Carlo simulations.
We conduct an extensive Monte Carlo simulation study for g via the R software [34]. This simulation
was carried out by using an R package named MASS and its mvrnorm function. The empirical medians
of 10 000 000 random numbers from a bivariate normal distribution were also used, with $ varying
from −1 to 1 by 0.01 when $ /∈ [−0.1, 0.1], and by 0.001 when $ ∈ [−0.1, 0.1]. The number of replicates
is N = 10 and a visualization of the approximation for g is shown in Figure 1.
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Figure 1. Approximation obtained by simulations of the comedian g($) = COM(X, Y) as a function of
the correlation coefficient $, where g(1) = (Φ−1(0.75))2. Source: the authors.

In general, the exact image value of the inverse comedian function g−1 cannot be obtained, but it
may be estimated through an approximation. A discrete approximation of the comedian function is
obtained at the aforementioned simulation study. The expression that is given in Equation (6) may be
approximated as $̂n = ĝ−1(g(1)δ̂n), where ĝ−1 is an estimate of g−1 by interpolating the approximated
points while using a cubic spline. To carry this method, it is necessary to know all of the values
corresponding to the support of the inverse comedian function. If the consistent factors of the marginal
distributions defined in Equation (4) are estimated properly, then $̂n for other bivariate distributions
can be obtained.

By using the empirical marginal distributions, the consistent factors may be estimated via
bootstrapping, as described in Section 2. Thus, from Equation (6), we have $̂n = ĝ−1((b̂X b̂Y)

−1δ̂n).
Let X = (X1, . . . , Xp)> be a set of p covariates. Then, a robust version of the empirical covariance

between any pair of covariates (Xi, Xj), for i, j ∈ {1, . . . , p}, can be stated as

Ŝc
XiXj

= b̂Xi M̂ADn(Xi) b̂Xj M̂ADn(Xj)$̂n, (7)

where Ŝc
Xi ,Xj

is an element of the robust version of the empirical covariance matrix Ŝc
XX . We also propose

to use the expression given in Equation (7) as an initial scatter estimate for the GRE algorithm instead
of the EMVE estimator. This proposal is called here the full version of the C3S-regression estimator.

3. Comedian Three-Step Regression

In this section, the model with continuous and dummy covariates is introduced. Moreover,
the proposed estimator that is based on the 3S-regression, as well as its asymptotic properties,
are developed.

3.1. The Proposed Estimator

A multiple regression is used to model the linear relationship between a dependent (response)
variable Y and p independent (covariates) variables X = (X1, . . . , Xp)> with observed values for the
case i denoted by xi = (xi1, . . . , xip)

>. Subsequently, the multiple regression model can be written as

Yi = β0 + β1xi1 + · · ·+ βpxip + εi = β0 + x>i β + εi, i ∈ {1, . . . , n}, (8)

where the error terms εi, for i ∈ {1, . . . , n}, are independent and identically distributed random
variables, which are also independent of the values of the covariates xi = (xi1, . . . , xip)

>.
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The LS estimates of the parameters (β0, β) are defined as the solution to an optimization problem
in order to minimize the sum squares of residuals as

(β̂0LS, β̂>LS) = argmin(β0,β>)∈R(p+1)

n

∑
i=1

(Yi − β0 − x>i β)2. (9)

The solution of Equation (9) can be explicitly given by

β̂0LS = µ̂Y − µ̂>X β̂LS, β̂LS = Σ̂−1
XXΣ̂XY, (10)

where Σ̂XX and Σ̂XY are the components of the empirical covariance matrix, and µ̂Y and µ̂X are
empirical means of Y and X, respectively.

As suggested by a number of authors [8,23–28], the components of the solution stated in
Equation (10) can be robustified to immunize the estimator against case-wise and cell-wise outliers.
Inspired by [9], we use a modified version of the GRE algorithm to obtain robust estimates of means
and covariances needed in the solution presented in Equation (10). The modification proposed by us is
that the GRE algorithm considers the comedian as an initial value instead of the EMVE-C estimate.
The robust method basically utilizes the empirical median and the robust version of the covariance,
introduced in Section 2, as the initial location and scatter estimates for the GRE algorithm. The proposed
estimator uses the univariate filter given in [8] and the GRE algorithm for incomplete data developed
in [9]. Our proposal works similarly to that used in the 3S-regression, but employing in the second
step a different initial robust estimate for the GRE algorithm. In the present work, the initial estimates
of location and scatter, the empirical median, and a robust estimate of the covariance, are computed
after snipping the data. Therefore, the proposed robust regression estimator (C3S-regression) is
established as

β̂0C3S = m̂Y − m̂X β̂C3S, β̂C3S = Ŝ−1
XX ŜXY, (11)

where both m̂ and Ŝ come from the modified GRE algorithm proposed in this work, and they are
computed as in Algorithm 2.

Algorithm 2 Computation of m̂ and Ŝ from the modified GRE algorithm.

1: Filter extreme cell-wise outliers using a univariate filter to prevent cell-wise contaminated cases.
2: Compute the wise-median and the robust version of the covariance matrix (or comedian matrix) as

initial robust location and scatter estimates.
3: Down-weight the effect of case-wise outliers by applying the GRE algorithm for computing robust

location and scatter estimates with the filtered data from Step 1.

Now, consider a set of n data with observed covariates {x1, . . . , xn} and the corresponding
response variable {Y1, . . . , Yn}. Let {z1, . . . , zn} be the joint data with zi = (Yi, x>i )

>. In the first step,
a univariate filter, as described in [8], is applied to each observed covariate xj, for j ∈ {1, . . . , p}.
Let Z = (z1, . . . , zn)> and U denote the resulting auxiliary matrices of zeros and ones, with zeros
indicating the filtered (missing) entries. Subsequently, based on the GRE algorithm, we obtain

m̂ = m̂GRE(Z,U), Ŝ = ŜGRE(Z,U), (12)

where m̂GRE and ŜGRE are robust location and scatter based on the GRE algorithm for the incomplete
data (Z,U). Computation of the 3S-regression and C3S-regression estimates is summarized
Algorithm 3.
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Algorithm 3 Computation of 3S-regression and C3S-regression estimates.

1: Snip data.
2: Apply the GRE algorithm with robust initial location and scatter estimates.
3: Estimate the regression coefficients as in Equation (10).

Note that the C3S-regression uses a robust estimated covariance matrix as an initial scatter value
instead of the EMVE estimate. In addition, the biflat ρ function [35] is employed instead of the Tukey
bisquare ρ function for the GSE. More details of the definitions and algorithms of the EMVE estimate
and GSE can be found in [26]. Furthermore, the GRE algorithm was studied in [9], showing that,
in large dimension, the Rocke biflat function is more robust than the Tuckey bisquare function [35,36].

3.2. Models with Continuous and Dummy Covariates

Notice that the M-regression and 3S-regression were used in [8] in order to deal with continuous
and dummy covariates. There, a 3S-regression was employed to estimate the coefficients of the
continuous covariates, whereas an M-regression with the Huber ρ function given by ρH(t) =

min(1, t2/2) [37] was considered to estimate the coefficients of the dummy covariates. This is a
modification of the M-regression and 3S-regression proposed in [38]. We act similarly by using the
C3S-regression to estimate the coefficients of the continuous covariates and the M-regression for the
dummy coefficients. Consider the model with continuous and dummy covariates defined as

Yi = β0 + x>i β1 + d>i β2 + εi, i ∈ {1, . . . , n}, (13)

where xi = (xi1, . . . , xip1)
> and di = (di1, . . . , dip2)

> are a p1 × 1 vector of continuous covariates
and a p2 × 1 vector of dummy covariates, respectively. Let X = (x1, . . . , xn)>, D = (d1, . . . , dn)>

and Y = (Y1, . . . , Yn)>, where the columns in X and D are linearly independent. More precisely,
our method that is based on the M-regression and C3S-regression works as

(β̂
(r)
0 , β̂

(r)
1 ) = h(X, Y −Dβ̂

(r−1)
2 ), β̂

(r)
2 = M(D, Y − β̂

(r)
0 −Xβ̂

(r)
1 ), r ∈ {1, . . . , R}, (14)

where h denotes the operator of a C3S-regression in each iteration for (X, Y); while M denotes the
operator of an M-regression with no intercept for (D, Y), as stated in (11). To control the effect of
propagation of cell-wise outliers, let X̂ be the imputed X with the filtered entries by the linear predictor
using (m̂(r), Ŝ(r)) as defined in Equation (12) at the rth iteration of the GRE algorithm. The method
that is presented in Equation (14) needs initial estimates (β̂

(0)
0 , β̂

(0)
1 , β̂

(0)
2 ) to start the algoritm until a

maximum of R = 20 iterations [8]. Then, we first remove the effect of di from the continuous covariates
and response. Let Y = Y − D t and X = X− DT, where t = M(D, Y) and T is a p1 × p2 matrix
with the jth column as Tj = M(D, (xij, . . . , xnj)

>). Subsequently, the initial estimates are defined by

(β̂
(0)
0 , β̂

(0)
1 ) = h(X, Y) and β̂

(0)
2 = M(D, Y − β̂

(0)
0 − X̂β̂

(0)
1 ).

3.3. Asymptotic Properties of the Comedian Three-Step Regression

The strong consistency of the empirical comedian is proved in [10], as well as its asymptotic
normality. The strong consistency, asymptotic normality, and regularity assumptions for the GSE were
established in [8]. Because the respective estimates under the 3S-regression and C3S-regression are
based on the same GSE, independent of the differences in the initial estimates and weight functions,
asymptotic properties of the corresponding estimators from the C3S-regression and 3S-regression are
guaranteed. Note that the 3S-regression and C3S-regression become a 2S-regression for an enough
large n. Therefore, the estimators obtained from the C3S-regression inherit the asymptotic properties
of the estimators obtained from the 2S-regression such as the 3S-regression does. The properties of the
corresponding asymptotic covariance matrix are also found in [8].
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Let H be the distribution of (X>, Y), (m̂, Ŝ) be the GSE, and (β̂0C3S, β̂>C3S) be the estimated
3S-regression coefficients. Subsequently, zi = (x>i , Yi) is replaced by ẑi = (x̂>i , Yi) and x̃i = (1, x>i )

>

by ̂̃xi = (1, x̂>i )
>, where x̂i is the best linear prediction of xi. Thus, the asymptotic covariance

matrix is estimated through the asymptotic S-estimator variance (ASV) matrix stated as ÂSV(H) =

Ĉ(H)−1D̂(H)Ĉ(H)−1 in [8], where Ĉ(H) = (1/n)∑n
i=1(w(dn(ẑi)) + 2/(σ̂2

ε,nw(dn(ẑi))r̂2
i ))
̂̃xî̃x>i ,

D̂(H) = (1/n)∑n
i=1 w2(dn(ẑi))r̂2

i
̂̃xî̃x>i , σ̂ε,n = (ŜYY − β̂>C3SŜXX β̂C3S)

1/2, dn(ẑi) = (ẑi − m̂)>Ŝ−1(ẑi −
m̂), r̂i = Yi − ̂̃x>i β̂C3S, and w(dn(ẑi)) = ρR(dn(ẑi)), with ρR being the Rocke biflat function and dn

defined in Equation (13).

4. Numerical Studies

In this section, the computational framework and simulation scenarios are described.
Subsequently, we report the results of an intensive simulation study, which is conducted to evaluate
the statistical performance of the C3S-regression coefficient estimators and to compare the proposed
estimator and other existing estimators. In addition, the illustration with real data is provided.

4.1. Computational Framework and Simulation Scenarios

Our simulation study is performed by utilizing the R software with a Hewlett–Packard HP
Compaq computer, Pro 6300 SFF with 8 cores processor GenuineIntel Intel(R) Core(TM) i7-3770 CPU @
3.40 GHz. The simulation is similar to the one carried out in [8] using the same criteria for evaluating
the performance of the C3S-regression. The method proposed in the present paper is also compared
with the performance of the LS regression and following two robust alternatives:

• The first one is the 2S-regression [25] that uses an MVE estimate as an initial value. The MVE
estimate is computed by means of an iterative subsampling with a concentration step. The MVE
estimate is implemented in an R package named rrcov, using the function CovSest with the
option method = "bisquare" [39].

• The second one is the 3S-regression [8] that reduces the high computational burden of uniform
subsampling for the EMVE estimate. The GSE with bisquare ρ function is computed by an
iterative algorithm that employs the EMVE-C estimate as an initial value. The 3S-regression
without modifications is implemented in an R package, named robreg3S, using the function
robreg3S as the default option [40]. Nevertheless, the GSE with the EMVE-C estimate as an
initial value is implemented in the GSE package, using the function GSE with the option init =
"emve_c" [41].

The univariate filter that is needed by the C3S-regression is implemented in the robreg3S package,
while the GRE is computed using the GSE function with the option method = "rocke". Two versions
of the C3S-regression to be considered are: (i) the full version using the comedian covariance matrix;
and, (ii) the light version using the raw comedian matrix as an initial scatter estimate. The last one is
called light version, because it uses less operations to compute than the full version. From now on,
the C3S-regression is referred to both versions, unless that an indication is done.

Next, the regression model presented in Equation (8) with p = 15 and n ∈ {150, 300, 500, 1000, 5000}
is considered. The values of covariates xi, for i ∈ {1, . . . , n}, are generated from a multivariate normal
distribution Np(µ, Σ). We set µ = 0 and Σjj = 1 [8], for j ∈ {1, . . . , p}, without loss of generality,
because the GSE used by the C3S-regression is location and scale equivariant. (Note that from the
location equivariant of the GSE, β0 = 0 can be set.) To address the fact that the C3S-regression and
3S-regression are neither affine-equivariant nor regression equivariant, the correlation structure Σ may
be used. Observe that this correlation structure is described in [27], with the condition number fixed at
100 and random generation of β as β = Rb. Let R = 10 and b follow a uniform distribution on the
unit spherical surface. The response variable Yi is given by Yi = x>i β + εi, where εi ∼ N(0, σ = 0.5),
for i ∈ {1, . . . , n}, are independent. The scenarios assumed in the simulation study are:
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S1 Clean data: the data generation is not altered.
S2 Cell-wise contamination: randomly replace a proportion q of the cells in the covariates by

outliers xcont
ij = E(Xij) + k SD(Xij) and of the responses by outliers Ycont

ij = E(Yij) + k SD(εi),
where k ∈ {1, . . . , 10}.

S3 Case-wise contamination: randomly replace a proportion q of the cases by leverage outliers
(xcont>

i , Ycont
i ), where xcont

i = cv, and Ycont
i = xcont

i β + εcont
i , with εcont

i ∼ N(k, σ2), for k ∈
{1, . . . , n}. Here, v is the eigenvector corresponding to the smallest eigenvalue of Σ with length
such that (v− µ)>Σ−1(v− µ) = 1. To compute the value of c ∈ {1, . . . , 100}, we follow the same
process introduced in [8,27]; that is, a Monte Carlo study with the same number of replicates
N = 500. We observe that c = 22 is the value that produces the worst performance of the
scatter estimator.

Let q ∈ {0.01, 0.05, 0.09} for the cell-wise contamination. From the fact that case-wise outliers are
unusual in practice, we consider q = 0.03 for the case-wise contamination. The number of replicates
for each setting is N = 1000. In addition, the simulation study is also carried out in order to consider
the regression model presented by Equation (13) with p1 = 12 continuous covariates, p2 = 3 dummy
covariates, and n ∈ {500, 1000}. Then, the performance of the M-regression and C3S-regression is
evaluated. The values of covariates (xi, di), for i ∈ {1, . . . , n}, are first generated from a multivariate
normal distribution Np1+p2(0, Σ), where Σ is the randomly generated correlation matrix with a fixed
condition number of 100. Subsequently, dij is dichotomized at Φ−1(πj), with πj ∈ {1/4, 1/3, 1/2},
for j ∈ {1, 2, 3}, respectively. The generation of the model with continuous and dummy covariates
follows the scenarios S1-S2 and for the case-wise contamination follows the scenario S3.

Let Σ1 be a sub-matrix of Σ, which quantifies the covariance of the continuous covariates. In this
new scenario, randomly replace a proportion q of the cases in X by leverage outliers (xcont>

i , Ycont
i ),

where xcont
i = cv, Ycont

i = xcont
i β1 + d>i β2 + εcont

i , with εcont
i ∼ N(k, σ2), and k ∈ {1, . . . 10}.

Here, v is now the eigenvector corresponding to the smallest eigenvalue of Σ1, with length such
that (v− µ)>Σ−1

1 (v− µ) = 1, and the corresponding least favorable case-wise contamination size for
the twelve continuous variables is c = 18.

Once again, we consider q ∈ {0.01, 0.05, 0.09} for the cell-wise contamination and q = 0.03 for
the case-wise contamination. The number of replicates for each setting is N = 1000. Furthermore,
the simulation study is conducted for non-normal covariates to compare the performance of the
C3S-regression, 3S-regression, 2S-regression and LS estimators. For the C3S-regression, the full and
light versions of the proposed estimator are considered. The same regression model with p = 15 and
n = 500 is used, but the covariates are generated from a non-normal distribution [8]. The covariates
Xi, for i ∈ {1, . . . , n}, are first generated from a multivariate normal distribution with zero mean and
covariance matrix Σ, which is, Xi ∼ Np(0, Σ), where, again, Σ is a randomly generated correlation
matrix with a fix condition number of 100. Subsequently, the covariates are transformed by means
of (Xi1, . . . , Xip) ← (G−1

1 (Φ(Xi1)), . . . , G−1
p (Φ(Xip))). We consider a distribution for Gj as: N(0, 1),

with j ∈ {1, 2, 3}; χ2(20), with j ∈ {4, 5, 6}; F(90, 10), with j ∈ {7, 8, 9}; χ2(1), with j ∈ {10, 11, 12};
and Pareto(1, 3), with j ∈ {13, 14, 15}. The scenarios that are evaluated in this simulation study are as
S1. For the cell-wise contamination, we replace q = 0.05 by the proportion of cells in the covariates with
outliers xcont

ij = kGj(0.999), and by the proportion of responses with outliers Ycont
ij = E(Yij) + k SD(εi).

4.2. Simulation Results

The statistical performance in the estimation of regression coefficients due to the effect of cell-wise
and case-wise outliers can be evaluated using the empirical mean squared error (MSE), defined as

MSE =
1

Np

N

∑
i=1

p

∑
j=1

(β̂
(i)
j − β

(i)
j )2, (15)
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where β̂
(i)
j is the estimate of β

(i)
j at the ith Monte Carlo replicate. Tables 2 and 3 report the MSE defined

in Equation (15) for k = 1 in all the settings with n ∈ {500, 1000}. The results for k = {5, 10} are
omitted, because they are similar to k = 1. Figures 2 and 3 show curves of MSE for cell-wise and
case-wise contamination in models with p = 15 continuous covariates and n = 1000.

Table 2. Maximum MSE in all of the considered scenarios for models with continuous covariates.

Estimator
Clean 1% Cell-Wise 5% Cell-Wise 9% Cell-Wise Case-Wise

n = 500 1000 n = 500 1000 n = 500 1000 n = 500 1000 n = 500 1000

C3SFull 0.0037 0.0017 0.0054 0.0026 0.5017 0.4509 1.7417 1.7287 0.0042 0.0019
C3S 0.0037 0.0017 0.0055 0.0026 0.5182 0.4709 1.7999 1.7671 0.0042 0.0019
3S 0.0028 0.0014 0.0105 0.0064 0.8682 0.9009 2.1563 1.9819 0.0033 0.0015
2S 0.0027 0.0014 0.0092 0.0062 3.1863 3.0689 4.3996 4.3861 0.0031 0.0014
LS 0.0026 0.0013 2.3581 2.3459 4.7799 4.7558 5.4603 5.4615 1.3299 1.3141

Table 3. Maximum MSE in all scenarios for models with continuous and dummy covariates.

Estimator
Clean 1% Cell-Wise 5% Cell-Wise 9% Cell-Wise Case-Wise

n = 500 1000 n = 500 1000 n = 500 1000 n = 500 1000 n = 500 1000

C3SFull 0.0029 0.0013 0.0039 0.0020 0.1653 0.1212 1.5194 1.4519 0.0031 0.0015
C3S 0.0028 0.0013 0.0039 0.0020 0.1700 0.1238 1.5572 1.4845 0.0031 0.0015
3S 0.0067 0.0041 0.0109 0.0076 0.5196 0.5874 1.8069 1.7518 0.0077 0.0051
2S 0.0020 0.0010 0.0042 0.0025 1.2884 1.2638 3.8409 3.8522 0.0023 0.0011
LS 0.0018 0.0009 2.4618 2.4173 4.9249 4.9155 5.6736 5.5816 0.5230 0.5037

Figure 2. MSE for indicated cell-wise contamination values k in models with p = 15 continuous
covariates and n = 1000. Source: the authors.

Figure 3. MSE for indicated case-wise contamination values k, in models with p = 15 continuous
covariates and n = 1000. Source: the authors.
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Figures 4 and 5 display curves of MSE for cell-wise and case-wise contamination in models with
continuous and dummy covariates, and n ∈ {500, 1000}. Figure 6 shows curves of MSE for cell-wise
and case-wise contamination in models with continuous covariates and n = 500. Note that models
with continuous covariates in the M-regression and C3S-regression outperform in all of the assumed
scenarios for both cell-wise and case-wise contaminations. In addition, in the four panels of Figure 6,
both versions of the C3S-regression have almost the same behavior for all settings assumed. The full
version of the C3S-regression is little more robust than its light version, but the estimates of both
are almost equal for all contamination settings. The results for n = 1000 are similar to the cell-wise
contamination settings. In the cell-wise contamination setting for small and moderate contamination
proportions (q ≤ 0.05), the C3S-regression is highly robust against moderate and large cell-wise outliers
(k ≥ 3), but less robust against inliers (k ≤ 2). The 3S-regression and C3S-regression perform similarly
for moderate and large outliers, but in the presence of inliers (k ≤ 3), the 3S-regression is less robust;
see first two panels of Figure 6.

Figure 4. MSE for indicated cell-wise and case-wise contamination values k in models with continuous
and dummy covariates, and n = 500. Source: the authors.

Figure 5. MSE for indicated cell-wise and case-wise contamination values k in models with continuous
and dummy covariates and n = 1000. Source: the authors.
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Figure 6. MSE for indicated cell-wise and case-wise contamination values k in models with continuous
covariates and n = 500. Source: the authors.

The 2S-regression and 3S-regression perform similarly in the presence of inliers, as expected from
the simulation studies carried out in [8]. However, the 2S-regression breaks down in cases when the
proportion of contaminated cells is q > 0.5; that is, when the propagation of large cell-wise outliers is
expected to affect more than 50% of the cases.

For a large contamination proportion (q = 0.09), the C3S-regression, 3S-regression, and
2S-regression perform similarly in the presence of inliers (k ≤ 3), but the 3S-regression breaks down
for moderate and large cell-wise outliers (k ≥ 4). However, the C3S-regression is highly robust
against large cell-wise outliers (k ≥ 5) although less robust against moderate outliers. In the case-wise
contamination setting, the C3S-regression, 3S-regression and 2S-regression perform fairly well and
similarly. Nevertheless, the 2S-regression has the best performance, followed by the 3S-regression,
which is followed in performance by the C3S-regression.

We also study the performance of the estimator with moderate and large case-wise contamination
levels of 10% and 20%, in which at a size of leverage outliers of 22, the C3S-regression and 3S-regression
break down as k increases. In this settings, the C3S-regression outperforms the 3S-regression,
but, as expected, the 2S-regression maintains its robustness for any contamination level.

Note that, in practice, it is unusual to find case-wise outliers and even more at moderate or
large levels. Thus, the loss of robustness for the C3S-regression and 3S-regression does not present a
disadvantage. We detect that models with continuous and dummy covariates in the M-regression and
C3S-regression outperform in all assumed scenarios. Table 4 reports a summary of the performance of
the estimators evaluated by MSE. The performance of the 3S-regression considering non-normal
covariates is comparable to all the other estimators for clean data. However, both versions of
the C3S-regression outperform all other estimators for any contamination size k in the cell-wise
contamination setting. In the cases of non-normal covariates, the C3S-regression maintains its
competitive performance, followed by the 3S-regression, while the 2S-regression, as expected, breaks
down in the presence of moderate and large cell-wise outliers proportion.
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Table 4. MSE for the indicated estimator with clean data and cell-wise contaminated data.

Estimator Clean
Cell-Wise

k = 1 k = 5 k = 10

C3SFull 0.0050 0.0295 0.0180 0.0382
C3S 0.0040 0.0360 0.0173 0.0392
3S 0.0094 0.1712 0.0242 0.0494
2S 0.0011 6.4893 5.3185 5.8407
L2 0.0006 5.2217 6.4807 6.6118

Next, the statistical performance of confidence intervals (CIs) for the regression coefficients based
on the asymptotic covariance matrix, as described in Subsection 3.3, is evaluated. The asymptotic
100(1− τ)% CIs for the coefficients of C3S-regression can be established as

CI(β̂ j) =

(
β̂ j −Φ−1(1− τ/2)

√
ÂSV(β̂ j)/n; β̂ j + Φ−1(1− τ/2)

√
ÂSV(β̂ j)/n

)
, j = 0, 1, . . . , p. (16)

The performance of CIs defined in Equation (16) may be evaluated using the empirical mean
coverage rate (CR) given by

CR =
1

Np

N

∑
i=1

p

∑
j=1

I(β
(i)
j ∈ CI(β̂

(i)
j )) (17)

and the empirical mean CI length (CIL) defined as

CIL =
1

Np

N

∑
i=1

p

∑
j=1

2Φ−1(1− τ/2)
√

ÂSV(β̂ j)/n. (18)

Table 5 reports the average CIL defined in Equation (18) obtained from the C3S-regression and
3S-regression in the case of clean data and contaminated data with 1% cell-wise (k = 9), 5% cell-wise
(k = 6), 9% cell-wise (k = 3) and 3% case-wise (k = 3), for n ∈ {150, 300, 500, 1000, 5000}. The results of
the LS and 2S-regression estimates are not included here, because we are interested in comparing the
CIL between the 3S-regression and C3S-regression. The CIL that is obtained from the C3S-regression
is comparable to that of the 3S-regression for all considered scenarios. The CIL reached from the
3S-regression are shorter than that for the C3S-regression with clean data and data with small and
moderate cell-wise contamination levels. For data with large cell-wise contamination levels or
case-wise contamination, the CILs of the C3S-regression are shorter than the CILs of the 3S-regression.
Moreover, for any assumed scenario, CILs of the 3S-regression and C3S-regression decrease as the
sample size n increases.

Figure 7 shows the CR defined in Equation (17) in the case of clean data and contaminated data
with 5% cell-wise contamination (k = 5), and 3% case-wise contamination (k = 3), and for different
sample sizes n ∈ {150, 300, 500, 1000}. Although the results for the sample size n = 5000 are not shown
here for visualization, it can be noticed that, for the C3S-regression and 3S-regression, the evaluations of
CR under n = 5000 are better than those when n = 1000. For contamination settings, the 3S-regression
yields the best CR, which is the closest to the nominal level. In general, the CR for the C3S-regression
is similar to that of the 3S-regression, and it tends to be equal as the sample size n increases.
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Table 5. Average CIL for clean data and for cell-wise and case-wise contamination.

Size (n)
Clean 1% Cells, k = 9 5% Cell, k =6 9% Cell, k = 3 3% Cases, k = 3

C3S 3S C3S 3S C3S 3S C3S 3S C3S 3S
150 0.3959 0.3507 0.3818 0.3401 0.4496 0.5196 1.7126 1.8352 0.3957 0.3537
300 0.2824 0.2467 0.2740 0.2414 0.2580 0.3336 1.3654 1.2992 0.2821 0.2498
500 0.2181 0.1915 0.2118 0.1869 0.1917 0.2533 1.1206 1.0047 0.2189 0.1944

1000 0.1543 0.1357 0.1493 0.1323 0.1354 0.1767 0.8204 0.7069 0.1546 0.1375
5000 0.0686 0.0605 0.0670 0.0596 0.0609 0.0785 0.3779 0.3150 0.0694 0.0618

Figure 7. CR for clean data and for cell-wise and case-wise contaminated data with the indicated n.
Source: the authors.

4.3. Analysis of Real Data

The airfoil self-noise data set is used for the illustration purpose. These data were obtained from a
series of aerodynamic and acoustic tests of two and three-dimensional airfoil blade sections conducted
in an anechoic wind tunnel by the NASA. The data set comprises airfoils of different sizes at various
wind tunnel speeds and angles of attack with n = 1503 observations (cases). For this data set, Table 6
shows five covariates and one response variable along with their statistical summaries. This data set is
available at the UCI repository [42]. The aim of this empirical study is to predict the noise generated
by an airfoil, from dimensions, speed and angle of attack. Specifically, the objective is to explain the
scaled sound pressure level.

Table 6. Description of the variables in the airfoil self-noise data set.

Variable Label Units Type Minimum Mean Maximum

X1 Frequency Hertz Covariate 200 2886.38 20000
X2 Angle of attack Degrees Covariate 0.0000 6.7823 22.2000
X3 Chord length Meters Covariate 0.0254 0.1365 0.3048
X4 Free stream velocity Meters Covariate 31.7000 50.8607 71.3000

X5
Suction side

displacement thickness Meters Covariate 0.0004 0.0111 0.0584

Y Scaled sound
pressure level Decibels Response 103.38 124.836 140.987

The data set is fitted with the model given by

log(Yi) = β0 + β1 log(X1i ) + β2X2i + β3X3i + β4X4i + β5X5i + εi, i ∈ {1, . . . , 1503},

where the log function is used for X1 due to its wide range and high skewness, while the log
function is employed for Y in order to improve the R2-adjusted. The corresponding parameters with
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C3S-regression (in both versions and full version computed by bootstrap estimation), 2S-regression,
3S-regression, and LS estimates are obtained. The regression coefficient estimates and the
corresponding p-values are reported in Table 7. Note that the regression coefficients are similar
for all the estimates, except for the covariate X5, (that is, the suction side displacement thickness).
The coefficient of X5 estimated by 3S-regression and 2S-regression are similar, but are very different
from the C3S-regression and LS estimates. For the C3S-regression, X5 is highly not significant, while
for the 2S-regression and 3S-regression, it is only not significant. However, the LS method indicates
that X5 is significant.

Table 7. Estimates and p-values of the regression coefficients for the airfoil self-noise data set.

Variable
C3SFull C3S 3S 2S LS

Coeff. p-Value Coeff. p-Value Coeff. p-Value Coeff. p-Value Coeff. p-Value

log(X1) −0.0319 <0.0001 −0.0319 <0.0001 −0.0311 <0.0001 −0.0311 <0.0001 −0.0290 <0.0001
X2 −0.0032 <0.0001 −0.0032 <0.0001 −0.0034 <0.0001 −0.0034 <0.0001 −0.0032 <0.0001
X3 −0.3299 <0.0001 −0.3299 <0.0001 −0.3026 <0.0001 −0.3026 <0.0001 −0.2828 <0.0001
X4 0.0006 <0.0001 0.0006 <0.0001 0.0006 <0.0001 0.0006 <0.0001 0.0007 <0.0001
X5 −0.3008 0.7186 −0.3020 0.7165 −0.8505 0.2110 −0.8561 0.2690 −1.3347 <0.0001

The squared norm distance, defined as SND = n ∑
p
j=1(β̂ j,A− β̂ j,B)

2MAD(Xij, . . . , Xnj)
2, is used to

compare the four estimators. Table 8 reports the corresponding SND, which shows that these distances
from each two pairs are not large. Therefore, it suggests that the data are not contaminated or the
contamination level is very small (inliers).

Table 8. Pairwise squared norm distance between the estimates for the airfoil self-noise data set.

C3SFull C3S 3S 2S LS

C3SFull - 4.3055× 10−08 0.0107 0.0107 0.0389
C3S - 0.0107 0.0107 0.0389
3S - 3.0751× 10−6 0.0130
2S - 0.0128
LS -

5. Conclusions and Future Works

We have provided a new form for robustifying the estimation of parameters of a linear regression
model in order to immunize these estimators against case-wise and cell-wise outliers. The main
idea here was to modify the generalized Rocke S-estimator in order to obtain robust estimators of the
corresponding means and covariances. The difference in our proposal was changing, in the generalized
Rocke S-estimator, the initial scatter estimate from the extended minimum volume ellipsoid estimate by
the empirical median. The proposed estimator used a univariate filter introduced in the literature and
the generalized Rocke S-estimator modified for incomplete data. Our method worked well and similar
to that used in the 3S-regression, but in the second step with a different initial robust estimate for
the generalized Rocke S-estimator. The initial estimates of location and scatter, the empirical median,
and the robust version of the covariance, were computed after snipping the data. Therefore, we have
obtained the following findings:

• A new method, called comedian-three-step regression, was proposed, which showed an overall
outperformance over the recent developed robust methods.

• An exact correction factor (bX) was calculated in order to estimate consistently the standard
deviation by using the median absolute deviation for the exponential, logistic and uniform
distributions. In addition, a numerical solution for this correction factor was introduced in the
Student-t and Weibull distributions.
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• In continuous covariates, for small contamination proportion and large cell-wise outliers,
the 3S-regression performed similarly to the C3S-regression. However, in general, the C3S-regression
outperformed the 3S-regression when the cell-wise contamination proportion increase.

• In continuous and dummy covariates, the C3S-regression outperformed both the 3S-regression
and 2S-regression, for different contamination proportions. However, for the case-wise outliers,
the performance of the three estimators was quite similar.

• The performance of the full version of the C3S-regression estimator proposed in this work was
better than its light version. However, the latter one is computationally faster and it can also be
used without significant loss of robustness.

Therefore, we have contributed to the robust statistic literature modifying the original three-step
regression model by introducing a new family of initial estimates based on the comedian. Our method
and the original one are useful to deal with both cell-wise and case-wise outliers. Nevertheless,
the numerical results reported that the method proposed in the present study showed an overall
outperformance over the recent developed robust methods and a better performance for models with
continuous and dummy covariates.

The following aspects derived of this paper may be considered for future work:

• The C3S-regression and 3S-regression estimators work well for cell-wise contamination. However,
the performance of these estimators with moderate and large case-wise contamination levels
(for example, between 10% and 20%) do not work well when the contamination level increases.
Some new kind of shrinkage estimator for the initial scatter estimate should be investigated.

• A bivariate filter can be considered in the first step in order to snip deviation of cells, which could
improve the performance of the estimator.

• A numerical procedure must be studied to calculate the correction factor for any distribution.
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