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Abstract: We study the local commutation relation between the Lefschetz operator and the exterior
differential on an almost complex manifold with a compatible metric. The identity that we obtain
generalizes the backbone of the local Kähler identities to the setting of almost Hermitian manifolds,
allowing for new global results for such manifolds.

Keywords: almost Hermitian manifolds; Kähler identities; Lefschetz operator

1. Introduction

On a Kähler manifold (M, J, ω), the most fundamental local identity is perhaps the commutation
relation between the exterior differential d and the adjoint Λ to the Lefschetz operator,

[Λ, d] = ? I−1 d I ?, (1)

where ? denotes the Hodge star operator and I denotes the extension of J to all forms.
This identity, due to A. Weil [1], strongly depends on the Kähler condition, dω = 0, and in fact

is true when removing the integrability condition NJ ≡ 0. So, it is valid for almost Kähler and also
symplectic manifolds as well [2–4]. On the other hand, there is also a generalization of the Kähler
identities in the Hermitian setting (see [5,6]), which strongly uses integrability.

When the manifold is only almost Hermitian, then the above local identity does not hold in general,
as noticed implicitly in [7]. The purpose of this short note is to show precisely how the above Kähler
identity (1) becomes modified when the form ω is not closed.

The main result is given in Theorem 1 below, which has several applications including the
uniqueness of the Dirichlet problem

∂∂̄u = g with u|∂Ω = φ,

on any compact domain Ω in an almost complex manifold. This in turn implies that the Dolbeault
cohomology introduced in [8], for all almost complex manifolds, satisfies H0,0

Dol(M) ∼= C for a compact
connected almost complex manifold.

Another application of the almost Hermitian identities of Theorem 1 appears in forthcoming
work by Feehan and Leness [9]. There the fundamental relation of Proposition 1 is used to show
that the moduli spaces of unitary anti-self-dual connections over any almost Hermitian 4-manifold is
almost Hermitian, whenever the Nijenhuis tensor has sufficiently small C0-norm. This generalizes a
well known result for Kähler manifolds that was exploited in Donaldson’s work in the 1980s, and is
expected to have consequences for the topology of almost complex 4-manifolds which are of so-called
Seiberg–Witten simple type.
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When M is compact, local identities lead to consequences in cohomology, often governed by
geometric-topological inequalities. Indeed, the exterior differential inherits a bidegree decomposition
into four components d = µ̄ + ∂ + ∂ + µ and the Hermitian metric allows one to consider the Laplacian
operators associated to each of these components. In the compact case, the numbers

`p,q := dim Ker (∆∂̄ + ∆µ)|(p,q)

given by the kernel of ∆∂̄ + ∆µ in bidegree (p, q) are finite by elliptic operator theory. When J is
integrable (and so M is a complex manifold) the operator ∆µ vanishes and these are just the Hodge
numbers `p,q = hp,q. In this case, the Hodge-to-de Rham spectral sequence gives inequalities

∑
p+q=k

`p,q ≥ bk,

where bk denotes the k-th Betti number. On the other hand, as shown in [4], one main consequence of
the local identity (1) in the almost Kähler case dω = 0 is the converse inequality

∑
p+q=k

`p,q ≤ bk.

Of course, in the integrable Kähler case both inequalities are true and so one recovers the
well-known consequence of the Hodge decomposition

∑
p+q=k

`p,q = bk.

The local identities of [5,6] for complex non-Kähler manifolds include other algebra terms which
lead to further Laplacian operators, leading also to various inequalities relating the geometry with the
topology of the manifold.

With this note, we aim to further understand the origin of these inequalities by means of the
correct version of (1) for almost Hermitian manifolds for which, a priori, the only geometric-topological
inequality in the compact case is given by

∑
p+q=k

dim Ker (∆µ̄ + ∆∂̄ + ∆∂ + ∆µ)|(p,q) ≤ bk.

2. Preliminaries

Let (A, d) denote the complex valued differential forms of an almost complex manifold (M, J).
For any Hermitian metric, define the associated Hodge-star operator

? : Ap,q
x → A

n−q,n−p
x by ω ∧ ?η̄ = 〈ω, η〉vol,

where ω is the fundamental (1, 1)-form, and vol = 1
n! ω

n ∈ An,n is the volume form determined by the
Hermitian metric. Note ?2 = (−1)k on Ak.

Define d∗ = − ? d?, so that d∗? = (−1)k+1 ? d on Ak. Similarly, consider the bidegree
decomposition of the exterior differential

d = µ̄ + ∂̄ + ∂ + µ,

where the bidegree of each component is given by

|µ̄| = (−1, 2), |∂̄| = (0, 1), |∂| = (1, 0) and |µ| = (2,−1).
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We then let δ̄∗ = − ? δ? for δ = µ̄, ∂̄, ∂, µ and we have the bidegree decomposition

d∗ = µ̄∗ + ∂̄∗ + ∂∗ + µ∗.

where
|µ̄∗| = (1,−2), |∂̄∗| = (0,−1), |∂∗| = (−1, 0) and |µ∗| = (−2, 1).

Let L : Ap,q → Ap+1,q+1 be the real (1, 1)-operator given by L(η) = ω ∧ η. Let Λ = L∗ = ?−1L?.
Then ?Λ = L? and ?L = Λ?. Let Pk = Ker Λ ∩Ak denote the primitive forms of total degree k.

It is well known that {L, Λ, [L, Λ]} defines a representation of sl(2,C) and induces the Lefschetz
decomposition on forms:

Lemma 1. We have

Ak =
k/2⊕
r=0

LrPk−2r,

and this direct sum decomposition respects the (p, q) bigrading.

Let [A, B] = AB− (−1)|A||B|BA be the graded commutator, where |A| denotes the total degree
of A. This defines a graded Poisson algebra

[A, BC] = [A, B]C + (−1)|A||B|B[A, C]

The following is well known (e.g., [10] Corollary 1.2.28):

Lemma 2. For all j ≥ 0 and α ∈ Ak

[Lj, Λ]α = j(k− n + j− 1)Lj−1α.

By induction, and the fact that [d, L] and L commute, we have:

Lemma 3. For all n ≥ 1
[d, Ln] = n[d, L]Ln−1,

and
?[d, L]α = (−1)k+1[d∗, Λ] ? α for α ∈ Ak.

Let I be the extension of J to all forms as an algebra map with respect to wedge product, so that
Ip,q acts on Ap,q by multiplication by ip−q. Then I2

p,q = (−1)p+q so that I−1
p,q = (−1)p+qIp,q. Note that I

and ? commute, and I and Ln commute for all n ≥ 0. The following is a direct calculation.

Lemma 4. If an operator Tr,s : Ap,q → Ap+r,q+s has bidegree (r, s), then

I−1
r+p,s+q ◦ Tr,s ◦ Ip,q = (−i)r−sTr,s.

The above result readily implies that

I−1 ◦ d ◦ I = −i(µ̄− ∂̄ + ∂− µ).

Finally, the following is well known (e.g., [10] Proposition 1.2.31):

Lemma 5. If M is an almost Hermitian manifold of dimension 2n, then for all j ≥ 0 and all α ∈ Pk,

?Ljα = (−1)
k(k+1)

2
j!

(n− k− j)!
Ln−k−j Iα.
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3. Almost Hermitian Identities

By the previous section, any differential form η can be written as η = Ljα for unique j, k ≥ 0 and
α ∈ Pk. We now state the main result:

Theorem 1. For any almost Hermitian manifold of dimension 2n, let α ∈ Pk, with dα written as

dα = α0 + Lα1 + L2α2 + · · · , (2)

for unique αr ∈ Pk+1−2r. Then, for all j ≥ 0,

[Λ, d]Ljα− ? I−1 d I ? Ljα =
1

j + 1
I−1 [d∗, Λ] I Lj+1α

+ jΛ[d, L]Lj−1α + j(j− 1)(k− n + j− 1)[d, L]Lj−2α

+
∞

∑
r=2

fn,j,k(r)Lj+r−1αr,

where

fn,k,j(r) = (r(n− k + r)− j) + (−1)r j!(n− k− j + r)!
(j + r− 1)!(n− k− j)!

.

Remark 1. In the almost Kähler case we have [d∗, Λ] = [d, L] = 0, and dα = α0 + Lα1, so we recover
the identity

[Λ, d] = ? I−1 d I ?,

as expected.

Proof. The proof consists of several calculations using the lemmas in the previous section.
Using [I, L] = 0, and I2 = (−1)k on Ak, we have

? I−1 d I ? η = ? I−1 d I
(
(−1)

k(k+1)
2

j!
(n− k− j)!

Ln−k−j Iα
)

= (−1)
k(k+1)

2 +k j!
(n− k− j)!

? I−1 dLn−k−jα.

By Lemma 3 this is equal to

(−1)
k(k+1)

2 +k j!
(n− k− j)!

? I−1 Ln−k−jdα + (−1)
k(k+1)

2 +k j!
(n− k− j− 1)!

? I−1 [d, L]Ln−k−j−1α. (3)

We first simplify each of these last two summands. By Equation (2), the fact that ? commutes
with I, and Lemma 5 applied to αr ∈ Pk+1−2r, the first summand of Equation (3) is equal to:

(−1)
k(k+1)

2 +k j!
(n− k− j)!

? I−1

(
∞

∑
r=0

Ln−k−j+rαr

)

= (−1)
k(k+1)

2 +k j!
(n− k− j)!

I−1

(
∞

∑
r=0

(−1)
(k+1−2r)(k−2r+2)

2
(n− k− j + r)!
(j + r− 1)!

Lj+r−1 Iαr

)

=
∞

∑
r=0

(−1)r+1 j!(n− k− j + r)!
(j + r− 1)!(n− k− j)!

Lj+r−1 αr.

For the second summand, we use the fact that for all m ≥ 0 and β ∈ Ak,

?Lm[d, L]β = ?[d, L]Lmβ = (−1)k+1[d∗, Λ] ? Lmβ.
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So, the second summand in Equation (3) is equal to

(−1)
k(k+1)

2 +k j!
(n− k− j− 1)!

? I−1 [d, L]Ln−k−j−1α

= (−1)
k(k+1)

2 +1 j!
(n− k− j− 1)!

I−1 [d∗, Λ] ? Ln−k−j−1α

= (−1)
k(k+1)

2 +1 j!
(n− k− j− 1)!

I−1 [d∗, Λ](−1)
k(k+1)

2
(n− k− j− 1)!

(j + 1)!
Lj+1 Iα

=
−1

j + 1
I−1 [d∗, Λ] I Lj+1α,

where in the second to last step we used Lemma 5.
In summary, we have

? I−1 d I ? η =
∞

∑
r=0

(−1)r+1 j!(n− k− j + r)!
(j + r− 1)!(n− k− j)!

Lj+r−1 αr −
1

j + 1
I−1 [d∗, Λ] I Lj+1α. (4)

We now compute [Λ, d]η, by first computing ΛdLjα, using that all αr are primitive. By Equation (2),
Lemma 2, and Lemma 3, we have:

ΛdLjα = ΛLjdα + Λ[d, Lj]α

= ΛLj

(
∞

∑
r=0

Lrαr

)
+ jΛ[d, L]Lj−1α

=
∞

∑
r=0

ΛLj+rαr + jΛ[d, L]Lj−1α

= −
∞

∑
r=0

(j + r)(k + 1− 2r− n + j + r− 1)Lj+r−1αr + jΛ[d, L]Lj−1α.

Next using, α is primitive, and Lemma 2 again, we have

dΛLjα = −j(k− n + j− 1)dLj−1α

= −j(k− n + j− 1)Lj−1dα− j(k− n + j− 1)(j− 1)[d, L]Lj−2α

= −j(k− n + j− 1)

(
∞

∑
r=0

Lj+r−1αr

)
− j(k− n + j− 1)(j− 1)[d, L]Lj−2α.

So,

[Λ, d]η =
∞

∑
r=0

(r(n− k + r)− j)Lj+r−1αr + jΛ[d, L]Lj−1α + j(j− 1)(k− n + j− 1)[d, L]Lj−2α.

Using this last equation and combining with Equation (4) we obtain the desired result:

[Λ, d]η − ? I−1 d I ? η =
1

j + 1
I−1 [d∗, Λ] I Lj+1α

+ jΛ[d, L]Lj−1α + j(j− 1)(k− n + j− 1)[d, L]Lj−2α

+
∞

∑
r=0

fn,k,j(r)Lj+r−1αr,

where

fn,k,j(r) = (r(n− k + r)− j) + (−1)r j!(n− k− j + r)!
(j + r− 1)!(n− k− j)!

.
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It is a curious fact that f (0) = f (1) = 0, whereas for r ≥ 2, f (r) is in general non-zero.

4. Applications

On an almost Kähler manifold, using the bidegree decompositions of d and d∗, one may derive
from (1) the relation

[Λ, ∂] = i∂̄∗,

involving Λ, ∂ and the adjoint of ∂̄. For a non-Kähler Hermitian manifold there is an additional term

[Λ, ∂] = i(∂̄∗ + τ̄∗)

where τ̄ = [Λ, [∂̄, L]] is the zero-order torsion operator (see [5,6]). In the case of (0, q)-forms this gives

Λ∂α = i∂̄∗α + i[Λ, ∂̄∗]Lα.

Next we use Theorem 1 to derive this local identity also in the non-integrable case.

Proposition 1. For all α ∈ A0,q in an almost Hermitian manifold we have

Λ∂α = i∂̄∗α + i[Λ, ∂̄∗]Lα.

Proof. By bidegree reasons α is a primitive form and we have dα = α0 + Lα1 + L2α2 where αi
are primitive. By expanding each term in the equality of Theorem 1 with respect to the bidegree
decomposition d = µ̄ + ∂̄ + ∂ + µ, in the case j = 0, we obtain:

[Λ, d]α = Λdα = Λ(∂ + µ)α,

? I−1 d I ? α = i(∂̄∗ − µ̄∗)α,

and
I−1 [d∗, Λ] I Lα = i[Λ, ∂̄∗ − µ̄∗]Lα.

In particular, all terms decompose into sums of pure bidegrees (0, q− 1) and (1, q− 2). Note as
well that the remaining term

fn,q,0(2)Lα2

given in Theorem 1 has pure bidegree (1, q− 2), since α2 must have bidegree (0, q− 3). By putting
together all terms of bidegree (0, q− 1) we obtain the desired identity.

Remark 2. The proof of Proposition 1 gives a second identity relating the operators Λ, µ and µ̄ and their adjoints,
which also contains the term fn,q,0(2)Lα2. For forms in A0,2, this extra term vanishes by bidegree reasons,
since α2 = 0. Then the second identity reads

Λµα = −iµ̄∗α− i[Λ, µ̄∗]Lα.

This corrects the identity
[Λ, µ] = −iµ̄∗

known in the almost Kähler case for arbitrary forms (see [4]).

The previous proposition can be used to give a uniqueness result for the Dirichlet problem on
compact domains with a boundary.
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Corollary 1. Let Ω be a compact domain in an almost complex manifold (M, J), with smooth boundary, and let
g : Ω→ C, and φ : ∂Ω→ C be smooth. Then the Dirichlet problem,

∂∂̄u = g with u|∂Ω = φ,

has at most one solution u : Ω→ C.
In particular, if (M, J) is a compact connected almost complex manifold, and f : M→ C is a smooth map

of almost complex manifolds, then f is constant.

Proof. It suffices to show the only solution to the homogenous equation with g = 0 is a
constant function.

In any coordinate chart ψ : V → R2n containing any maximum point, we pullback J to ψ(V) and
consider the J-preserving map u ◦ ψ−1 : ψ(V)→ C. The components of d are natural with respect to
this J-preserving map and we use a compatible metric on ψ(V) to define Λ and ∂̄∗. Then by Proposition
1 with q = 1 we obtain

−iΛ∂∂̄u = ∂̄∗∂̄u + [Λ, ∂̄∗]L∂̄u

on ψ(V). Note ∂̄∗∂̄ is quadratic, self-adjoint, and positive, and [Λ, ∂̄∗]L∂̄ is first order since [Λ, ∂̄∗] =

[d, L]∗ is zeroth order, because [d, L]η = dω ∧ η. Then the right hand side is zero, so the maximum
principle due to E. Hopf applies [11], showing u is constant in a neighborhood of the maximum point
and therefore, by connectedness, u is constant.

The final claim follows taking Ω = M, with empty boundary, g = 0, and noting the condition
that f is a map of almost complex manifolds implies ∂̄ f = 0.

Remark 3. In [8], we introduce a Dolbeault cohomology theory that is valid for all almost complex manifolds.
The above corollary is key in showing that, for a compact connected almost complex manifold, this cohomology is
well-behaved in lowest bidegree, in the sense that H0,0

Dol(M) ∼= C.

Finally, we refer the reader to the work of Feehan and Leness [9], where the relation of
Proposition 1, for q = 1, is used to show that the moduli spaces of unitary anti-self-dual connections
over any almost Hermitian 4-manifold is almost Hermitian, whenever the Nijenhuis tensor has
sufficiently small C0-norm.
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