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Abstract: In Manufacturing Engineering there is a need to be able to model the behavior of
technological variables versus input parameters in order to predict their behavior in advance, so that
it is possible to determine the levels of variation that lead to optimal values of the response variables
to be obtained. In recent years, it has been a common practice to rely on regression techniques to
carry out the above-mentioned task. However, such models are sometimes not accurate enough to
predict the behavior of these response variables, especially when they have significant non-linearities.
In this present study a comparative analysis between the precision of different techniques based on
conventional regression and soft computing is initially carried out. Specifically, regression techniques,
based on the response surface model, as well as the use of artificial neural networks and fuzzy
inference systems along with adaptive neuro-fuzzy inference systems will be employed to predict
the behavior of the aforementioned technological variables. It will be shown that when there are
difficulties in predicting the response parameters by using regression models, soft computing models
are highly effective, being much more efficient than conventional regression models. In addition,
a new method is proposed in this study that consists of using an iterative process to obtain a fuzzy
inference system from a design of experiments and then using an adaptive neuro-fuzzy inference
system for tuning the constants of the membership functions. As will be shown, with this method it is
possible to obtain improved results in the validation metrics. The means of selecting the membership
functions to develop this model from the design of experiments is discussed in this present study
in order to obtain an initial solution, which will be then tuned by using an adaptive neuro-fuzzy
inference system, to predict the behavior of the response variables. Moreover, the obtained results
will also be compared.
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1. Introduction

Over the last few years, an increasing number of research studies dealing with modeling of
technological response variables as a function of process parameters in order to determine the most
appropriate operating conditions has been observed in Manufacturing Engineering. Given the
importance that these manufacturing processes have for industry, a large number of models have
been developed in recent years, based on regression techniques, fuzzy inference systems, and artificial
neural networks, generally through the application of supervised learning and feed forward networks.
In this present research study, different techniques, based both on response surface methodology
(RSM) and on soft computing, will be analyzed to determine their capacity to accurately predict the
response variables. It should be noted that conventional regression techniques are effective when
the models provide high values of the coefficient of determination. However, when the response
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variables have high curvature or are irregular, conventional models are not effective in modeling the
response variables. Therefore, when regression models are not adequate to predict the behavior of the
response variables, it is necessary to use other alternative methodologies and, as shown further on,
soft computing has significant advantages over conventional regression methods.

In this present study, a comparative study is first carried out between the accuracy in regression
models, based on RSM, versus that of soft computing techniques such as Artificial Neural Networks
(ANN) and Adaptive Neuro-Fuzzy Inference Systems (ANFIS). First, from a Design Of Experiments
(DOE), two sets of values generated from a function that can be made to exhibit both low curvature
and high curvature within the range of variation of the DOE will be used, which is usually observed
when modeling variables obtained in manufacturing processes where some part of them are well
fitted by models obtained from regression, with high coefficients of determination, and some others,
on the contrary, exhibit a behavior which is not possible to adequately model by using conventional
regression techniques. Finally, a comparative analysis will be carried out between the results obtained
with those that would be obtained in a real manufacturing study case and a comparison between those
obtained will be carried out.

Furthermore, this comparison made between the regression and soft computing models does not
use all the data from the DOE to fit the models, as is common practice. Instead, a part of the design is
used to fit the model and another part for validation and testing, since the fact of using the entire DOE
to fit the model does not allow its validation with independent data, and it may lead to results that
are not completely reliable, as shown in this present study. Although it is true that there are different
research studies that carry out comparative studies, the above-mentioned is not usually taken into
consideration. In addition, this present study proposes a new methodology to obtain an ANFIS which
is capable of efficiently modeling the response variables obtained from a DOE. An iteration with the
membership functions is carried out to develop a Fuzzy Inference Systems (FIS) that will be tuned later
by using an ANFIS. In this study, it will be shown that by using this method it is possible to efficiently
model both response variables with low curvature and high curvature. The proposed method, which
is shown is Section 4.4, is based on finding the shape of the initial membership functions in order to
develop a FIS which will be then tuned with an ANFIS and which will later lead to a better fit in the
validation data as well as in the train data.

The results obtained by the different techniques are also compared. Before approaching the
present study, several research works that were found in the bibliography will be analyzed in the “State
of the Art” section.

2. State of the Art

Over the last few years, regression techniques as well as ANN, FIS, and ANFIS have been widely
employed for modeling several manufacturing processes. In regard to FIS, these have been widely used
in distinct scientific fields, among others, dealing with control, pattern recognition, and modeling [1],
where Takagi–Sugeno [2,3] and Mamdani [4,5] are the most commonly employed. Several studies can
be found in the literature dealing with FIS, such as that of Mouralova et al. [6] who proposed a Mamdani
FIS for modeling the cutting speed in wire electrical discharge machining (WEDM). These authors
employed a maximum of results for aggregation and the centroid to de-fuzzify the aggregated output.
In another study, Aamir et al. [7] used a Mamdani FIS to predict the surface roughness and hole size as
a function of feed rate and cutting speed in multi-hole drilling. These authors calculated the outputs
based on the centroid method. Some other studies are those of Cuka and Kim [8] that developed a
fuzzy inference system for tool condition monitoring in end-milling operations and Joshi et al. [9]
who analyzed surface roughness and material removal rate (MRR) of Inconel 800HT, when machined
with copper electrode on electrical discharge machining (EDM). On the other hand, Wang et al. [10]
employed a fuzzy multicriteria decision-making model (MCDM) for raw material supplier selection in
the plastic industry. Likewise, Lin et al. [11] applied fuzzy collaborative intelligence approach for fall
detection in four existing smart technology applications and a methodology for obtaining technological
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tables based on using a zero-order Sugeno FIS is shown in Ref. [12]. Some other studies, worth
mentioning, are those of Cavallaro [13] that employed a Takagi–Sugeno FIS to assess the sustainability
of biomass of production and that of Shabgard et al. [14] who employed a Mamdani inference system
to predict MRR, electrode wear and surface roughness in the EDM and ultrasonic-assisted EDM
(US/EDM) processes of tungsten carbide.

Comparing the performance of different models for the prediction of response variables has been
examined by different authors and for different variables and technological processes. For example, it
is worth mentioning the research studies of Bernardos et al. [15] which analyzed the arithmetic average
roughness (Ra) in face milling using a feedforward ANN and a Levenberg–Marquardt algorithm.
Furthermore, in the study of Devarasiddappa et al. [16] these authors employed an ANN to predict
surface roughness in WEDM of Inconel 825, and Twardowski et al. [17] employed multilayer perceptron
(MLP) for modeling tool wear during turning of hardened steel, among others. Another interesting
technique for modeling technological variables in manufacturing processes are hybrid learning
procedures that combine ANNs and FIS, which are known as ANFIS [18]. ANN and Fuzzy systems
are commonly combined in soft computing to solve real-world problems. From the research study of
Jang [18], several studies have been developed, as can be observed in the review of the state of the
art of Shihabudheen and Pillai [19]. For example, in Maher et al. [20] an ANFIS was employed to
predict cutting speed, surface roughness, and heat-affected zone in WEDM and in Çaydaş et al. [21] an
ANFIS was used for modeling surface roughness and white layer thickness in WEDM of an AISI D5
tool steel. Likewise, Kang et al. [22] proposed a heating temperature estimation method for diagnosis
and assessment of fire-damaged concrete structures by using an ANFIS. Al-Ghamdi [23] employed an
ANFIS and polynomial modeling approaches to model the MRR in EDM of a Ti-6Al-4V alloy. A first
order Sugeno along with a back-propagation neural network training algorithm was used by these
authors [23]. Both ANNs and ANFIS have been widely used in Engineering and Technology fields,
among many others. Comparison of ANFIS and MLP ANNs can be found in the bibliography dealing
with different subjects. For example, in the study of Suparta et al. [24] the authors employed both
ANFIS and MLP for prediction of precipitable water vaper. These authors found that the ANFIS
provided a better performance than that obtained by using MLP. On the other hand, in the research
study of Yilmaz and Kaynar [25] the authors employed multiple linear regression, ANN and ANFIS for
prediction of swell percent of soil. These authors found that the ANN models had a better performance
than that obtained with ANFIS and multiple regression.

Fuzzy modeling has been widely applied in several scientific and technological fields. There exists
a large amount of industrial applications which are based on these techniques. Among the research
studies found in the literature it is worth mentioning the application of soft computing techniques for
airport classification, as shown in the research study of Postorino et al. [26], control of piezoelectric
actuators, as shown in Li et al. [27] and in Cheng et al. [28], control of Brushless DC motors [29] and
monitoring of fuel system of an industrial gas turbine, as shown in Bagua et al. [30]. Other applications
deal with both detection and classification of defects, as shown in Versaci [31] and in Versaci et al. [32],
fault diagnosis of rolling bearing in industrial robots [33], and fault detection in wind turbines [34],
among many others.

In addition, fuzzy systems are able to handle uncertainties in an efficient way, as shown in
Lin et al. [35], where a Takagi–Sugeno–Kang (TSK) type-2 fuzzy neural network was proposed for
system modeling and noise cancellation, or in Biglarbegian et al. [36], where a design methodology based
on interval type-2 TSK fuzzy logic controllers for modular and reconfigurable robots manipulators with
uncertain dynamic parameters was shown, among many others [37,38]. Furthermore, Chen et al. [39]
employed a type-2 fuzzy neural network to predict bearing health conditions and Tayyab et al. [40]
applied fuzzy theory to consider uncertainty in demand information in a multi-stage lean manufacturing
system. These authors employed the centroid to de-fuzzify the objective function. Other studies
such as that of Faisal et al. [41] used particle swarm optimization (PSO) and biogeography-based
optimization (BBO) algorithms for a multiple-objective optimization of the MRR and the arithmetical
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mean roughness (Ra) for the EDM process, Alarifi et al. [42] employed genetic algorithms and particle
swarm optimization to determine the parameters of an ANFIS model to predict the thermo-physical
properties of Al2O3-MWCNT/thermal oil hybrid nanofluid and an analysis of the PSO implementation
in designing parameters of manufacturing processes as well as a benchmark with other optimization
techniques can be found in the review study of Sibalija [43]. On the other hand, Alajmi et al. [44]
used an ANFIS-QPSO to predict the surface roughness of the dry and cryogenic turning process of
AISI 304 stainless steel. Moreover, a comparison of prediction accuracy between ANFIS, ANFIS-GA,
ANFIS-PSO, and ANFIS-QPSO was carried in this study in terms of the MAPE, root mean squared
error (RMSE) and R2 values for both dry and cryogenic turning processes [44].

Furthermore, neural networks have also been widely employed in several scientific and
technological fields. Among the research studies found in the literature it is worth mentioning
the application of neural networks for prediction of biogases concentration using spiking neural
networks [45], feature recognition and process planning of casting dies [46], quality control in
manufacturing processes [47], prediction of springback in sheet metal forming [48], aerodynamic data
modeling [49], detection of skin diseases [50], automatic control of house elements [51,52] and energy
forecasting in the manufacturing sector [53], among many other applications.

Finally, it is worth mentioning the employment of techniques based on the DOE and regression
techniques that have also been widely used for the study of technological variables found in
manufacturing processes as shown in research studies such as that of Airao et al. [54] which analyzed
the effect of cutting speed, feed rate, and axial depth of cut on surface roughness obtained in end-milling
of a stainless steel, that of Kasdekara et al. [55], which employed a 24 full factorial (DOE) for determining
the most important factors which influence MRR in Electro-chemical machining of AA6061 by using
MLP and regression, and that of Ahmed et al. [56] in which the MRR, in laser milling of three alloys
(Ti6Al4V, Inconel 718 and AA 2024), was evaluated using the response surface method and DOE. On the
other hand, Aslantas et al. [57] obtained empirical relations between cutting speed, feed rate, depth of
cut and surface roughness parameters using the RSM for the micro-turning process in a Ti6Al4V alloy
and Su et al. [58] employed a multi-objective optimization method based on grey relational analysis
and RSM along with Taguchi method for analyzing surface roughness and MRR in turning of an AISI
304 austenitic stainless steel. Regression analysis is also used by Zajac et al. [59] to make predictions of
cutting tool durability in turning processes. Furthermore, in the research study from Torres et al. [60]
the manufacturing of TiB2 by using EDM was analyzed by using RSM. On the other hand, Torres at
al. [61] employed a 43 factorial DOE for modeling the behavior of the arithmetical mean roughness
(Ra), the electrode wear (EW) and the MRR in the EDM machining of an Inconel®600 alloy using Cu-C
electrodes (Inconel®600 alloy is a registered trademark of the Special Metals Corporation group of
Companies). In Lin et al. [62] surface roughness in the end-milling process is analyzed as a function
of spindle speed, cutting depth, and feed rate and machining vibration by using multiple regression
and ANNs and in Karloopia et al. [63] cutting speed, depth of cut, and feed are used as independent
variables to obtain cutting force and tool wear in Al–Si–TiB2 composites by using linear regression.

As was observed in the “State of the Art” section, there are different methodologies that have
been used for modeling technological variables in manufacturing processes, some of which will be
analyzed in order to determine their performance in modeling response variables. The following
section describes the methodology to be followed in this present study.

3. Methodology

As shown in the review of the state of the art, it is observed that regression models based on
the use of experimental design have been widely employed for modeling the behavior of different
technological variables, which in the manufacturing field, are usually related to surface finish, MRR, or
tool wear, among many others. If there is enough data available, it would be considered interesting to
validate the models with other independent experimental data to determine the validity of the fits.
For this reason, the present study compares the results obtained when only one set of the DOE is
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used to train the model and the rest of the DOE is used to validate the obtained models, following
the methodology that is employed in the Deep Learning Toolbox™ of MatlabTM2019b [64] to train,
test, and validate ANNs and in order to compare the obtained results with both regression and soft
computing tools (ANN and ANFIS).

Therefore, First, the data is randomly divided using the MatlabTM2019b functions into three sets
comprising 70%, 15%, and 15% of data (train, test, and validate, respectively). With the train data,
a model will be fitted first, and then the thus obtained models will be validated using the validation
data and later on they will be tested with independent test data [64]. RSM as well as ANN, FIS,
and ANFIS will be employed to analyze the advantages and disadvantages of each. Moreover, a
method for obtaining and ANFIS from the DOE is proposed.

It should be mentioned that if the RSM model can provide a highly adjusted R-squared value,
it could be considered in advance that it is not necessary to use soft computing techniques since they
require higher computational time than the previous ones and, in general, the models thus obtained
are more complex. However, if more precision is required or the response surface of a certain variable
has a high curvature in the design range or if it is very irregular, this will make conventional regression
models ineffective and lead to low values of the coefficient of determination to be obtained. Therefore,
the use of some other types of techniques should be considered, such as those based on soft computing.

In manufacturing processes, is it quite common for certain technological variables to have a
more regular response behavior and, therefore, they can be modeled by methodologies such as RSM,
and, on the other hand, there also exist some other technological variables that cannot be adequately
modeled using conventional regression techniques. For example, in Reference [61] it is shown that the
arithmetic average roughness (Ra) can be approximated by a polynomial regression using RSM, in an
EDM process. However, due to the variability of the data, the wear that the electrode (EW) undergoes
in this EDM process cannot be adequately modeled by using RSM, and for this reason, in order to
adequately model this technological variable, it would be necessary to employ some other technique,
for example based on using an ANFIS or an ANN. In this way, and using an ANFIS, Figure 1a,b have
been generated in order to show the surface responses that would be obtained when modeling Ra (µm)
and EW (%), in the case of positive polarity of the electrode, using data taken from Ref. [61]. As can
be seen from the results shown in Ref. [61], in which only RSM-based polynomial regression is used,
the R-squared value is greater than 90% in the case of average roughness (Ra), but this coefficient is
much lower in the case of EW and, hence, although Ra could be modeled by using RSM, this is not the
case for the EW.
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Figure 1. (a) Surface roughness average, Ra (µm), as a function of (Intensity, Pulse Time and duty cycle)
(type 1 function) and (b) Electrode Wear, EW (%), as a function of (Intensity, Pulse Time and duty cycle)
(type 2 function). Surface responses have been generated using an ANFIS from experimental data
taken of Ref. [61].

In this present study the function defined by Equation (1) will be used where their constants(
a j
)

will be varied to have two types of response variables. This function has been chosen since it is

possible to vary the values of the constant
(
a j
)

to have a function that shows a behavior that could be
modeled properly by conventional regression techniques and can also be made to present a behavior
with greater curvature, which is difficult to model by using the RSM methodology. The first type of
response variable would represent the behavior of a response variable that has low curvature within
the study range, which is to be classified as type 1 function ( f1), i.e., functions in which if the RSM is
used in a set of data obtained from these functions, the adjusted coefficient of determination of the
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RSM regression models would provide values greater than 90%. Likewise, the second type of response
variable would represent a behavior that either has a high curvature or where the experimental data
are irregular in the design range considered, which may be classified as type 2 function ( f2).

As an example, from the determination coefficient of the regression shown in Ref. [61], Ra (µm)
surface response could be classified, from the previously mentioned, as type 1 function and EW (%)
surface response could be classified as type 2 function. A DOE with three factors and four levels
for each factor (34) will be used. This arrangement of the design is similar to that used in Ref. [61].
However, any other type of DOE could be used. From this, the levels of the variables shown in Table 1
are considered, where the levels of variation of the variables have been normalized to fall into the
range [−1, 1] and the value obtained in the response variable will be left without normalizing it in
order to directly obtain its value, without the need for a subsequent transformation. If necessary,
a transformation of the dependent variable could also be performed so that it falls within a certain
interval. Therefore, the −1 value corresponds to the minimum level of an input variable and the +1
value corresponds to the maximum value of this variable. It would be feasible to have any other range
and to make a transformation to bring it to this range or to analyze it directly in the starting range.

f = a0 +
sin(a1x1) − sin(a2x2) + sin(a3x3)

1 + exp
(
(a1x1)

2
− (a2x2)

2 + (a3x3)
2
) (1)

Table 1. Design factors and levels.

Design Factors Levels and Values

x1 −1 −1/3 1/3 1
x2 −1 −1/3 1/3 1
x3 −1 −1/3 1/3 1

The responses surfaces of the function considered in this present study are shown in Figure 2.
As can be observed, Figure 2a presents a behavior that, in advance, could be considered to be adequately
modeled by the RSM since it does not exhibit a great degree of curvature within the considered interval.
On the contrary, Figure 2b shows another function with a response surface in the considered interval
which exhibits much greater curvature than the former.

It may be underlined that either an actual study case or any other function could have been
used to carry out the first part of this study. As can be observed in Figures 1 and 2, the response
variables have similar shapes, for both study cases, i.e., low curvature in one response variable and
high curvature in the other. Since a DOE has been used in accordance with that shown in Table 1,
therefore 43 experiments will be available. The values shown in Tables 2 and 3 that have been generated
from the previously mentioned functions, which are shown in Figure 2, will be used in this study.
To be consistent with the uncertainty of the measurements that the response variables may have, the
values of the functions are considered to have been rounded to two decimal places.
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Table 2. Values obtained from type 1 function ( f1), where a0 = 1, a1 = a2 = a3 = 0.75.

(Tr = Train, Ts = Test, Vd = Validate)

Exp. f1 Exp. f1 Exp. f1 Exp. f1

1, Tr 0.75 17, Ts 0.88 33, Tr 1.12 49, Vd 1.25

2, Vd 0.88 18, Tr 1.11 34, Tr 1.41 50, Vd 1.54

3, Tr 1.12 19, Tr 1.41 35, Vd 1.71 51, Ts 1.78

4, Tr 1.25 20, Vd 1.54 36, Tr 1.78 52, Vd 1.74

5, Tr 0.71 21, Ts 0.75 37, Tr 0.93 53, Tr 1.06

6, Vd 0.75 22, Ts 0.88 38, Tr 1.12 54, Ts 1.25

7, Tr 0.93 23, Tr 1.12 39, Tr 1.36 55, Tr 1.43

8, Tr 1.06 24, Tr 1.25 40, Tr 1.43 56, Vd 1.41

9, Tr 0.59 25, Vd 0.57 41, Tr 0.75 57, Tr 0.94

10, Tr 0.57 26, Tr 0.64 42, Tr 0.88 58, Tr 1.07

11, Tr 0.75 27, Tr 0.88 43, Tr 1.12 59, Tr 1.25

12, Tr 0.94 28, Tr 1.07 44, Tr 1.25 60, Tr 1.29

13, Tr 0.26 29, Ts 0.22 45, Tr 0.46 61, Tr 0.75

14, Tr 0.22 30, Tr 0.29 46, Tr 0.59 62, Ts 0.88

15, Tr 0.46 31, Tr 0.59 47, Ts 0.89 63, Tr 1.12

16,
Ts 0.75 32, Ts 0.88 48, Vd 1.12 64, Tr 1.25

Table 3. Values obtained from type 2 function ( f2), where a0 = 1, a1 = 1, a2 = 1.5, a3 = 2.

(Tr = Train, Ts = Test, Vd = Validate)

Exp. f2 Exp. f2 Exp. f2 Exp. f2

1, Tr 0.95 17, Ts 0.97 33, Tr 1.06 49, Vd 1.06

2, Vd 0.68 18, Tr 1.04 34, Tr 1.60 50, Vd 1.84

3, Tr 1.54 19, Tr 2.09 35, Vd 2.64 51, Ts 2.70

4, Tr 1.06 20, Vd 1.21 36, Tr 1.30 52, Vd 1.17

5, Tr 0.99 21, Ts 0.98 37, Tr 1.00 53, Tr 1.00

6, Vd 0.77 22, Ts 0.80 38, Tr 1.08 54, Ts 1.16

7, Tr 1.06 23, Tr 1.33 39, Tr 1.60 55, Tr 1.45

8, Tr 1.00 24, Tr 1.02 40, Tr 1.04 56, Vd 1.02

9, Tr 0.98 25, Vd 0.96 41, Tr 0.98 57, Tr 1.00

10, Tr 0.55 26, Tr 0.40 42, Tr 0.67 58, Tr 0.94

11, Tr 0.84 27, Tr 0.92 43, Tr 1.20 59, Tr 1.23

12, Tr 1.00 28, Tr 1.00 44, Tr 1.02 60, Tr 1.01

13, Tr 0.83 29, Ts 0.70 45, Tr 0.79 61, Tr 0.94

14, Tr −0.70 30, Tr −0.64 46, Tr −0.09 62, Ts 0.46

15, Tr 0.16 31, Tr 0.40 47, Ts 0.96 63, Tr 1.32

16,
Ts 0.94 32, Ts 0.94 48, Vd 1.03 64, Tr 1.05
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As previously mentioned, in order to carry out the comparative study between the different
models, data shown in Tables 2 and 3 are randomly divided into three sets (train, test, validate)
according to (70%, 15% and 15%). Thus, the experiments used to test and to validate the models are
those corresponding to the positions {16, 17, 21, 22, 29, 32, 47, 51, 54, 62} and {2, 6, 20, 25, 35, 48, 49, 50,
52, 56}, respectively, the rest of the remaining experiments will be used to train the models. It should
be noted that it would be possible to use all the points to train the models. However, it is considered
that either some additional experiments or some points of the DOE should be used to validate the
models, and hence this procedure has been followed in this study.

Once the methodology to be followed in this study as well as the classification proposed for
the response variables (Types 1 and 2) has been shown, the results obtained by using the different
methodologies for data modeling will be analyzed. Next, the validity of the results obtained with the
analytical function will be compared with those obtained when a real case is studied. In addition,
a new method for obtaining an ANFIS based on the train data and the validation data of the DOE
will be shown in Section 4.4 and the obtained results will be compared. As previously mentioned,
this proposed method is based on finding the shape of the initial membership functions in order to
develop a FIS which will be then tuned with an ANFIS and in this way a better fit in the validation data
as well as in the train data will be obtained. Figure 3 shows a flowchart using a Nassi–Shneiderman
diagram [65] in order to introduce the algorithm of the proposed method, which will be analyzed in
Section 4.4 of this present study.
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4. Results and Discussion

In this section, the results obtained when modeling the function shown in Equation (1) are
shown which, as indicated, can present a behavior as shown in Figure 2a that, in advance, could be
expected that it will be adequately modeled by the RSM since it does not exhibit a great degree of
curvature within the considered interval (type 1 function) and, on the contrary, it can be made to
exhibit much greater curvature in the considered interval, as shown in Figure 2b, and then it is likely
that conventional regression techniques would not be adequate (type 2 function). Hence, some other
types of technologies for data analysis should be used.

4.1. Response Surface Model (RSM)

Equation (2) shows the RSM to be used to predict the behavior of type 1 ( f1) and type 2 ( f2)
functions, which are shown in Figure 2a,b, by using data shown in Tables 2 and 3, respectively.

Likewise, as previously mentioned, Table 1 shows the levels of the independent variables analyzed
in this study, where they are varied following a full factorial DOE.

RSM model :
y ∼ (b0 + b1x1 + b2x2 + b3x3 + b4x1x2 + b5x1x3 +

b6x2x3 + b7x2
1 + b8x2

2 + b9x2
3)

(2)

Tables 4 and 5 show the results obtained by performing a regression fit using the train data
included in Tables 2 and 3 and by using the model shown in Equation (2). As can be observed,
the regression coefficient of determination has a value of 0.961 and an adjusted R-squared value of
0.951, for the case of f1 function, which are high enough to be able to draw some conclusions from the
regression models. However, in the case of f2 function, these values are much lower (0.577 and 0.465),
respectively. For this reason, the model shown in Equation (2) is not as good as the first one for making
predictions about the response variable. Therefore, it is necessary to use some other types of models
that allow a better approximation to the actual behavior of the said variable to be obtained.

Table 4. Estimated coefficients for f1 using the train data and the RSM model.

b0 b1 b2 b3 b4
0.9949 0.2684 −0.3436 0.2469 0.0002

b5 b6 b7 b8 b9
0.0355 −0.0271 0.0245 −0.0316 0.0199

Number of observations: 44, Error degrees of freedom: 34. Root Mean Squared Error: 0.078. R-squared: 0.961,
Adjusted R-squared: 0.951.

Table 5. Estimated coefficients for f2 using the train data and the RSM model.

b0 b1 b2 b3 b4
0.9831 0.2065 −0.4628 0.0979 0.1816

b5 b6 b7 b8 b9
0.0723 −0.0753 0.1000 −0.1776 0.0226

Number of observations: 44, Error degrees of freedom: 34. Root Mean Squared Error: 0.374. R-squared: 0.577,
Adjusted R-squared: 0.465.

In this present study, instead of using the regression model obtained from the adjusted − R2,
the complete regression model will be used, which both considers all the effects of the variables in the
models and has a higher R2 value, since the fact of using the model adjusted to the degrees of freedom
could eliminate some of the independent variables.

Figure 4 shows the results obtained from the model fitted with the train data. In addition,
the results of the validation metrics are shown in Figure 4. From these results, it is possible to affirm
that this model could be applied to analyze the behavior of the response surface shown in Figure 2a.
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However, although this regression model could be used to draw some conclusions about the response
variable, it presents some limitations because the coefficient of determination when using test data
is slightly lower than that obtained with the train data. This can also be observed if the main effects
plots obtained with the fitted model and those obtained with the actual function are compared, which
are shown in Figures 4 and 5, respectively. Figures 4 and 6 show the response surfaces obtained with
the RSM model when fitting the data from Tables 2 and 3, for types 1 and 2 functions, respectively.
The validation metrics employed for measuring the goodness of the fit are mean squared error (MSE),
RMSE and mean absolute error (MAE). These validation metrics are defined by Equation (3), where y j
are the actual values and ŷ j the estimated values.

MSE =
1
n

n∑
j=1

(
y j − ŷ j

)2
, RMSE =

√

MSE and MAE =
1
n

n∑
j=1

∣∣∣y j − ŷ j
∣∣∣ (3)
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Figure 4. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the RSM model for the case of type 1 function ( f1).
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Figure 5. Actual main effects plot for f1 and f2.
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Figure 6. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the RSM model for the case of type 2 function ( f2).

On the other hand, Figure 6 shows the regression results for f2 function. As can be observed,
the regression model cannot adequately predict the behavior of f2 function. As mentioned earlier,
if the evaluation metrics used to assess the goodness of fit (R2, RMSE, MBE, etc) provide appropriate
values, the RSM model could be used to analyze the behavior of the response variables versus the
inputs as well as analyzing the interaction factors. However, this is not the case for f2 function and
therefore, in this case, when using methodologies such as RSM, it would not be possible to trust the
model obtained. Therefore, it is necessary to use some other types of methods that allow a better
approximation to be obtained from the real behavior of the dependent variable.

As previously mentioned, from the validation metrics shown in Figures 4 and 6 it can be affirmed
that the RSM model is suitable for modeling a function of type 1 ( f1) and, therefore, it can be used to
analyze the influence of the input variables on the response variables despite the fact that the values
obtained in the validation and in the test are lower than those of the training. For example, as can be
seen in Figure 4, increasing the values of variables x1 and x3 increases f1 function and increasing x2

leads to a decrease in the function. If the values obtained with the regression are compared with those
that would be obtained with the actual curve, which is shown in Figure 5, it is shown that in this case
the regression provides adequate values and, therefore, it could be used to achieve an approximation to
the actual behavior of the function. On the contrary, for f2 function large discrepancies can be observed
in the main effect plots, when comparing the actual results with those obtained from RSM, which are
shown in Figures 5 and 6, respectively. As can be seen in Figure 6, f2 function cannot be properly
modeled by a regression using the RSM. Therefore, soft computing techniques will be used to avoid
the above-mentioned drawbacks of the RSM models.

4.2. Artificial Neural Network (ANN) Modeling

As shown in the previous section, the RSM model could be used for modeling the behavior of
f1 function. However, in the case of f2 function, RSM is not able to correctly predict its behavior.
Therefore, other types of soft computing-based tools will be used for its modeling. First, a neural
network will be trained, using the train data shown in Tables 2 and 3. The neural network to be used is
shown in Figure 7, where the inputs correspond to the DOE factors [x1, x2, x3]. In this present study
the dimension of the input vector will be [3× 44] since the neural network is to be trained with the 44
points indicated in Tables 2 and 3, for f1 and f2, respectively. The number of neurons in the hidden
layer will be varied, starting from n = 1, as shown in Figure 7 and the transfer function to be used
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is a hyperbolic tangent sigmoid transfer function [64] which is shown in Equation (4). In addition,
a Levenberg–Marquardt back-propagation algorithm will be used, using the functions of the Deep
Learning Toolbox™ of MatlabTM2019b [64]. From the above, a neural network will be used for f1 and
another for f2, since due to the variability that exists between the data generated from types 1 and 2
functions it is likely to have a different structure. To obtain the model fitted with the ANN, an iterative
process will be carried out for each function that will consist of calculating m = 50 neural networks
with each ANN structure and, among those ANNs, the one which obtain, first, the lowest MSE in the
validation, and secondly the best results in the other validation metrics, will be chosen.

tan sig(x) =
2

1 + e−2x − 1 (4)
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Figure 7. ANN with one hidden layer made of n neurons.

Figure 8 shows the results of the validation metrics shown in Equation (3), obtained using the
ANN structure shown in Figure 7 with n = 1 neuron in the hidden layer. This ANN was obtained in
the 28th iteration. As can be observed, these values are better than those obtained with the regression
model, in the case of the f1 function, which has been shown in Figure 4.

Mathematics 2020, 8, x FOR PEER REVIEW 14 of 39 

 

Figure 8 shows the results of the validation metrics shown in Equation (3), obtained using the 
ANN structure shown in Figure 7 with 𝑛 =  1 neuron in the hidden layer. This ANN was obtained 
in the 28th iteration. As can be observed, these values are better than those obtained with the 
regression model, in the case of the 𝑓ଵ function, which has been shown in Figure 4. 

𝐈𝐭𝐞𝐫𝐚𝐭𝐢𝐨𝐧 𝑴𝑺𝑬𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏 𝑹𝑻𝒓𝒂𝒊𝒏𝟐  𝑹𝑻𝒆𝒔𝒕𝟐  𝑹𝑽𝒂𝒍𝒊𝒅𝒂𝒕𝒊𝒐𝒏𝟐  𝑹𝑨𝒍𝒍 𝒅𝒂𝒕𝒂𝟐  

2 0.0117 0.9527 0.9440 0.9233 0.9493 
28 0.0115 0.9522 0.9469 0.9248 0.9496 
35 0.0117 0.9528 0.9442 0.9232 0.9494 

 

 

 

ANN 𝑹𝟐 𝑹𝑴𝑺𝑬 𝑴𝑺𝑬 𝑴𝑨𝑬 

Train 0.9522 0.0765 0.0059 0.0583 
Test 0.9469 0.0953 0.0091 0.0794 

Validation 0.9248 0.1073 0.0115 0.0870 
All data 0.9496 0.0851 0.0072 0.0661 

 

Figure 8. Response surfaces obtained, main effects plot and results of the validation metrics obtained 
with the ANN model for the case of type 1 function (𝑓ଵ) (𝑛 = 1 neurons). 

Equation (5) shows the results obtained by modeling the 𝑓ଵ function using an ANN with one 
neuron in the hidden layer. In this case, the obtained expression is somewhat simpler than that 
obtained with the RSM and provides slightly better results. Therefore, it could be used to model the 
response of the 𝑓ଵ  function. If more precision is required, it would be necessary to increase the 
number of neurons in the hidden layer, but this would lead to more complex expressions to be 
obtained. 𝑓ଵ = 0.9789 − 0.9147 ൬ 21 + 𝑒൫ିଶ(ି଴.ଷଶ଻ଶ௫భା଴.ଷଽଷ଴௫మି଴.ଷ଴ହଷ௫యି଴.଴ଶ଼ସ)൯ − 1൰ (5) 

As previously mentioned, if more precision is required, an additional neuron could be added to 
the hidden layer. Thus, for example, if the hidden layer is made up of two neurons, the results shown 
in Figure 9 are obtained, where it is possible to observe that the ANN with two neurons, obtained in 
the 6th iteration, allows obtaining improved results in the validation metrics. 

Moreover, it is possible to increase the number of neurons in the hidden layer. However, the 
obtained model will be more complex. Figure 10 shows results obtained when using the ANN, found 
in the 10th iteration, which has eight neurons in the hidden layer. 

If the 𝑅𝑀𝑆𝐸 results are compared between the RSM and ANN models, which are shown in 
Figures 4 and 9 (𝑛 = 2 neurons), i.e., (RSM୴ୟ୪୳ୣୱ − ANN୴ୟ୪୳ୣୱ)/RSM୴ୟ୪୳ୣୱ, it is observed that ANN୴ୟ୪୳ୣୱ 
are lower in all cases (−27.22%, −35.66%, −60.99%, −36.33%). A similar result is observed with the MAE 
(−27.99%, −45.25%, −58.67%, −39.57%). Moreover, Figure 11 shows that the coefficients of 

Figure 8. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the ANN model for the case of type 1 function ( f1) (n = 1 neurons).



Mathematics 2020, 8, 1390 15 of 39

Equation (5) shows the results obtained by modeling the f1 function using an ANN with one
neuron in the hidden layer. In this case, the obtained expression is somewhat simpler than that obtained
with the RSM and provides slightly better results. Therefore, it could be used to model the response of
the f1 function. If more precision is required, it would be necessary to increase the number of neurons
in the hidden layer, but this would lead to more complex expressions to be obtained.

f1 = 0.9789− 0.9147
(

2
1 + e(−2(−0.3272x1+0.3930x2−0.3053x3−0.0284))

− 1
)

(5)

As previously mentioned, if more precision is required, an additional neuron could be added to
the hidden layer. Thus, for example, if the hidden layer is made up of two neurons, the results shown
in Figure 9 are obtained, where it is possible to observe that the ANN with two neurons, obtained in
the 6th iteration, allows obtaining improved results in the validation metrics.
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with the ANN model for the case of type 1 function ( f1) (n = 2 neurons).

Moreover, it is possible to increase the number of neurons in the hidden layer. However,
the obtained model will be more complex. Figure 10 shows results obtained when using the ANN,
found in the 10th iteration, which has eight neurons in the hidden layer.

If the RMSE results are compared between the RSM and ANN models, which are shown in
Figures 4 and 9 (n = 2 neurons), i.e., (RSMvalues −ANNvalues)/RSMvalues, it is observed that ANNvalues

are lower in all cases (−27.22%, −35.66%, −60.99%, −36.33%). A similar result is observed with the
MAE (−27.99%, −45.25%, −58.67%, −39.57%). Moreover, Figure 11 shows that the coefficients of
determination of the regression are higher in all cases (0.98, 0.99, 0.98, 0.98). Regarding the ANN with
(n = 1 neurons).
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Figure 10. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the ANN model for the case of type 1 function ( f1) (n = 8 neurons).
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Figure 11. ANN (n = 2 neurons) results for f1 (a) Train data; (b) Validation data; (c) Test data; (d)
All data.
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Figure 8 shows that the validation metrics obtained with this model are somewhat higher with
the train data, but they are lower in the validation, test, and with all data (11.35%, −2.06%, −26.96%,
−5.44%). A similar result is obtained with MAE (8.77%, −11.28%, −24.94%, −4.20%). In any case, since
the RSM in this case provides values close to those given by the neural network, in this particular case
the RSM model could be used since the values of the coefficient of determination of the regression
for the f1 function are (0.96, 0.93, 0.87, 0.94) in the analyzed cases (train, test, validate, and all data).
However, the model with one neuron provides a somewhat improved model (0.95, 0.94, 0.92, 0.95)
compared to that obtained with the RSM.

In the case of f2 function a Levenberg–Marquardt back-propagation algorithm is also used in
order to update weights and biases of the ANN by employing the Deep Learning Toolbox™ of
MatlabTM2019b [64]. Figure 12 shows results obtained with one neuron in the hidden layer.
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Figure 12. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the ANN model for the case of type 2 function ( f2) (n = 1 neurons).

As Figure 12 shows, regression results do not improve with a neuron. Therefore, the number of
neurons in the hidden layer will be increased until better results are obtained. For example, with two
neurons in the hidden layer, an increase in the coefficient R2 as well as a decrease in both RMSE and
MAE are attained. Figure 13 shows that the validation metrics significantly improve, compared to
those obtained with one neuron in the hidden layer when using the ANN obtained in the 6th iteration.
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Figure 13. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the ANN model for the regression in the case of type 2 function ( f2) (n = 2 neurons).

Figure 14 shows that the R-squared result is approximately 1 in the train data with the neural
network, obtained in the 48th iteration, which has 8 neurons in the hidden layer. In addition, the results
of the validation metrics are also improved for both test and validation data. However, as can
be observed by comparing Figures 2 and 14, this neural network is neither able to reproduce the
actual shape of the f2 function. Furthermore, a two-layer ANN could also be used for modeling f2,
as Figure 15 shows.

Although the transfer functions of this ANN are not required to be the same, those shown in
Equation (4) will be used. In addition, a Levenberg–Marquardt back-propagation algorithm will be
used by employing the Deep Learning Toolbox™ of MatlabTM2019b [64].

As Figure 16 shows, by using two hidden layers a significant improvement is attained in the
validation metrics shown by Equation (3). Figure 17 shows that the ANN3−4−2−1, which is obtained
after the 42nd iteration, can provide higher values of the coefficient of determination. Although the
complexity of the model is higher than that of RSM, the RSM model does not provide adequate values
for modeling the f2 function.

On the other hand, the neural network, despite providing values closer to the behavior of f2,
requires many parameters for this. In any case, the neural network can model the behavior of the f2
function much better than the RSM and can provide much better values in the validation metrics than
those obtained with the regression model. However, this ANN is neither able to fully reproduce the
actual shape of the f2 function, as can be observed when comparing the response surfaces obtained in
Figures 2 and 16.
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Figure 14. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the ANN model for the case of type 2 function ( f2) (n = 8 neurons).
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Figure 15. ANN with two hidden layers for modeling f2.
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Figure 16. Response surfaces obtained, main effects plot and results of the validation metrics obtained
with the ANN3−4−2−1 model for the regression in the case of type 2 function ( f2 ).
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Figure 17. ANN3−4−2−1 results for f2. (a) Train data; (b) Validation data; (c) Test data, (d) All data.

4.3. Adaptive Neuro-Fuzzy Inference System (ANFIS) Modeling

In this present study, two strategies are shown to model the behavior of types 1 and 2 functions
using an ANFIS. First, a modeling based on the MatlabTM2019b functions is used, which is shown in
this current Section 4.3, and secondly, in Section 4.4, a new methodology is proposed. Figure 18 shows
the two strategies that will be considered.
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Figure 18. Strategies for obtaining an ANFIS for modeling f1 and f2. (a) Using MatlabTM functions,
(b) Proposed methodology.

With regard to the first strategy, the “genfis” function of MatlabTM2019b [66] will be used to obtain
a zero-order Sugeno FIS and then an ANFIS will be used to tune the parameters of the membership
functions. Secondly, another strategy is proposed in this study which consists of using an iterative
process to obtain the FIS from the DOE and then using an ANFIS for tuning the constants of the
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membership functions. As will be shown in Section 4.4, with this proposed methodology, it is possible
to obtain improved results in both the validation metrics and in the modeling of the actual shape of
the function.

As was previously mentioned, a zero-order Sugeno FIS is employed by using the Fuzzy Logic
Toolbox™ of MatlabTM2019b [66], because the de-fuzzification process for a Sugeno system is
computationally more efficient compared to that of a Mamdani system [66–68]. However, it should be
mentioned that Mamdani systems are more intuitive and the rules are easier to understand, making
them more suitable for expert systems, developed from human knowledge [66–68]. Both types of FIS
could have been used.

Figure 19 shows two membership function that could be used for fuzzification of the inputs.
The membership functions to be used in this study are of the Gaussian type. However, some other
types of membership functions such as triangular or bell-shape could have been used.
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Figure 19. Degree of membership (a) Gaussian (b) Bell-shape.

As previously mentioned, the first strategy is to use the Matlab™2019b “genfis” function [66] to
obtain a zero-order Sugeno FIS from the input data. It should be mentioned that it would have been
possible to start from the inputs and the outputs and to use some algorithm of the type pattern search
or genetic algorithm in order to find a set of rules that model the behavior of the response variables.
However, this has not been done in this present study. Furthermore, the membership functions for
fuzzification of the independent variables are Gaussian as shown in Equation (6).

µx = e
−(x−c)2

2σ2 (6)

The aggregation method is the sum of fuzzy sets, and the aggregated output is obtained from
the weighted average of all output rules. For the ith rule, the implication method is obtained from
Equation (7), where product implication method is used in Sugeno systems [66] and Equation (8)
shows the final output of the Sugeno system.

λ j(x) = AndMethod
{
µ j1(x1), . . . ,µ jn(xn)

}
(7)

{
f1, f2

}
=

∑Number o f rules
j=1 λ j ∗ z j∑Number o f rules

j=1 λ j

(8)

The created FIS will have a set of “l” rules of the form:

If (x1 is x1,i) and
(
x2 is x2, j

)
and

(
x3 is x3,k

)
then ([ f1 | f2 ] is outputl)

From the above, a zero-order Sugeno FIS [2,3,66] is selected with Gaussian membership functions.
Figure 20 shows the Gaussian membership functions for the zero-order Sugeno FIS employed for
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modeling f1, before and after using the ANFIS. It should be mentioned that a greater number of
membership functions could have been used for modeling f1, but two membership functions for
each of the variables was enough. Therefore, 8 rules are generated for the zero-order Sugeno FIS.
To train the fuzzy system an ANFIS employing the Fuzzy Logic Toolbox of MatlabTM along with a
back-propagation algorithm has been used [66]. This training process adjusts the membership function
parameters of a FIS such that the system models the input/output data.
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Figure 20. Membership functions for modeling type 1 function ( f1) (a) before the ANFIS and (b) after
the ANFIS.

Table 6 shows the values of the Gaussian membership functions, where σ and c are the parameters
of the Gaussian function shown by Equation (6) and Table 7 shows the rules obtained after the ANFIS.
Figure 21 shows the results obtained by using a zero-order Sugeno FIS for modeling f1 using two
Gaussian membership functions for each of the inputs after 100 epochs.

Table 6. Values obtained for the membership of function type 1 ( f1).

Before After

σ c σ c

x11 0.84932 −1 0.98975 −0.88958

x12 0.84932 1 0.94106 1.0059

x21 0.84932 −1 1.4900 −0.1477

x22 0.84932 1 1.6019 0.6995

x31 0.84932 −1 0.90735 −0.94945

x32 0.84932 1 0.84611 1.0282
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Table 7. Values obtained for function type 1 ( f1).

1. (x1 == x11) & (x2 == x21) & (x3 == x31) → ( f1 = 2.3719)
2. (x1 == x11) & (x2 == x21) & (x3 == x32) → ( f1 = 3.03)
3. (x1 == x11) & (x2 == x22) & (x3 == x31) → ( f1 = −1.5969)
4. (x1 == x11) & (x2 == x22) & (x3 == x32) → ( f1 = −1.3203)
5. (x1 == x12) & (x2 == x21) & (x3 == x31) → ( f1 = 2.797)
6. (x1 == x12) & (x2 == x21) & (x3 == x32) → ( f1 = 3.6319)
7. (x1 == x12) & (x2 == x22) & (x3 == x31) → ( f1 = −0.83758)
8. (x1 == x12) & (x2 == x22) & (x3 == x32) → ( f1 = −0.38687)
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Figure 21. Response surface obtained with the zero-order Sugeno FIS employed for modeling 𝑓ଵ 
using two Gaussian membership functions for the inputs along with an ANFIS (100 epochs, 8 fuzzy 
rules). 
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Figure 21. Response surface obtained with the zero-order Sugeno FIS employed for modeling f1 using
two Gaussian membership functions for the inputs along with an ANFIS (100 epochs, 8 fuzzy rules).

Regarding f2 function, first a zero-order Sugeno was generated. From this, the membership
functions before and after using an ANFIS are shown in Figure 22. Figure 23 shows the results obtained
by modeling the function using the membership functions shown in Figure 22a and then using an
ANFIS. In this case, it is shown in Figure 23 that after 500 epochs it has not been possible to adequately
model the function f2.
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Figure 22. Membership functions for modeling type 2 function ( f2) (a) before the ANFIS and (b) after
the ANFIS.
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Figure 23. Response surface obtained with the zero-order Sugeno FIS employed for modeling f2 using
two Gaussian membership functions for the inputs along with an ANFIS (500 epochs, 8 fuzzy rules).

If the membership functions are increased to three, a satisfactory result is not obtained either, as
Figure 24 shows.
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Figure 24. Response surface obtained with the zero-order Sugeno FIS employed for modeling f2 using
three Gaussian membership functions for the inputs along with an ANFIS (100 epochs, 27 fuzzy rules).

A similar behavior is obtained using four membership functions. Although the values of the
validation metrics obtained with the train data are adequate, this is not the case with the validation and
test data, as Figure 25 shows. Therefore, a new procedure for obtaining an ANFIS is to be proposed in
the next section that avoids these drawbacks. As will be shown in the next section, the accuracy of the
thus obtained model is higher than that obtained with the previous method.
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Figure 25. Response surface obtained with the zero-order Sugeno FIS employed for modeling f2 using
four Gaussian membership functions for the inputs along with an ANFIS (2 epochs, 64 fuzzy rules).

4.4. Proposal of a Method for Obtaining an Adaptive Neuro-Fuzzy Inference System

One of the advantages that FIS have over other computing tools is that it is possible to take
advantage of the user experience to generate them. In this section, the FIS is generated directly from
the train data of the DOE. Therefore, from data shown in Tables 2 and 3, it will be possible to directly
obtain the set of rules that make up a zero-order Sugeno FIS. Then an iterative process will be followed,
and the FIS parameters will be tuned using an ANFIS, according to the procedure shown below. Once
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the adjusted models have been developed, the results obtained will be analyzed in a similar way to
that used for the case of RSM and ANN.

The proposed methodology begins by selecting membership functions of the Gaussian type,
such as those shown in Equation (9). The standard deviation values of the membership functions
are obtained from Equation (10) and the corresponding levels of the DOE will be used for the mean
values of the membership functions, as shown in Equation (11). Since the DOE has four levels for the
input variables, as shown in Table 1, four Gaussian functions will be employed, as shown in Equations
(9)–(11). From this, a zero-order Sugeno FIS will be developed from the DOE and then it will be tuned
by using an iterative process and an ANFIS, i.e.:

µi, j = e

−(x−ci, j)
2

2σ2
i, j (9)

σi, j =
k j−1

FIS,i ∗ (xmax,i − xmin,i)

NFIS,i
(10)

ci, j = Level
(
xi, j

)
(11)

where the levels of the variables ci, j = Level
(
xi, j

)
are obtained from the DOE shown in Table 1, where

j = 1..n = number of membership functions, xmax = max(xi), xmin = min(xi), ki, j and NFIS,i can be
increased with respect to the previous one in order to introduce an imbalance in the form of the
membership functions, if necessary, or they can be the same. Based on the above, different initial FIS
can be obtained by varying the values of kFIS,i and NFIS,i. As was previously mentioned, a zero-order
Sugeno FIS will be used in this study. The proposed procedure is based on adjusting the parameters of
the membership functions using an iterative process combined with an ANFIS.

To summarize the proposed methodology, the algorithm that has been programmed to obtain the
results shown in this current section is as follows:

(1) Select the range of variation of kFIS,i and NFIS,i, i.e., kmin,i ≤ kFIS,i ≤ kmax,i and Nmin,i ≤ NFIS,i ≤ Nmax,i

(2) Select the increment for variation of kFIS,i and NFIS,i

(3) Select the maximum number of Epochs as well as the initial value of α and β, where α is the
desired level for R2

Train and β is the desired level for R2
Validation.

(4) Determine the strategy to calculate the values of the membership functions constants.

(4.1) A full iteration can be followed to look for kFIS,i and NFIS,i.
To reduce the running time, two strategies may be considered (either 4.2. or 4.3).
(4.2) It is assumed that kFIS,i = kFIS and NFIS,i = NFIS (That is a double iteration is obtained).
(4.3) Using a constant kFIS for all the membership functions and then iterate to obtain NFIS,i (That is:

assume a value for kFIS. For example, kFIS = 1 and then iterate to obtain NFIS,i) (That is a triple iteration
is obtained).

Then, the algorithm continues as follows:
(4.1a) Iterate to obtain kFIS,i and NFIS,i. (As shown in Algorithms 1, if exit n inputs, then n iterations

would be obtained).
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Algorithms 1. Iterate to obtain kFIS,i and NFIS,i.(Case of n inputs)

f or kFIS,1 = kFIS,1min : IncrementkFIS,1 : kFIS,1max

. . .

f or kFIS,n = kFIS,nmin : IncrementkFIS,n : kFIS,nmax

f or NFIS,1 = NFIS,1min : IncrementNFIS,1 : NFIS,1max

. . .

f or NFIS,n = NFIS,nmin : IncrementNFIS,n : NFIS,nmax

Obtain a zero-order Sugeno FIS, FISinitial = f unction o f
(
kFIS,i, NFIS,i, datatrain

)
Tune FISinitial using an ANFIS, that is:
For Epochs = 1: IncrementEpochs: Epochsmax

FISout = ANFIS(FISinitial, datatrain, Epochs)
Evaluate MSEOutValidation using FISOut and dataValidation

end
Find min{ MSEOutValidation

}
and EpochsminMSE to obtain min{ MSEOutValidation

}
FISout = ANFIS

(
FISinitial, datatrain, EpochsminMSE

)
Evaluate R2

Train using FISOut and dataTrain
Evaluate R2

Validation using FISOut and dataValidation

I f
(
(R2

Train ≥ α)&&
(
R2

Validation ≥ β
))

Obtained FIS = FISout

Store calculated FIS, min{ MSEOutValidation

}
, EpochsminMSE , kFIS,i and NFIS,i

Exit of the iteration loop
Else

Store min{ MSEOutValidation

}
, EpochsminMSE , kFIS,i and NFIS,i

end
end
. . .

end
end
. . .

end

(4.1b) Iterate to obtain kFIS,i and NFIS,i. (The present study considers three inputs variables. As
shown in Algorithms 2, if a full iteration is carried out, then six iterations would be obtained).

Algorithms 2. Iterate to obtain kFIS,i and NFIS,i.(Case of 3 inputs)

f or kFIS,1 = kFIS,1min : IncrementkFIS,1 : kFIS,1max

f or kFIS,2 = kFIS,2min : IncrementkFIS,2 : kFIS,2max

f or kFIS,3 = kFIS,3min : IncrementkFIS,3 : kFIS,3max

f or NFIS,1 = NFIS,1min : IncrementNFIS,1 : NFIS,1max

f or NFIS,2 = NFIS,2min : IncrementNFIS,2 : NFIS,2max

f or NFIS,3 = NFIS,3min : IncrementNFIS,3 : NFIS,3max

Obtain a zero-order Sugeno FIS, FISinitial = f unction o f
(
kFIS,i, NFIS,i, datatrain

)
Tune FISinitial using an ANFIS, that is:
For Epochs = 1: IncrementEpochs: Epochsmax

FISout = ANFIS(FISinitial, datatrain, Epochs)
Evaluate MSEOutValidation using FISOut and dataValidation

end
Find min{ MSEOutValidation

}
and EpochsminMSE to obtain min{ MSEOutValidation

}
FISout = ANFIS

(
FISinitial, datatrain, EpochsminMSE

)
Evaluate R2

Train using FISOut and dataTrain
Evaluate R2

Validation using FISOut and dataValidation

I f
(
(R2

Train ≥ α)&&
(
R2

Validation ≥ β
))

Obtained FIS = FISout

Store calculated FIS, min{ MSEOutValidation

}
, EpochsminMSE , kFIS,i and NFIS,i

Exit of the iteration loop
Else

Store min{ MSEOutValidation

}
, EpochsminMSE , kFIS,i and NFIS,i

end
end

end
end

end
end
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(4.2) Algorithms 3 shows the procedure to obtain kFIS and NFIS.

Algorithms 3. Assumed kFIS,i = kFIS and NFIS,i = NFIS.

f or kFIS = kFISmin : IncrementkFIS : kFISmax

f or NFIS = NFISmin : IncrementNFIS : NFISmax

Obtain a zero-order Sugeno FIS, FISinitial = f unction o f (kFIS, NFIS, datatrain)

Tune FISinitial using an ANFIS, that is:
For Epochs = 1: IncrementEpochs: Epochsmax

FISout = ANFIS(FISinitial, datatrain, Epochs)
Evaluate MSEOutValidation using FISOut and dataValidation

end
Find min{ MSEOutValidation

}
and EpochsminMSE to obtain min{ MSEOutValidation

}
FISout = ANFIS

(
FISinitial, datatrain, EpochsminMSE

)
Evaluate R2

Train using FISOut and dataTrain
Evaluate R2

Validation using FISOut and dataValidation

I f
(
(R2

Train ≥ α)&&
(
R2

Validation ≥ β
))

Obtained FIS = FISout

Store calculated FIS, min{ MSEOutValidation

}
, EpochsminMSE , kFIS and NFIS

Exit of the iteration loop
Else

Store min{ MSEOutValidation

}
, EpochsminMSE , kFIS and NFIS

end
end

end

(4.3) Algorithms 4 shows the procedure to obtain NFIS,i, when a value is assumed for kFIS (For
example, kFIS = 1).

Algorithms 4. Iterate to obtain NFIS,i (assumed for kFIS)

f or NFIS,1 = NFIS,1min : IncrementNFIS,1 : NFIS,1max

f or NFIS,2 = NFIS,2min : IncrementNFIS,2 : NFIS,2max

f or NFIS,3 = NFIS,3min : IncrementNFIS,3 : NFIS,3max

Obtain a zero-order Sugeno FIS, FISinitial = f unction o f
(
kFIS, NFIS,i, datatrain

)
Tune FISinitial using an ANFIS, that is:
For Epochs = 1: IncrementEpochs: Epochsmax

FISout = ANFIS(FISinitial, datatrain, Epochs)
Evaluate MSEOutValidation using FISOut and dataValidation

end
Find min{ MSEOutValidation

}
and EpochsminMSE to obtain min{ MSEOutValidation

}
FISout = ANFIS

(
FISinitial, datatrain, EpochsminMSE

)
Evaluate R2

Train using FISOut and dataTrain
Evaluate R2

Validation using FISOut and dataValidation

I f
(
(R2

Train ≥ α)&&
(
R2

Validation ≥ β
))

Obtained FIS = FISout

Store calculated FIS,min{ MSEOutValidation

}
, EpochsminMSE , kFIS and NFIS,i

Exit of the iteration loop
Else

Store calculated FIS as well as Epochs,MSEOut, kFIS and NFIS,i
end

end
end

end
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(5) Among the results obtained, the one that optimizes the value of MSEValidation.and at the same
time meets the condition R2

Train ≥ α will be selected.

(6) Once the iterations are finished, FISout will be obtained. Then both the validation metrics and the
response surface could be obtained by using the tuned FIS.

In this present study, the procedure consisting of obtaining kFIS and NFIS will be followed. Once
the optimal values (kFIS and NFIS) have been found, in the first case, or N1, N2 and N3, in the second case,
the ANFIS, which optimizes the value of MSEValidation, is obtained directly. As previously mentioned,
other alternatives will be possible for obtaining kFIS,i and NFIS,i, i.e., iterating with the full set of
constants. However, they may require higher running time when α and β are increased. If α and β are
set to 1, then a full iteration is carried out. Therefore, the results shown below have been obtained
with the strategy of iterating to find (kFIS and NFIS), i.e., look for the values of kFIS and NFIS that
lead to a lower MSEValidation (MSE value obtained with the validation data). If all simulation data
are collected, then several solutions could be obtained and, in that case, the value that minimizes
the MSEValidation.will be selected. If there exist several solutions, then the values that minimize the
R2-coeffients obtained with the train, validation, and test data in that order, will be chosen. According
to the described procedure, an ANFIS is used together with a back-propagation algorithm to tune
the values of the membership functions. Each of the thus obtained FIS are tuned using an ANFIS by
employing the functions of the Fuzzy Logic Toolbox of MatlabTM [66]. Table 8 and Figure 26 show the
programming results for f1 function. As indicated, a double iteration is performed to find kFIS and
NFIS and at the same time an ANFIS is employed to tune the FIS parameters obtained with each value
of kFIS and NFIS.

Table 8. Iteration to find NFIS and kFIS for modeling f1 function.

Epochs MSEValidation R2
Train R2

Test R2
Validation R2

All data NFIS kFIS

7 8.9098 × 10−5 1.0000 0.9990 0.9997 0.9997 2.72 1.15
12 8.8023 × 10−5 1.0000 0.9990 0.9997 0.9996 2.67 1.16
6 8.8487 × 10−5 1.0000 0.9990 0.9997 0.9996 2.76 1.16
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Figure 26. Best MSE and obtained squared-R (Number of Epochs = 10, kFIS = 1.16, NFIS = 2.67 ).

Thereafter, the number of epochs will be increased in the ANFIS for tuning the FIS, the number of
epochs that optimizes MSEValidation will be selected and at the same time verifies that R2

Train ≥ α and
that the maximum number of epochs is not reached. This will lead to the optimal of MSEValidation to be
obtained and, subsequently, the obtained ANFIS will be evaluated both in the test and in the train data
and finally in all the data.
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Figures 27 and 28 show the results obtained with the ANFIS generated from the aforementioned
methodology. As can be observed, the proposed method is able to find an approximation with high
accuracy. The ANFIS thus obtained which led to better results was the one with kFIS = 1.16 and
NFIS = 2.67 and after 10 epochs with the ANFIS.

As can be observed, the ANFIS obtained with the proposed methodology can provide better
values of the validation metrics than those obtained with both the RSM model and with the ANN that
has 1 and 2 neurons in the hidden layer and the obtained results are similar to those obtained with the
ANN that has 8 neurons in the hidden layer, when modeling the behavior of f1. However, it should
be noted that adding more neurons to the ANN can cause irregularities in the response surface to
be obtained. As shown, the FIS obtained through the proposed methodology can provide accurate
results that could be used to model the response of type 1 functions ( f1). As will be seen below with
the methodology proposed in this present section, it is also possible to obtain satisfactory results,
in the case of type 2 functions ( f2), opposite to that obtained in the previous section, as is shown in
Figures 23–25.

The results shown in Table 9 and Figure 29 have been obtained with the strategy of iterating to find
(kFIS and NFIS) in the case of function f2, i.e., look for the values of kFIS and NFIS that lead to a lower
MSEValidation. As with f1, a double iteration is carried out to find kFIS and NFIS and at the same time an
ANFIS is employed to tune the FIS parameters obtained with each value of kFIS and NFIS . The number
of epochs that optimizes MSEValidation will be selected and at the same time verifies that R2

Train ≥ α and
that the maximum number of epochs is not reached. Result obtained are kFIS = 0.87 and NFIS = 1.66
for the initial FIS and the tuned FIS is achieved after 46 epochs using an ANFIS that tune the initial
parameters of the FIS adjusted with the previously mentioned kFIS and NFIS. Figure 30 shows that it
is possible to properly model the f2 function using the methodology proposed in this present study.
Furthermore, as can be seen in Figures 16 and 30, although the values provided by the validation
metrics by using the ANN3-4-2-1 are slightly better than those obtained by using the ANFIS, the ANFIS
is able to approximate the actual shape of the function better than the neural network.
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Figure 27. Response surface obtained with the zero-order Sugeno FIS employed for modeling f1 using
four Gaussian membership functions for the inputs and the proposed method for tuning the FIS using
an ANFIS (Number of Epochs = 10, kFIS = 1.16, NFIS = 2.67 ).
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Figure 28. ANFIS results for f1. (Number of Epochs = 10, kFIS = 1.16, NFIS = 2.67 ) (a) Train data;
(b) Validation data; (c) Test data; (d) All data.

Table 9. Iteration to find NFIS and kFIS for modeling f2 function.

Epochs MSEValidation R2
Train R2

Test R2
Validation R2

All data NFIS kFIS

46 9.1368 × 10−3 1.0000 0.9773 0.9874 0.9818 1.66 0.87
47 9.1924 × 10−3 1.0000 0.9768 0.9873 0.9816 1.67 0.88
50 9.4521 × 10−3 1.0000 0.9755 0.9875 0.9810 1.65 0.89
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These models will be fitted with the train data and will be validated and tested in the other data sets. 
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Figure 29. Best MSE and obtained squared-R (Number of Epochs = 46, kFIS = 0.87, NFIS = 1.66 ).
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Figure 30. Response surface obtained with the zero-order Sugeno FIS employed for modeling f2 using
four Gaussian membership functions for the inputs and the proposed method for tuning the FIS using
an ANFIS (Number of Epochs = 46, kFIS = 0.87, NFIS = 1.66 ).

4.5. Analysis of an Actual Study Case

Once the previous f1 (type 1) and f2 (type 2) functions have been analyzed, a real case will be
outlined, to assess whether the results obtained with the analytical function can be extrapolated to
those obtained in a real case. To do this, the same methodology as previously shown will be used,
i.e., the design will be divided into one part to train the models and into others for testing and validation.
Subsequently, a modeling using RSM and soft computing techniques will be applied. These models
will be fitted with the train data and will be validated and tested in the other data sets. The experiment
number to select the data for train, test, and validation is the same as those previously used; however,
they could be anyone. The actual data obtained in the die-sinking EDM of a Nickel and Chromium
alloy using Cu-C electrodes and positive polarity have been taken from Ref. [61]. Therefore, following
the previously mentioned methodology, the experimental data are divided to 70%, 15%, and 15% for
train, test, and validate, respectively. The train data will be used to obtain the models. A response
surface model will be fitted first by using RSM and, secondly, soft computing tools (ANN and an
ANFIS using the proposed method in Section 4.4 of this present study) will be used.

The use of a methodology based on RSM allows modeling of the arithmetic average roughness
of the roughness profile (Ra), but this is not the case of the EW, as shown in Ref. [61]. From the
determination coefficient of the regression shown in Ref. [61], and from the classification that is
followed in this present study, Ra (µm) could be classified as a type 1 function and EW (%) could be
classified as a type 2 function, which can also be observed from Figure 1. As is well-known (Ra), is
one of the most commonly employed parameters in industry and it is defined from the UNE-EN-ISO
4287:1999 norm [69] as the arithmetic average roughness of the roughness profile, which is shown in
Figure 31, where the EDM equipment is also shown; and the EW is defined as the relation between
the volume of material that is removed from the electrode and that removed from the part, which is
usually expressed in %.
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Figure 31. EDM machine ONA Datic D-2030-S, Roughness profile Z(x) (µm) for determination of Ra
parameter and Electrode Wear.

Figure 32 show a comparison between the results obtained, with the three methodologies analyzed
in this present study (RSM, ANN, and ANFIS) and the actual results, for the case of Ra (µm), which as
previously mentioned, could be considered to be a type 1 function, whose range of values is between
[1.17 µm, 7.41 µm]. Likewise, Figure 33 shows the validation metrics obtained with an ANFIS
(kFIS = 1.12, NFIS = 5.21), ANN3-8-1 and with the regression model for Ra values taken from Ref. [61].

On the other hand, Figure 34 show a comparison between the results obtained, with the three
methodologies analyzed in this present study (RSM, ANN, and ANFIS) and the actual results, for the
case of the EW (%), which could be considered to be a type 2 function, whose range of values is between
[0.3%, 42.84%].

Figure 35 shows the validation metrics obtained with the ANFIS (kFIS = 1.09, NFIS = 10),
ANN3-5-2-1 and with the regression model for EW values taken from Ref [61]. In the case of the EW, an
ANN3-5-2-1 was selected because the ANN3-4-2-1 led to worse results.
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Figures 32–35 show the results obtained with the models fitted with the train data, but when these
models are applied not only to the validation data but to all the experiments. As can be observed, both
the ANFIS obtained with the proposed methodology and the ANNs present significant advantages
over the regression models when there exists great variability in the data. Therefore, if there is a type 2
function, it is necessary to use models that allow greater precision to be obtained than that obtained
with RSM. Furthermore, it can be observed that the ANFIS obtained from the proposed methodology
have similar variability to the ANN and lower than the RSM when considering all experimental data.

5. Conclusions

In this present research study, two types of typologies that are usually found in the modeling of
technological variables in manufacturing processes have been analyzed. These typologies have been
denominated as type 1, with low variability in the response variable in relation to the independent
variables, and type 2, with high variability in the response surface. A comparative study has been
carried out between the precision of different models commonly used in Manufacturing Engineering,
such as those based on RSM, ANN, and ANFIS, for modeling the behavior of technological variables.

It has been shown that response variables that correspond to typology 1 can be modeled by RSM.
However, with modeling response variables that correspond to typology 2, it has been shown that the
models obtained with conventional regression techniques based on RSM cannot adequately model
the behavior of this kind of variables and therefore, in general, the results obtained are not accurate.
Therefore, ANN or ANFIS-based techniques are highly effective in avoiding this problem. It has been
shown that it is possible to use both neural networks and ANFIS to model the response variable with
high accuracy. Both techniques allow the behavior of type 2 functions to be efficiently modeled.

In addition, in this present study a new methodology has been shown for obtaining a tuned FIS
for modeling the behavior of both types of function topologies, which is based on the adjustment of
the parameters of the membership functions that make up the FIS through an iterative process using
an ANFIS for tuning the membership parameter of the thus generated FIS in order to minimize the
MSE in the validation data. With this procedure, it has been shown that it is possible to obtain results
with high precision for modeling both types 1 and 2 functions within the DOE range values.
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The ANFIS obtained with the proposed methodology can provide better values of the validation
metrics employed in this study in a better way than those obtained with both the RSM model and with
the ANN that has 1 and 2 neurons in the hidden layer, and, the obtained results are similar to those
obtained with the ANN that has 8 neurons in the hidden layer, when modeling the behavior of type 1
functions. Furthermore, when modeling type 2 functions, RSM was not able to accurately predict the
behavior of the response variable. However, by using either an ANN or the methodology proposed in
this present study, it was possible to accurately predict the behavior of this function.
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45. Capizzi, G.; Lo Sciuto, G.; Napoli, C.; Woźniak, M.; Susi, G. A spiking neural network-based long-term
prediction system for biogas production. Neural Netw. 2020, 129, 271–279. [CrossRef] [PubMed]

46. Ding, L.; Matthews, J. A contemporary study into the application of neural network techniques employed to
automate CAD/CAM integration for die manufacture. Comput. Ind. Eng. 2009, 57, 1457–1471. [CrossRef]

47. Ståhl, N.; Mathiason, G.; Falkman, G.; Karlsson, A. Using recurrent neural networks with attention for
detecting problematic slab shapes in steel rolling. Appl. Math. Model. 2019, 70, 365–377. [CrossRef]

48. Jamli, M.R.; Farid, N.M. The sustainability of neural network applications within finite element analysis in
sheet metal forming: A review. Measurement 2019, 138, 446–460. [CrossRef]

49. Hu, L.; Zhang, J.; Xiang, Y.; Wang, W. Neural Networks-Based Aerodynamic Data Modeling:
A Comprehensive Review. IEEE Access 2020, 8, 90805–90823. [CrossRef]
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