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Abstract: Steganography is a collection of techniques for concealing the existence of information by
embedding it within a cover. With the development of deep learning, some novel steganography
methods have appeared based on the autoencoder or generative adversarial networks. While the
deep learning based steganography methods have the advantages of automatic generation and
capacity, the security of the algorithm needs to improve. In this paper, we take advantage of the linear
behavior of deep learning networks in higher space and propose a novel steganography scheme
which enhances the security by adversarial example. The system is trained with different training
settings on two datasets. The experiment results show that the proposed scheme could escape from
deep learning steganalyzer detection. Besides, the produced stego could extract secret image with
less distortion.

Keywords: steganography; information hiding; deep learning; generative adversarial networks;
adversarial examples

1. Introduction

Steganography is the science of hiding secret messages in cover images by slightly modifying
pixel values that may appear normal to a casual observer. Like cryptography, the steganography
technique provides a secret communication method. However, the cryptography method focuses
on the authenticity and integrity of the messages. The main goal of the steganography method is to
hide the existence of the secret. Massive surveillance operations have shown that even if the content
is unknown, the existence of normal data communications may lead to privacy leakage. Therefore,
steganography is necessary for private communication.

Steganography techniques could be used in many filed like watermarks, copyright protection,
and secret transmission. Usually, the sender uses a steganography algorithm to hide the secret message
in the cover, with unaltered to external detectors. The main effort in steganography is to minimize
the interference in the cover image when the secret is embedded while allowing the recovery of the
secret message Then the steganographic image which is referred to as stego was transmitted in public
channels. On the other side, the receiver receives the stego and uses the decoding algorithm and the
shared key to extract the secret message.

With the rapid development of deep learning, modifying the image becomes much easier and
automatically in steganography. Existing steganography methods could be divided into two categories:
STC based content-adaptive steganography and deep learning based automatically steganography.
STC(Syndrome-Trellis-CodeI) [1] based content-adaptive steganographic schemes that embed the
messages in complex regions are the most traditional secure steganography schemes. Traditional STC
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based steganography such as HUGO [2], WOW [3], S-UNIWARD [4], and HILL [5], conceal the
secret message into the cover image by modifying the least significant bits of the pixel which
imperceptible by human perception or detection tools. The modified pixels are used to encode
the secret message. Distinct from traditional STC based steganography method, deep learning
based steganography method are learned from machine learning [6–12]. Compared with STC based
steganography, deep learning based steganography schemes have higher capacity and the parameters
of the steganography algorithm are strongly stochastic.

Corresponding to steganography, steganalysis is a set technique of detecting hidden data
in images. For the security of steganography, steganalysis is an important evaluation criterion.
Usually, this task is formulated as a binary classification problem to distinguish between cover images
and stego images. Compare with tradition SRM (Spatial Rich Model) [13], several deep learning
steganalysis methods [14–19] have been proposed to solve the steganalysis problem which improves
detection accuracy to a new level.

In this work, we test the current Generative Adversarial Nets based deep learning steganography
schemes with Convolution Neural Network (CNN) based deep learning steganalyzers. We found that
although the GAN based steganography obtains the algorithm by adversarial training and the structure
of discriminator also mostly comes from steganalyzer, the algorithm has poor security in the face of
independent steganalyzers. To enhance the security of the embedding algorithm we introduce the
idea of adversarial example techniques. Adversarial examples could fool any deep learning classifiers
by adding the perturbations produced by backpropagation. It is a general phenomenon in neural
networks and just caused by over-fitting or linear behavior in higher-dimensional space. CNN based
steganalyzers could also have the same problems. Therefore, the security of steganography could be
enhanced by adversarial examples techniques.

We propose a novel steganography scheme that generated the stego image through a novel GAN
based model and adversarial example techniques. We show the effectiveness of our scheme in the
experiment, the stego produced by encoder could fool deep learning steganalyzers and the extracted
secrets are less distorted. The rest of the paper is organized as follows. Section 2 discusses the theory of
GAN based steganography and adversarial examples. Section 3 describes the training and enhancing
schemes. In Section 4, we show the experiment results and discussions. Finally, conclusions and future
works are given in Section 5.

2. Related Work

2.1. GAN Based Steganography

Generative adversarial networks(GANs) [20] have recently led to highly synthesis performance,
which widely used in many tasks. Some novel models have been proposed in many image applications,
such as style transfer [21], image super resolution [22], image inpainting [23].

Generally, GAN consists of a generator and a discriminator. The task of the generator is to
learn to create fake data. The task of the discriminator is to learn to classify the input data is real
or fake. The generator and the discriminator are trained simultaneously. At the end of training,
the generator can generate high-quality fake data. The generator G and discriminator D play the
following two-player minmax game with value function V(G, D):

min
G

max
D

V(G, D) = Ex∼pdata(x) [log D(x)] +Ez∼pz(z) [log 1− D(G(z))] (1)

Unlike most steganography methods that mainly rely on human handwork, GAN-based steganography
algorithms are automatically generated. GAN based steganography methods use an encoder network
as G to produce stego and a steganalyzer as D. The encoder and the decoder form the adversarial
process in deep learning. The decoder network is used to decode the secret message in the stego image.
All the networks are simultaneously trained until the G(encoder) could generate high fidelity stego
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images, the decoder could obtain less distorted secret message and D(steganalyzer) could distinguish
cover image and stego image with high detection rate.

2.2. Adversarial Examples

Most machine learning classifiers, including deep neural networks, are vulnerable to adversarial
examples. This type of input is usually generated by adding small but purposeful modifications
that lead to incorrect outputs. Convolution Neural Networks (CNNs) [24] have been widely used in
steganalyzer which reach state-of-the-art performance. However, Szegedy [25] pointed out that the
function of CNN learning is not continuous, which shows that we can only add a slight perturbation
to the original image. Then the image could be misclassified by the classification neural network,
and even more, the image could be classified into a specific label.

For a linear model, we have a input x and adversarial input x̃ = x + η, η is a perturbation.
Suppose there is ‖η‖∞ < ε which is small enough that will not change the classification of the classifier.
Consider the weight w of model, we have:

wT x̃ = wTx + wTη. (2)

The perturbation grows with wTη and activation function. The total perturbation could have a linear
growth with the dimensions of w and therefore mislead the model.

The algorithm for generating adversarial examples could be divided into two categories:
Gradient based and evolutionary algorithms based. Fast Gradient Sign Method (FGSM) [26] is one of
gradient based method which is simple but powerful for image adversarial example. For a deep neural
network, the weight is θ, the input image is x, the true label of x is y, and the loss is J(θ, x, y), we have:

η = εsign(5x J(θ, x, y)). (3)

η is the perturbation produced by FGSM. The variation direction of perturbation is consistent with that
of the gradient by using sign. Then the loss function will increase, which will maximize the change of
classification results. The gradient5x J(θ, x, y) could be obtained from automatic differentiation.

One Pixel Attack [27] is a meta-heuristic optimization algorithm which could fool deep models by
changing only one pixel. Let x be the input image, f is the loss function. We have:

arg max
η

f (x + η), where ‖η‖0 ≤ dim. (4)

Only one pixel will be changed if we set dim = 1. Differential Evolution algorithm is used to solve
this optimization problem.

3. Steganography Scheme Based on GAN and Adversarial Examples

The security is the crucial point in steganography scheme. For GAN based steganography,
the encoder is trained to fool the steganalyzer. However, this does not indicate that the proposed
method can counter steganalyzers, because the training strategy in GAN limits the effectiveness of
the discriminator. In Section 4, we took the experiment and found that the security of GAN based
steganalyzer decrease, when facing independent steganalyzer. We introduce adversarial example
techniques to solve the problem. The architecture of our steganography scheme is shown in Figure 1.
In this work, our scheme could be divided into two steps: Model training and security improving.
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Figure 1. There are two parts in our proposed scheme: The Generative Adversarial Net based
steganography module which includes encoder, decoder, discriminator; the security enhancement
module which includes independent steganalyzer testing and security stego generating by adversarial
example techniques.

3.1. Model Training

In this work, there are three modules in our method: The encoder, the decoder and the
steganalyzer. The task of the encoder module is to produce the stego image. The task of steganalyzer
is to detect the stego image whether they contain a secret message. The task of the decoder module
is to extract the secret message in the stego image. Therefore, we use two deep learning networks to
conceal and reveal a secret message. The goal of the model to conceal the secret image within the cover.
Thus, the task of the training is discriminative in the model training. First, the encoder module takes
in cover images and secret message and outputs stego image. Then, the steganalyzer tries to detect the
secret message in the image, resulting in the ability to determine whether the stego contains message.

Denoting θE, θD, θS as the parameters of encoder decoder and steganalyzer. Let Ac, Ai, As, Ar for
cover, secret, stego and reveal secret. Let Oe(θE, Ac, Ai) as the output of encoder netowrk, Od(θD, As)

the output of decoder netowrk, Os(θS, Ac, As) as the output of steganalyzer in the model. We have:

Od(θD, As) = Od(θD, Oe(θE, Ac, Ai)). (5)

Os(θS, Ac, As) = Os(θS, Ac, Oe(θE, Ac, Ai)). (6)

Let Le denote the loss of encoder network, Ld denote the loss of decoder network, Ls denote the
loss of steganalyzer network. We use the cross entropy between two images as the loss of steganalyzer.
The Euclidean distance d between Ai and Ar is used in decoder network reveal loss. The encoder loss
is formed by the encoder loss and the steganalyzer loss. λa, λb, λc represent the weight given to each
respective loss. Then we have:

Ls(θS, Ac, As) = −y · log(Oe(θE, x))− (1− y) · log(1−Oe(θE, x)). (7)

Ld(θE, θS, Ac, As) = d(Ar, Ai). (8)

Le(θE, Ac, Ai) = λa · d(Ac, As) + λb · Ls + λc · Ld. (9)
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3.2. Security Improving

The security is the crucial part in most steganography method. Traditional steganography method
change the least significant bits of the pixel of the image, and these changes are difficult to be perceived
by humans. However, it could be detected well by the existing steganalysis methods which based
on SRM or CNN based model. To verify the security, we use different steganalyzers to detect our
steganography method in Section 4. We found that the security of GAN based steganalyzer decrease
when facing independent steganalyzer. Considering the actual situation, steganography algorithms
usually have to counter independent steganalyers. We introduce two adversarial example techniques
to solve the problem.

We use FGSM for white box attack on steganalyzers. Assume that, the details of steganalyzer
including parameters, structure, and execution environments are known. Then add the perturbation
in the synthesizing stego on gradient direction. To reduce the disturbance between adversarial
perturbations and secret, we clip the perturbation in a very small range. One Pixel attack was used for
black box attack on steganalyzers. The details of steganalyzer are unknown. While the smaller the
change of stego, the better the extraction effect, We do not constrain the number of the changed pixels
to 1 for a better attack success ratio.

4. Experiments

In this section, extensive experiments will be conducted to prove the effectiveness of our method.
We implemented our scheme with different training settings under two datasets: LFW, Bossbase.
The code and experimental data are available under our Github.

4.1. Dataset

The datasets we used in our experiment are The Labeled Faces in the Wild (LFW) [28],
Bossbase [29]. The LFW data set contains more than 13,000 face images belonging to 1680 people
collected from the web. 10,000 images were Randomly select 10,000 images from LFW and constituted
5000 cover-secret image pairs as our training set, the remaining 3000 face images of LFW were as
our validation set. The Bossbase dataset contains 10,000 512× 512× 8 bit grayscale images which
have different texture features and are widely used in steganography and steganalysis. Due to
the limitations of the graphics memory, we finally evaluate the performance of our scheme on
images of 256× 256 pixels, which crop the central part of the original images. We randomly selected
4000 cover-secret image pairs as our training set, the remaining 2000 face images of Bossbase were our
validation set.

4.2. Implementation Details

We use PyTorch [30] frame to build our model. The input cover and secret images were randomly
selected in the training set. We balance between the steganalyzer and decoder losses by using λa = 0.5,
λb = 1, λb = 1 on LFW data set. λa = 0.8, λb = 1, λc = 1 for Bossbase data set. We use Adam method to
train our model for 150 epochs. The learning rate is set to 0.0001. We selected 1000 attack test samples
in every security enhancement Experiments. In FGSM, we use four different ε to control the changes
to original stegos. In Onepixelattack, we use four different p to control the success rate of the attack,
the seed is set to 500, and the maximum number of iterations is set to 50.

4.3. Model Training Experiments

MSE (Mean Square Error) is used to measure the cover image loss. PSNR (Peak Signal to Noise
Ration) is used to measure the quality of the stego image and secret image. Table 1 reports the MSE
and PSNR for both cover and stego under two validation sets. Note that, the MSE of stegos are less
than one percent. Compare with the image in natural environment, the PSNR of the stegos are at a
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relatively normal level, which means the trained model could produce high fidelity stego and less
distortion secret.

Table 1. MSE (Mean Square Error) and PSNR (Peak Signal to Noise Ration) for both cover loss and
secret loss with the GAN based steganography method under two datasets.

Cover Loss Secret Loss Stego PSNR R-Secret PSNR

LFW 0.0049 0.0061 25.7222 26.3746
Bossbase 0.0175 0.0140 19.8354 21.7831

4.4. Security Enhancement Experiments

During the training process in our GAN based steganography, the encoder was trained to fool
the steganalyzer. We found that the model could not counter independent steganalyzer. We created
additional 5000 stegos with the trained model. The original covers and the stegos are merged to
form a new data set, and then divided into two halves to create a training set and a validation set.
We compared our scheme against steganographic methods WOW and S-UNIWARD. For each method,
We chose SRM the state-of-art machine learning steganalysis model and a designed CNN based deep
learning steganalysis model as the detector. We trained the steganalyzer based on SRM and CNN in
the training set, and then report the performance of the steganalyzer on the validation set. We use the
detection error (PE) to compare the performance which using the following form:

PE =
w
Vn

. (10)

Vn is the total number of validation set samples, w is the number of misclassification from the
steganalyzer. Table 2 shows the detection errors of independent SRM and CNN based steganalyzer
against five steganography methods.

Table 2. The detection errors of independent SRM (Spatial Rich Model) and CNN (Convolution Neural
Network) based steganalyzer against five steganography methods.

LFW Bossbase
Algorithms SRM CNN SRM CNN

WOW 0.2587 0.1328 0.2887 0.1654
S-UNIWARD 0.2805 0.1571 0.2704 0.1849

GANste 0.1910 0.1269 0.1039 0.0819
FGSM-GANste ε = 0.001 0.1394 0.2147 0.1387 0.1916
FGSM-GANste ε = 0.003 0.1704 0.4678 0.1208 0.5576
FGSM-GANste ε = 0.005 0.1773 0.7294 0.1135 0.8440
FGSM-GANste ε = 0.008 0.1638 0.9423 0.1039 0.9808

Onepixelattack-GANste p = 1 0.2202 0.5323 0.1231 0.2265
Onepixelattack-GANste p = 3 0.1666 0.3125 0.1190 0.3235
Onepixelattack-GANste p = 5 0.2168 0.3333 0.0843 0.1247
Onepixelattack-GANste p = 5 0.2667 0.2143 0.1724 0.1615

In the first three rows in Table 2, we compared the security of trained GAN based steganography
method with that of two content adaptive steganography methods WOW and S-UNIWARD at 0.4 bpp.
Note that, the GAN based steganography method could not escape from detection well when counter
the independent steganalyzers that is different from the discriminator. In the last several rows,
we used two adversarial example techniques to enhance the security of GAN based steganography.
We used four ε in FGSM and four p in Onepixelattack, and the corresponding detection error is at a
relatively high level when counter deep learning steganalyzer, which indicate the stego could fool
the steganalyzers and its security improved. Considering that the state-of-art steganalyers are deep
learning based, the adversarial example techniques we used mainly for CNN. Thus, the adversarial
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performance is weaker in SRM. Figure 2 shows the confidence prouduced by logits layer under two
datasets. Note that, with the increase of ε in FGSM, most of the stegos confidences of CNN will
decrease which indicates the attack success.
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Figure 2. The steganalyzer logits layer confidence comparison between different ε in Fast Gradient
Sign Method (FGSM) under two datasets.

From the analysis of Table 2 and Figure 2, we find that, when using FGSM, the detection error
get higher with the increase of ε, which indicate the lager adversarial perturbation, the easier it is to
fool the steganalyzer. However, the adversarial is mix with the secert message, strong perturbation
could affect the original secret. Thus, we use a relatively low ε. Onepixelattck is black box attack
which changes one pixel to mislead the classifier. In our dataset, limit to our memory, we chose several
pixels to modified. We found that the more piexls modified, the easier fool steganalyzer will succeed.
In addition, Onepixelattack causes little distortion. We tested the decoding performance of GAN based
steganography after using adversarial example techniques. Table 3 shows the MSE and PSNR results
for both modified cover and secret, while Figure 3 shows the visualization of several covers, stegos,
secret images and their residuals from two datasets. Note that, the adversarial example techniques
could slightly modify the stego produced by encoder but enhance the security while causing little
influence on the extraction.

Table 3. MSE and PSNR for both cover loss and secret loss with two training settings under two datasets.

Cover Loss Secret Loss Stego PSNR R-Secret PSNR

FGSM-LFW ε = 0.003 0.0049 0.0079 25.8321 22.4592
FGSM-Bossbase ε = 0.001 0.0028 0.0039 27.9957 26.4751

Onepixelattack-LFW 0.0167 0.0148 19.8567 20.0550
Onepixelattack-Bossbase 0.0205 0.0091 20.2960 22.8812
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Figure 3. The visualization of several covers, stegos, secret images and their residuals from two
datasets. The first and third rows show the embedding performance comparison between GAN based
steganography stegos and adversarial example steganography methods. The second and last rows
show the original secret image, revealed secret image and the extracting performance comparison
between GAN based steganography stegos and adversarial example steganography methods with
their residuals.

5. Conclusions

In this paper, we proposed a novel method which enhances the security of deep learning
based steganography method. We take advantage of the linear behavior of state-of-art CNN based
steganalyzer and use adversarial example techniques to let stego escape from detection. We have
proved the effectiveness of our model by implementing different experiments. We also found the single
antagonism of the adversarial perturbation, due to the process of generation. We would like to further
investigate more universal adversarial example techniques. The distortions of stegos produced by the
use of the adversarial technique is evaluated by MSE and PSNR. However, in traditional steganography
method, these indicators are not very sensitive to localized distortions, such distortions could lead
to very good values of the indicators but on the other hand the distortions could become visible in
the stego. Another research direction could further reduce the distortion of adversarial perturbation
to secret. We would like to investigate the possibility of looking at post silicon technologies where
the security of the information is an open problem; the nanofluidics and microfluidics devices based
network that use quite different hardware have the same problems as regards the security of the
traditional ones.
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