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Abstract: Supplier selection and order quantity allocation have a strong influence on a company’s
profitability and the total cost of finished products. From an optimization perspective, the processes of
selecting the right suppliers and allocating orders are modeled through a cost function that considers
different elements, such as the price of raw materials, ordering costs, and holding costs. Obtaining
the optimal solution for these models represents a complex problem due to their discontinuity,
non-linearity, and high multi-modality. Under such conditions, it is not possible to use classical
optimization methods. On the other hand, metaheuristic schemes have been extensively employed as
alternative optimization techniques to solve difficult problems. Among the metaheuristic computation
algorithms, the Grey Wolf Optimization (GWO) algorithm corresponds to a relatively new technique
based on the hunting behavior of wolves. Even though GWO allows obtaining satisfying results,
its limited exploration reduces its performance significantly when it faces high multi-modal and
discontinuous cost functions. In this paper, a modified version of the GWO scheme is introduced
to solve the complex optimization problems of supplier selection and order quantity allocation.
The improved GWO method called iGWO includes weighted factors and a displacement vector to
promote the exploration of the search strategy, avoiding the use of unfeasible solutions. In order
to evaluate its performance, the proposed algorithm has been tested on a number of instances of
a difficult problem found in the literature. The results show that the proposed algorithm not only
obtains the optimal cost solutions, but also maintains a better search strategy, finding feasible solutions
in all instances.

Keywords: metaheuristic algorithms; grey wolf optimizer; supply chain management; supplier
selection; order quantity allocation

1. Introduction

The purchase of raw materials for industrial manufacturing is an important task. Materials must
be purchased at the right times and quantities since a shortage (an interruption of the production
due to the lack of raw materials) causes large monetary losses. In these activities, one of the main
challenges is determining the optimal purchasing parameters, the supplier, or the suppliers to order
the raw material from, and how many items must be ordered from each supplier. This also involves
the average inventory (and then, the size of the storage facility) and the monthly demand of items.
A cost is calculated for each aspect of the purchasing, such as the setup cost, holding cost, and the cost
of the items.
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The research field related to this problem started with the so-called Economic Order Quantity
(EOQ) model, a theory developed by Harris in 1923 [1]. It is the simplest form of order quantity
allocation. The main objective is to minimize the total cost, where the mathematical model determines
the optimal order quantity of an item [2].

Considering the importance of the EOQ model, in [3] the authors presented a survey describing
the main results of the purchasing problem. It shows the extensions of Harris’ model that have been
developed over the years, such as purchasing models, including multi-stage inventory systems and
scheduling or productivity issues. The survey concentrates on the modeling of complex inventory
systems such as multiple production stages, parallel machines, or capacity constraints.

One important activity in the purchasing problem is the selection of the supplier or suppliers.
Suppliers can offer different characteristics, prices, and quantity discounts (in several types).
The interaction among these elements becomes complex. For instance, one supplier can offer a
high percentage of non-defective items (which is a desirable feature), but at a higher cost per item.
On the other hand, one supplier can offer an attractive purchasing cost, with a low percentage of
non-defective items. The mathematical model of those real aspects usually leads to non-linear and high
multi-modal cost functions where the optimal global solution is difficult to find. Supplier selection (SS)
is the process of evaluating these criteria and selecting the best supplier or suppliers.

Supplier selection and the impact of the influence of purchasing strategies over the supply
management activities have been studied in [4]. They developed a supplier performance evaluation
tool based on operational and strategic criteria, with the aim of ensuring better purchasing, quality,
delivery, flexibility, and innovation. Other authors have also examined the different applications of
supplier selection, such as [5,6].

The difficulty of handling supplier selection depends on the criteria and aspects considered
by the process [7,8]. As mentioned, the simplest formulation of the purchasing problem consists
of considering: a single item, a single supplier, a constant demand, a single time period, and not
considering quantity discounts (EOQ model). However, the problem complexity increases when other
aspects are considered, such as multi-period [9], different types of discounts (all-unit cost, incremental
discount, and total business volume discount), or multi-objective conditions [10].

The single-item complexity can also increase depending on several criteria. In [11], the authors
presented four different mathematical programming formulations of the lot-sizing classical problem.
It discusses different extensions for real-world applications of this problem. Other works—for
example, [12–14]—have analyzed the lot-sizing problem and inventory costs for supplier selection
considering larger-size problems.

In the last decade, with the aim to make this problem more realistic, the complexity of purchasing
problems has evolved, and numerous models and solutions strategies have emerged. The consideration
of multiple items increases the model complexity considerably. For example, in [15] the authors
presented a mixed-integer programming model based on a piecewise linear approximation for the
solution of multiple items. This work considered a multi-product, multi-constraint inventory system
from suppliers and incremental quantity discounts. Another example is the work proposed in [16],
where the supplier selection and order quantity allocation problems for multiple products have also
been analyzed. In this work, a mixed-integer linear programming model for finding the total cost is
presented. In the model, the suppliers also offer quantity discounts (all-units and incremental quantity
discounts).

As a result of the purchasing problem complexity, especially for large instances, mathematical
models usually have a large number of possible solutions. The number of possible solutions can be
even infinite. This fact makes it sometimes impossible to evaluate all feasible solutions, even with a
digital computer. In some cases, the number of solutions is not infinite, but so large that evaluating all
the solutions may be impractical. Furthermore, these models are characterized by their non-linearity,
discontinuity, and high multi-modality.
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On the other hand, metaheuristic methods are optimization schemes inspired by our scientific
understanding of biological or social systems, which at some abstraction level can be considered
as search strategies [17]. Some examples of popular metaheuristic methods include Particle Swarm
Optimization (PSO) [18], Genetic Algorithms [19], the Artificial Bee Colony (ABC) algorithm [20],
the Differential Evolution (DE) method [21], the Harmony Search (HS) strategy [22], the Gravitational
Search Algorithm (GSA) [23], and the Flower Pollination Algorithm (FPA) [24]. Metaheuristic schemes
do not need convexity, continuity differentiability, or certain initial conditions, which corresponds to
an important advantage considering classical techniques.

Alternatively to linear programming techniques, the problems of purchasing have also been
conducted through metaheuristic schemes. In the literature, metaheuristic methods have demonstrated
to obtain a better performance than those based on classical techniques in terms of accuracy and
robustness. As a result, some approaches have been proposed considering different metaheuristic
schemes. Some examples include techniques such as Genetic Algorithm (GA) [25–29] and PSO [30–33].
Although these schemes present interesting results, they have a critical problem—their low premature
convergence. This fact generates that such methods frequently obtain sub-optimal solutions, mainly in
multi-modal objective functions.

The GWO algorithm [34] is a recent metaheuristic technique based on the hunting behavior of
grey wolves. It mimics the leadership, hierarchy, and hunting mechanism of grey wolves. They
considered four types of wolves (alpha, beta, delta, and omega) for simulating the leadership hierarchy.
Furthermore, they implemented the four main steps of hunting (searching for prey, hunting, encircling
prey, and attacking the prey). Its interesting characteristics have motivated its use in several engineering
problems, such as sustainable manufacturing [35] and supply chain [36]. In spite of its interesting
results, the limited exploration of GWO presents great difficulties in its search strategy when it solves
highly multi-modal optimization problems.

In this paper, an improved version of the GWO scheme is introduced to solve the highly
multi-modal problem of purchasing. In the enhanced method, two additional elements have been
included: (I) weighted factors and (II) a displacement vector. With such inclusions, the new method
maintains its important characteristics, increasing its explorative properties so that the algorithm
can converge to difficult high multi-modal optima. Different from linear programming techniques,
the proposed method can solve supplier selection and purchasing problems under very complex and
realistic scenarios, since it does not assume linearity and unimodality in its operation. On the other
hand, in comparison to the original GWO and other metaheuristic schemes, our approach is capable of
obtaining global optimal solutions due to the improved capacity to explore the search space extensively.

With the purpose of testing our approach, a representative model popular in the literature have
been selected. The model [37] considers multiple suppliers with limited capacity. It assumes that
suppliers do not have 100% non-defective parts. The model considers a known demand over a finite
planning horizon. Additionally, the maximum storage space for the buyer is considered to maximize
the total profit. The decision variables are the order quantity for each product, selected suppliers,
and purchasing order cycle; the formulation models a problem of supplier selection and lot-sizing
inventory. The results show that the proposed algorithm does not just obtain the optimal cost solutions,
but also maintains a better search strategy in all instances of the problem, finding feasible solutions in
all instances.

The remainder of this article is organized as follows. In Section 2, the problem description
and model formulation are presented. Section 3 describes the GWO algorithm. Section 4 describes
the proposed modifications to the algorithm. Section 5 presents an illustrative example, along with
numerical results and a statistical analysis. Finally, some important conclusions are summarized in
Section 6.
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2. Problem Description and Model Formulation

This section introduces the problem under study [37]. It consists of solving the supplier selection
and order quantity allocation problem incorporating the total income, which considers the income
not only of perfect items but also of imperfect items. The model considers several costs, such as the
purchasing, ordering, screening, and holding costs. The model under study has been selected for two
main reasons: (i) it provides a complex formulation considering several costs in the optimization,
constraints, and decision variables; (ii) this model uses several parameters than can be changed in the
design of experiments for comparison purposes.

The model characterizes the management of a supply chain where multiple products and multiple
suppliers are considered. All the suppliers have a limited capacity. The model implements the scenario
of receiving items that may not meet the requirements for the percentage of non-defective parts—a
percentage of parts are not of perfect quality. The non-perfect items are sold as a single batch, prior
to receiving the next shipment. These items are sold at a lower cost than the non-defective items.
The demand is known along the finite planning horizon. The items can be purchased from potential
suppliers. A holding cost applies to each item that must be stored. Maximum storage space is
considered. With the aim to maximize the total profit, the company needs to determine who are the
best suppliers for assigning an order to and how much order quantity must be placed for each product
and in which period.

2.1. Assumptions of the Model

1. The ordering cost Oj for each supplier j (if an order is assigned) does not depend on the variety
and order quantity of the items involved.

2. The holding cost hi of the product i represents the cost of maintaining an item in stock.
3. Demand dit represents the amount of the product i that is required in period t, and it is known

along the planning horizon.
4. It is possible that suppliers do not offer perfect quality; the purchased items can contain a

percentage Pij of defective products; the percentage of perfect products would be (1−Pij).
5. The purchased imperfect items are stored apart and sold prior to the next purchasing period as a

single batch.
6. The purchasing price (of item i) from supplier j is defined as bij. The perfect quality items are sold

at a price Sgi per unit, and the defective items are sold as a single batch at a lower cost Sdi.
7. The 100% of the screening process of the order is made, which is defined with a unit screening

cost vi of item i.
8. Each supplier has a limited capacity for providing items per period.
9. The requirements of the items must be fulfilled in each period. Shortage or back-ordering is

not allowed.
10. Each product requires a storage space wi, and it considers the total available storage space W.

2.2. Variables and Parameters

Table 1 summarizes the description of the parameters that will be used along with the model.
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Table 1. Problem notation of the input parameters.

Data

n Total available types of products.
r The number of available suppliers.
t The number of available periods.

dit Demand for the product i in period k (units).
bij The purchasing cost of item i from supplier j.
hi Inventory holding cost per item i and time.
Oj The setup cost of the jth supplier.
Pij Percentage of defective items of product i from supplier j.
Sgi The selling price of non-defective items i per unit.
Sdi The selling price of defective items i per unit.
vi Screening cost of item i.
cij The capacity of supplier j for item i (units per period).
wi Storage space for item i.
W Total available storage space.

2.3. Objective Function

The objective function is composed of two elements which will be described in this subsection.
The first element is the total income of the company (R). It is computed through the transactions of
good quality items plus the income of selling the imperfect quality items.

R =
∑

i

∑
j

∑
t

Xi jt
(
1− Pi j

)
Sgi +

∑
i

∑
j

∑
t

Xi jtPi jSdi, (1)

where Xijt symbolizes the ordered quantity (in units) for item i from supplier j in period t.
The processes of generating an order and purchasing the materials have an impact on several

costs, such as the purchasing cost, ordering cost, screening cost, and holding cost. The sum of these
costs represents the total expenditure of the company (E), which represents the second element. E is
calculated as follows:

E =
∑
i

∑
j

∑
t

Xi jtbi j +
∑
j

∑
t

O jY jt +
∑
i

∑
j

∑
t

Xi jtvi

+
∑
i

∑
t

hi

 t∑
k=1

∑
j

Xi jk
(
1− Pi j

)
−

t∑
k=1

dik

,
(2)

where the first term represents the purchasing cost, which is calculated by the total items of certain
types of products ordered at each supplier in any period, multiplied by the price of the item from the
supplier. The second term determines the transaction cost for the suppliers, which does not depend
on the variety of the ordered items nor on the order quantity. Ordering cost is calculated for each
period in which an order is assigned at a supplier. The third term represents the total screening cost,
which is calculated as the product of the total ordered items of each type of product and the respective
screening cost per type of item. The last term represents the holding cost of maintaining each item that
should be stored.

Therefore, the objective function corresponds to the total profit (Z) of the company, represented
by the total income minus the total expenses.

Z = R− E. (3)

As mentioned before, the objective is to find the ordered quantity for the product i from supplier j
in period t, so as to maximize the total profit function. The formulation is summarized below:
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Maximize:

Z = (
∑

i
∑

j
∑

t Xi jt(1− Pi j)Sgi +
∑

i
∑

j
∑

t Xi jtPi jSdi) − (
∑

i
∑

j
∑

t Xi jtbi j+∑
j
∑

t O jY jt +
∑

i
∑

j
∑

t Xi jtvi +
∑

i
∑

t hi(
∑t

k=1
∑

j Xi jk(1− Pi j) −
∑t

k=1 dik)).
(4)

Subject to,  t∑
k=1

∑
j

Xi jk
(
1− Pi j

)
−

t∑
k=1

dik

 ≥ 0,
∀i = 1, . . . , n
∀i = 1, . . . , n

(5)

(
t∑

k=1
dik

)
Y jt −Xi jt

(
1− Pi j

)
≥ 0,

∀i = 1, . . . , n,
∀ j = 1, . . . , r
∀k = 1, . . . , t,

(6)

∑
i

wi

 t∑
k=1

∑
j

Xi jk
(
1− Pi j

)
−

t∑
k=1

dik

 ≤W, (7)

0 ≤ Xi jt ≤ ci j,
∀i = 1, . . . , n,
∀ j = 1, . . . , r,
∀k = 1, . . . , t.

(8)

The first constraint, represented by Equation (5), ensures that the demand for each type of item in
each period is covered with the purchased items. The second constraint in Equation (6) ensures that all
orders are accompanied by a transaction cost; if an order is assigned to supplier j in period t, then Yjt
is equal to 1; otherwise, it is equal to 0. The third constraint, Equation (7), determines that the total
storage space is limited by W. Finally, the constraint represented by Equation (8) ensures that the order
quantity per supplier does not exceed their capacity per period cij.

Deterministic methods usually find a global solution when the complexity of the problem is low.
The complexity of this model can be determined by the number of constraints, as follows:

(n·t) + (n·r·t) + 1 + 2(n·r·t), (9)

where n is the total number of different products, r determines the number of available suppliers, and t
represents the number of periods. When the size of the problem is large, it is extremely difficult to
obtain a global solution in a reasonable time, and other strategies such as metaheuristics can be used to
solve this type of problem. Table 2 shows how the number of constraints grows considerably when the
type of items, the available suppliers, and the number of periods increase.

The size of the problem (dimension) is also determined by the number of decision variables.
In this problem, the total number of decision variables is equal to:

(r·t) + (n·r·t). (10)

If we consider the use of metaheuristic algorithms, this number of variables can be reduced.
Therefore, the model is simplified because there is a dependence between the variable Yit (if an order
was assigned at supplier j in the period t) and Xijt. If Xijt > 0, then Yit = 1; otherwise, Yit = 0. The total
number of variables using this simplification is as follows:

(n·r·t). (11)

Obtaining a global solution by commercial software, based on classical techniques, can take too
long. For this reason, it is necessary to explore other strategies such as metaheuristics for solving this
type of problem. Some metaheuristic methods, such as PSO and GA, have been used to obtain a good
solution in a lower computational time [38]. However, a disadvantage of these methods is that they
present a premature convergence, producing frequently suboptimal solutions.



Mathematics 2020, 8, 1457 7 of 24

Table 2. Number of total constraints to the problem.

i\
j 5 10 15 20 25 50 100 150 200

t = 4

5 321 621 921 1221 1521 3021 6021 9021 12,021
10 641 1241 1841 2441 3041 6041 12,041 18,041 24,041
15 961 1861 2761 3661 4561 9061 18,061 27,061 36,061
20 1281 2481 3681 4881 6081 12,081 24,081 36,081 48,081
25 1601 3101 4601 6101 7601 15,101 30,101 45,101 60,101
50 3201 6201 9201 12,201 15,201 30,201 60,201 90,201 120,201

100 6401 12,401 18,401 24,401 30,401 60,401 120,401 180,401 240,401
150 9601 18,601 27,601 36,601 45,601 90,601 180,601 270,601 360,601
200 12,801 24,801 36,801 48,801 60,801 120,801 240,801 360,801 480,801

i\
j 5 10 15 20 25 50 100 150 200

t = 8

5 641 1241 1841 2441 3041 6041 12,041 18,041 24,041
10 1281 2481 3681 4881 6081 12,081 24,081 36,081 48,081
15 1921 3721 5521 7321 9121 18,121 36,121 54,121 72,121
20 2561 4961 7361 9761 12,161 24,161 48,161 72,161 96,161
25 3201 6201 9201 12,201 15,201 30,201 60,201 90,201 120,201
50 6401 12,401 18,401 24,401 30,401 60,401 120,401 180,401 240,401

100 12,801 24,801 36,801 48,801 60,801 120,801 240,801 360,801 480,801
150 19,201 37,201 55,201 73,201 91,201 181,201 361,201 541,201 721,201
200 25,601 49,601 73,601 97,601 121,601 241,601 481,601 721,601 961,601

3. Original Grey Wolf Optimizer

The Grey Wolf Optimizer (GWO) [34] algorithm is a new metaheuristic method inspired by
the hunting behavior of the grey wolf in nature. Generally, they live in groups of 5–12 grey wolves
and form a pack. The algorithm is based on the social hierarchy behavior of the wolves and their
mechanism of obtaining prey (hunting). The wolf pack has several hierarchical levels: the alpha
wolf (α) is responsible for making decisions about sleeping or hunting. They lead the herd, and the
members follow the decisions of alpha wolves. The beta wolf (β) helps the alpha wolf, coordinating
and collaborating with the management of the herd. They are subordinate to the alpha wolves. They
represent the second level within a hierarchy. The other hierarchical level is fulfilled by delta wolves
(δ). They complement the alpha and beta wolves in managing the herd. The omega wolves (Ω) are the
lowest level of the hierarchy. They must obey the alpha, beta, and delta wolves.

GWO algorithm emulates the position of the prey as the optimal solution to an optimization
problem. Then, using operators based on the wolves hunting process, the algorithm tries to obtain the
position of the prey. The algorithm considers four stages in their structure:

• Encircling prey,
• Hunting,
• Attacking prey,
• Searching for prey.

3.1. Encircling Prey

The grey wolves begin the hunting process by encircling (surrounding) the prey. This action is
determined using the following formulations (12), (13) to update the position of the wolves in the
encircling action:

→

D = |
→

C
→

Xp(t) −
→

X(t)|, (12)

→

X(t + 1) =
→

Xp(t) −
→

A
→

D, (13)
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where
→

Xp is the position of the prey,
→

X indicates the position of the wolves, t represents the current

iteration, and
→

C and
→

A are the coefficients. The coefficient
→

A determines the search radius of the

hunting. The
→

C and
→

A coefficients are calculated as follows:

→

A = 2
→
a
→
r 1 −

→
a , (14)

→

C = 2
→
r 2, (15)

where
→
a is linearly decreased from 2 to 0 along the course of iterations, and

→
r 1 and

→
r 2 are random

values in the range [0, 1].

3.2. Hunting

In the real process of hunting, the alpha wolf determines the position of the prey, and the beta
and delta wolves follow the alpha wolf and participate in the hunting. The positions of alpha (best
candidate solution), beta, and delta have a better understanding of the potential location of prey.
The method saves the first three best solutions obtained so far and forces the other search agents
(including omegas) to update their positions according to the position of the best search agents.

→

D∝ = |
→

C1
→

X∝ −
→

X|,
→

Dβ = |
→

C2
→

Xβ −
→

X|,
→

Dδ = |
→

C3
→

Xδ −
→

X|, (16)

→

X1 =
→

X∝ −
→

A1
→

D∝,
→

X2 =
→

Xβ −
→

A2
→

Dβ,
→

X3 =
→

Xδ −
→

A3
→

Dδ, (17)

→

X(t + 1) =

→

X1 +
→

X2 +
→

X3

3
. (18)

3.3. Attacking Prey

Wolves capture the prey when it stops moving. This action is modeled decreasing the value of
→
a

over the course of iterations from 2 to 0, then
→

A is also decreased.
→

A is a random value in [−2a, 2a].

If random values
→

A are in [−1, 1], the next position of a search agent may be in any position between
the position of the prey and its position, when |A| < 1, then the grey wolves are forced to attack the prey.
With the use of these operators, the algorithm allows its search agents to update their position based
on the position of the alpha, beta, and delta. Only using these operators, the algorithm is susceptible to
stay in local solutions; for this reason, more operators are needed.

3.4. Search for Prey

The search is done according to the position of the wolves (alpha, beta, delta). The wolves diverge
from each other with the purpose of searching for prey and converge to attack it. The divergence

is reached using random values
→

A > 1 or
→

A < 1 to force the search agent to diverge from the prey.
This process helps in exploration and allows finding a global solution.

4. Improved Grey Wolf Optimizer

The problem of supplier selection is discrete and can become extremely complex when the number
of suppliers and items increases. These conditions and their numerous constraints produce objective
functions with a high multi-modality. In spite of its interesting results, the limited exploration of
GWO presents great difficulties in the search strategy when it solves highly multi-modal optimization
problems. Likewise, the GWO has been designed to operate in continuous spaces. For this reason,
it experiences inconsistencies when it is used in problems of a discrete nature. Under such conditions,
an improved version of GWO is necessary in order to overcome this issue. In this work, an improved
version of the GWO method, called iGWO, has been introduced to solve the problem under study.
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The enhanced version incorporates two new elements: (1) weighted factors and (2) a displacement
vector. With such inclusions, the new method increases and improves the explorative properties so
that the algorithm can converge to difficult high multi-modal optima.

4.1. Weighted Factors

In the original GWO, particles are updated by considering the average combination of the alpha,
beta, and delta wolves (Equation (18)). This mechanism guides individuals in the same proportion
towards the best elements. However, it has been proved that this is not the best strategy [39], since that
mechanism produces a limited exploration of the search space. Therefore, in the improved version of
GWO, particles are updated using the following formulation:

→

X(t + 1) = w1
→

X1 + w2
→

X2 + w3
→

X3 +
→
r 3
→

b , (19)

where w1, w2, and w3 are the weighted factors that determine the contribution of each alpha, beta,
and delta wolf. These weights are used to guide the search process towards the best elements but
considering different proportions according to the hierarchy of grey wolves.

4.2. Displacement Vector

In the new iGWO, a displacement vector
→
r 3
→

b 3 (see Equation (19)) has been included in order to
increase the exploration and prevent the consideration of unfeasible solutions. Here,

→
r 3 is a random

value in the interval [−1, 1] that controls the direction of the search. The element
→

b is included to
promote exploration and prevent stagnation in local optima. This element is considered a tuning

parameter that must be set with an initial value. To ensure convergence,
→

b is non-linearly decreased

throughout iterations. The definition of
→

b is given by the following formulation:

→

b (t + 1) =
→

b (t)
(
1−

t2

t2
max

)
, (20)

where tmax is the maximum number of iterations.
Under this update mechanism, occasionally random steps are permitted to jump into a feasible

area in case the global best is stuck in an unfeasible solution. In the beginning, larger steps are
allowed. However, the displacement vector is non-linearly decreased over time to balance the
exploration-exploitation rate. Besides, since the supplier selection problem requires an integer solution,
the updated positions given by Equation (19) are rounded to the nearest integer toward negative infinity.

5. Experimental Results

A representative formulation introduced in [37] has been considered as an illustrative problem to
test the performance of the proposed method. It has been selected in order to maintain compatibility
with other studies reported in the literature. The problem consists of three different products, three
suppliers, and four-time periods. Assuming Equation (10) as a basis, we have 48 decision variables.
They can be reduced to 36 decision variables (Equation (11)). The parameters for this problem are
described in Tables 3–7.

Table 3. Demand for the three items over the planning horizon.

Items
Periods

1 2 3 4

1 170 155 160 140
2 85 90 80 105
3 280 255 290 300
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Table 4. Purchasing price of items from the supplier.

Items
Supplier

1 2 3

1 25 27 24
2 30 32 33
3 54 50 49

Table 5. Percentage of defective items for each supplier.

Items
Supplier

1 2 3

1 0.03 0.02 0.03
2 0.02 0.03 0.05
3 0.04 0.04 0.01

Table 6. Ordering cost per supplier.

Supplier

1 2 3

3000 2700 3500

Table 7. Sgi, Sdi, wi, hi, and vi costs for each product.

Items Sgi Sdi wi hi vi

1 50 20 0.2 5 2
2 34 25 0.18 3.5 1.5
3 60 40 0.5 8 1.8

The capacity cij of product i from supplier j per period is 1000 units for all suppliers. The total
available space W is limited to 200.

The popular software LINGO and the proposed Improved Grey Wolf Optimizer (iGWO) have
been used for solving the model. The experiments have been implemented using MATLAB R2019a,
in a computer with an intel(R) Core (TM)i7-8550u cpu@1.80 GHz 1.99 GHz processor.

The results are shown in Tables 8 and 9. Observe that iGWO presents a higher profit than the
classical optimization tools. The algorithm obtains a result that is 60% better than the result obtained
by LINGO.

Table 8. Order quantity for each product from each supplier and per period, Xijt, using
commercial software.

Period 1 Period 2

Item/Supplier 1 2 3 Item/Supplier 1 2 3

1 175.2577 0 175.2577 1 0 158.1633 0
2 86.8 0 0 2 0 92.78351 0
3 0 0 282.8283 3 0 265.625 0

Period 3 Period 4

Item/Supplier 1 2 3 Item/Supplier 1 2 3

1 164.9485 0 164.9485 1 0 142.89 0
2 81.7 0 0 2 0 108.25 0
3 0 0 292.9293 3 0 312.5 0

Objective function value $11,364.93
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Table 9. Order quantity for each product for each supplier and per period, Xijt, using the
iGWO algorithm.

Period 1 Period 2

Item/Supplier 1 2 3 Item/Supplier 1 2 3

1 0 302 0 1 380 0 378
2 93 0 0 2 92 0 0
3 0 0 283 3 0 0 259

Period 3 Period 4

Item/Supplier 1 2 3 Item/Supplier 1 2 3

1 0 0 218 1 363 0 0
2 0 0 85 2 108 0 0
3 0 0 293 3 313 0 0

Objective function value $18,433.30

5.1. Weighted Factors

An experiment was performed with the purpose of analyzing the accuracy and consistency of
the proposed algorithm (iGWO). In the experiment, several parameters of the model were changed to
confirm the robustness of the algorithm. These parameters are the demand dit, the total available space
W, and the capacity of the supplier for each item cij. For each parameter, three levels were analyzed.
The demand (dit) of the problem instance presented in Table 3 was changed at 75% and 125% of the
actual demand. Case 1 (for demand) corresponds to the original demand presented in Table 3; case 2
and case 3 correspond to the new demand considering 75% and 125%, respectively, of the original
demand. The total available space (W) was considered for case 1, case 2, and case 3 at 200, 400, and 600,
respectively. The capacity of suppliers (cij) was changed. Case 1 considers the original demand at 1000
units per item and per period; for case 2 and case 3, the demand is presented in Table 10.

Table 10. Supplier capacity for statistical analysis.

Case 2 Case 3

Item/Supplier 1 2 3 Item/Supplier 1 2 3

1 600 600 600 1 450 450 450
2 580 580 580 2 435 435 435
3 620 500 480 3 465 375 360

When modifying the parameters, 27 different scenarios were generated. All the scenarios
have been solved considering the proposed iGWO method. The results have been compared
with those produced by other methods such as LINGO, original Grey Wolf Optimizer (GWO) [34],
Modified Grey Wolf Optimizer (mGWO) [39], Proportional-based Grey Wolf Optimizer (PGWO) [40],
Tournament-based Grey Wolf Optimizer (TGWO) [40], Particle Swarm Optimization (PSO) [30],
Differential Evolution (DE) [21], and Success-History based Adaptive DE with Linear population size
reduction (L-SHADE) [41]. In the comparisons, the parameters of these methods have been configured
according to the reported values provided by their own references. All these settings are summarized
in Table 11.
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Table 11. Parameter configurations of metaheuristic algorithms.

Settings Configuration

iGWO b = 50, a linearly decreased from 2 to 0, w1 = 0.4, w2 = 0.2, w3 = 0.4
PSO c1 = 2, c2 = 2
DE CO = 0.5, F = 0.2

L-SHADE rNinit
= 18, rarc = 1.4, p = 0.11, H = 5

GWO a linearly decrease from 2 to 0
mGWO a linearly decrease from 2 to 0
PGWO a linearly decrease from 2 to 0
TGWO a non-linearly decrease from 2 to 0

The 27 scenarios are identified as follows: instance (1,2,3) indicates that it considers case 1 of
demand, case 2 of total available space, and case 3 for supplier capacity. The original instance is
defined as (1,1,1). Since metaheuristic algorithms are stochastic methods, the optimization process is
repeated in 10 independent executions for every metaheuristic algorithm (with 1000 iterations) to verify
the consistency of the results. The population for the algorithms was 100 individuals, and the size
dimension is 36. For each algorithm, 10 results are obtained, which represent the best-found solutions.
With this information, the performance of the algorithms are statistically compared considering the
following indicators: the average profit Za, the median of the results Zm, the best profit Zb, the worst
profit Zw, and the standard deviation S. Indicators Zb, Zw, Za, and Zm evaluate the accuracy of the
algorithms, and S evaluates the consistency of the solutions and, therefore, the robustness of the
metaheuristic algorithms. First, the performance of the algorithms in the instances where only one
parameter is changed is analyzed. These instances are: (1,1,1), (2,1,1), (3,1,1), (1,2,1), (1,3,1), (1,1,2),
(1,1,3). Table 12 presents the statistical indicators of these instances for the 10 executions per method.

From all instances in Table 12, only the iGWO algorithm found a feasible solution in all the 10
executions of the seven instances. In the instances (1,1,1) and (2,1,1), the best result was presented by
iGWO at $18,433.30 and $18,008.18, respectively. GWO and mGWO found only one solution. PGWO,
TGWO, PSO, DE, and L-SHADE did not find a feasible solution. For the instance (3,1,1), the best result
was presented by DE with $24,041.09; therefore, the algorithm only managed to find three solutions out
of 10 feasible solutions. The profit of iGWO is only 7% lower than the best solution; also, the average
profit and median of the profit of iGWO are better than those of DE. GWO and mGWO found seven
and nine solutions out of 10, respectively; PGWO, TGWO, PSO, and L-SHADE did not find a feasible
solution. For the instance (1,2,1), the best result was presented by iGWO with $33,842.24. iGWO,
mGWO, and DE found a feasible solution for each execution. PSO found two feasible solutions out of
10. PGWO, TGWO, and L-SHADE did not find a feasible solution. For instance (1,3,1), the best result
was presented by mGWO with $44,099.66; therefore, the average profit and median of the profit of
iGWO is better than all algorithms. GWO, mGWO, and DE found a feasible solution for each execution.
PGWO, TGWO, PSO, and L-SHADE found two, one, eight, and seven solutions out of 10, respectively.

For the instance (1,1,2), the best result was presented by iGWO, at $22,432.70. GWO and mGWO
found three and two solutions out of 10, respectively. PGWO, TGWO, PSO, DE, and L-SHADE did not
find a feasible solution. For the instance (1,1,3), the best result was presented by iGWO, at $22,432.70.
GWO, mGWO, and PGWO found one, two, and one solution out of 10, respectively. TGWO, PSO, DE,
and L-SHADE did not find a feasible solution. Figure 1 shows that the profit of the found the best
solution by LINGO and the iGWO, GWO, mGWO algorithms. These metaheuristic algorithms were
selected because they managed to find more feasible solutions than the others.
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Table 12. Statistical indicator for seven instances.

Instance: (1,1,1)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$11,364.93

$15,734.66 - - * * * * *
Zm $16,626.29 - - * * * * *
S $3476.07 - - * * * * *

Zb $18,433.30 $6238.92 $17,498.60 * * * * *
Zw $6481.26 - - * * * * *

% Feasible Solutions 100% 10% 10% 0% 0% 0% 0% 0%

Instance: (2,1,1)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$5525.58

$14,298.80 - - * * * * *
Zm $14,915.53 - - * * * * *
S $3240.45 - - * * * * *

Zb $18,008.19 $3134.26 $3533.75 * * * * *
Zw $7770.92 - - * * * * *

% Feasible Solutions 100% 10% 10% 0% 0% 0% 0% 0%

Instance: (3,1,1)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$21,008.76

$18,602.24 $15,131.57 $16,589.93 * * * $18,306.22 *
Zm $19,175.79 $12,937.30 $15,235.60 * * * $19,330.20 *
S $2546.07 $4232.78 $4114.77 * * * $6309.49 *

Zb $22,262.90 $22,658.36 $22,653.24 * * * $24,041.09 *
Zw $14,350.89 $9214.35 $11,099.60 * * * $11,547.37 *

% Feasible Solutions 100% 70% 90% 0% 0% 0% 30% 0%
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Table 12. Cont.

Instance: (1,2,1)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$11,364.93

$29,966.42 $24,292.48 $25,704.28 * * $23,863.71 $23,681.45 *
Zm $30,387.98 $23,346.78 $25,093.52 * * - $22,952.12 *
S $3227.18 $2559.25 $2426.86 * * $1133.05 $2405.00 *

Zb $33,842.24 $28,270.01 $29,811.53 * * $24,664.90 $28,276.88 *
Zw $23,216.43 $21,459.58 $22,912.52 * * $23,062.53 $21,058.27 *

% Feasible Solutions 100% 100% 100% 0% 0% 20% 100% 0%

Instance: (1,3,1)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$11,364.93

$41,602.21 $36,379.10 $37,158.70 $30,443.51 * $36,224.65 $35,347.98 $6410.08
Zm $42,000.14 $37,452.46 $36,717.96 - * $34,925.10 $35,512.86 $3571.7
S $1276.68 $3893.49 $4285.87 $1011.85 * $2829.55 $914.68 $4105.24

Zb $43,068.69 $41,229.04 $44,099.66 $31,159.00 $25,268.91 $40,624.35 $36,771.34 $14,676.22
Zw $39,393.00 $29,735.00 $32,412.86 $29,728.03 * $32,094.18 $33,807.33 $2611.68

% Feasible Solutions 100% 100% 100% 20% 10% 80% 100% 70%

Instance: (1,1,2)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$11,364.93

$16,213.74 $15,676.17 $4969.52 * * * * *
Zm $15,214.86 $16,560.68 - * * * * *
S $3628.17 $2457.38 $1932.81 * * * * *

Zb $22,432.70 $17,568.85 $6336.22 * * * * *
Zw $10,458.29 $12,898.98 $3602.81 * * * * *

% Feasible Solutions 100% 30% 20% 0% 0% 0% 0% 0%
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Table 12. Cont.

Instance: (1,1,3)

Indicator
Algorithm

LINGO iGWO GWO mGWO PGWO TGWO PSO DE L-SHADE

Za

$11,364.93

$17,104.16 - $6257.03 * * * * *
Zm $17,778.35 - - * * * * *
S $3606.26 - $7251.80 * * * * *

Zb $22,318.83 $11,053.27 $11,384.83 $17,436.81 * * * *
Zw $11,639.69 - $1129.24 * * * * *

% Feasible Solutions 100% 10% 20% 10% 10% 80% 100% 70%

* No Solution was Found; - It is not Possible to Calculate the Indicator.



Mathematics 2020, 8, 1457 16 of 24

Mathematics 2020, 8, x FOR PEER REVIEW 13 of 21 

 

Zw 
$10,458.2

9  
$12,898.9

8  
$3,602.81  * * * * * 

% 
Feasible 

Solutions 
 100% 30% 20% 0% 0% 0% 0% 0% 

Instance: (1,1,3) 

Indicator  
Algorithm 

LINGO iGWO GWO mGWO PGWO TGWO PSO DE 
L-

SHADE 

Za 

$11,364.
93 

$17,104.1
6  

- $6,257.03  * * * * * 

Zm 
$17,778.3

5  
- - * * * * * 

S $3,606.26  - $7,251.80 * * * * * 

Zb 
$22,318.8

3  
$11,053.2

7  
$11,384.8

3  
$17,436.8

1 
* * * * 

Zw $11,639.6
9  

- $1,129.24  * * * * * 

% 
Feasible 

Solutions 
 100% 10% 20% 10% 10% 80% 100% 70% 

* No Solution was Found; - It is not Possible to Calculate the Indicator. 

From all instances in Table 12, only the iGWO algorithm found a feasible solution in all the 10 
executions of the seven instances. In the instances (1,1,1) and (2,1,1), the best result was presented by 
iGWO at $18,433.30 and $18,008.18, respectively. GWO and mGWO found only one solution. PGWO, 
TGWO, PSO, DE, and L-SHADE did not find a feasible solution. For the instance (3,1,1), the best 
result was presented by DE with $24,041.09; therefore, the algorithm only managed to find three 
solutions out of 10 feasible solutions. The profit of iGWO is only 7% lower than the best solution; 
also, the average profit and median of the profit of iGWO are better than those of DE. GWO and 
mGWO found seven and nine solutions out of 10, respectively; PGWO, TGWO, PSO, and L-SHADE 
did not find a feasible solution. For the instance (1,2,1), the best result was presented by iGWO with 
$33,842.24. iGWO, mGWO, and DE found a feasible solution for each execution. PSO found two 
feasible solutions out of 10. PGWO, TGWO, and L-SHADE did not find a feasible solution. For 
instance (1,3,1), the best result was presented by mGWO with $44,099.66; therefore, the average profit 
and median of the profit of iGWO is better than all algorithms. GWO, mGWO, and DE found a 
feasible solution for each execution. PGWO, TGWO, PSO, and L-SHADE found two, one, eight, and 
seven solutions out of 10, respectively. 

For the instance (1,1,2), the best result was presented by iGWO, at $22,432.70. GWO and mGWO 
found three and two solutions out of 10, respectively. PGWO, TGWO, PSO, DE, and L-SHADE did 
not find a feasible solution. For the instance (1,1,3), the best result was presented by iGWO, at 
$22,432.70. GWO, mGWO, and PGWO found one, two, and one solution out of 10, respectively. 
TGWO, PSO, DE, and L-SHADE did not find a feasible solution. Figure 1 shows that the profit of the 
found the best solution by LINGO and the iGWO, GWO, mGWO algorithms. These metaheuristic 
algorithms were selected because they managed to find more feasible solutions than the others. 

 
Figure 1. Best solutions found by LINGO, iGWO, GWO, and mGWO for some instances. Figure 1. Best solutions found by LINGO, iGWO, GWO, and mGWO for some instances.

Table 13 summarizes the results of the best solution with profit Zb for the seven instances
presented previously.

Table 13. Statistical indicator for the seven instances.

(1,1,1) (2,1,1) (3,1,1) (1,2,1) (1,3,1) (1,1,2) (1,1,3)

X111 0 0 0 379 379 0 0
X121 302 375 0 0 351 0 0
X131 0 0 380 380 380 379 380
X211 93 0 0 0 85 0 0
X221 0 66 0 0 2 0 0
X231 0 0 151 90 0 94 117
X311 0 0 0 0 0 0 0
X321 0 220 0 0 0 0 0
X331 283 0 363 288 283 283 290
X112 380 0 350 377 378 0 0
X122 0 372 0 377 0 379 0
X132 378 0 365 0 380 0 380
X212 92 0 138 92 92 0 0
X222 0 70 0 0 0 93 0
X232 0 0 0 0 0 0 95
X312 0 0 0 0 212 0 0
X322 0 201 0 266 0 266 0
X332 259 0 324 0 53 0 266
X113 0 368 0 375 319 380 380
X123 0 0 274 0 373 0 0
X133 218 0 0 0 0 106 0
X213 0 62 0 0 0 82 0
X223 0 0 132 0 97 0 0
X233 85 0 0 85 0 0 85
X313 0 227 0 0 153 0 70
X323 0 0 380 0 151 0 0
X333 293 0 0 296 0 297 226
X114 363 369 0 380 380 0 0
X124 0 0 4 0 372 0 380
X134 0 0 190 378 380 379 0
X214 108 0 0 109 83 0 0
X224 0 82 139 0 25 109 116
X234 0 0 138 0 0 0 0
X314 313 77 0 0 0 0 0
X324 0 159 0 0 0 0 319
X334 0 0 380 306 304 306 0

Total Profit $18,433.31 $18,008.19 $24,041.09 $33,842.24 $44,099.66 $22,432.70 $22,318.83
Algorithm iGWO iGWO DE iGWO mGWO iGWO iGWO

Purchasing Cost $110,445.00 $92,846.00 $132,328.00 $134,861.00 $163,740.00 $109,209.00 $109,561.00
Ordering Cost $22,200.00 14,100.00 $18,900.00 $25,200.00 $30,600.00 $18,900.00 $16,200.00
Screening Cost $5915.40 $4979.20 $6777.60 $7936.80 $10,040.80 $5886.60 $5767.30
Holding Cost $4893.61 $4937.89 $4586.55 $9829.94 $14,920.46 $4845.10 $4568.31
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Observe in Table 13 the values for the decision variable Xijt; the total profit for each solution;
and the behavior of the purchasing, ordering, screening, and holding cost.

As a second analysis, the best profit found for each instance (27 instances) is presented. See Table 14,
and observe that iGWO achieved 21 best results out of the 27 instances (77%). There are three instances
((3,3,3), (3,2,3), (3,1,3)) in which only the LINGO and iGWO algorithms found a result, therefore the
best results for these instances were generated by iGWO.

Table 14. Best results for each instance.

Instance Total Profit Algorithm Instance Total Profit Algorithm

(2,2,1) $27,900.68 iGWO (3,3,1) $49,834.26 mGWO
(2,1,2) $21,167.70 iGWO (3,2,2) $40,994.51 PSO
(1,3,2) $43,488.09 iGWO (1,2,2) $35,839.30 iGWO
(1,3,1) $44,099.66 mGWO (1,2,3) $33,407.78 iGWO
(1,1,3) $22,318.83 iGWO (3,1,2) $23,155.55 mGWO
(2,3,3) $39,982.45 iGWO (1,3,3) $43,941.35 iGWO
(3,1,1) $24,041.09 DE (3,1,3) $22,811.44 iGWO
(3,3,3) $49,952.29 iGWO (2,1,3) $18,698.81 iGWO
(3,3,2) $38,302.08 iGWO (2,2,3) $28,370.03 iGWO
(2,3,1) $40,969.35 GWO (2,3,2) $40,031.26 iGWO
(2,1,1) $18,008.19 iGWO (1,1,1) $18,433.30 iGWO
(3,2,1) $36,706.60 iGWO (1,1,2) $22,432.70 iGWO
(3,2,3) $39,901.01 iGWO (1,2,1) $33,842.24 iGWO
(2,2,2) $30,960.60 iGWO

Table 15 shows both the best results and the processing time for each instance using iGWO.

Table 15. Best results for each instance using iGWO.

Instance Total Profit Processing Time Instance Total Profit Processing Time

(2,2,1) $27,900.68 38.81 (3,3,1) $48,323.10 37.44
(2,1,2) $21,167.70 130.23 (3,2,2) $36,578.07 40.00
(1,3,2) $43,488.09 38.14 (1,2,2) $35,839.30 38.41
(1,3,1) $43,068.69 67.37 (1,2,3) $33,407.78 37.32
(1,1,3) $22,318.83 39.28 (3,1,2) $21,261.06 37.61
(2,3,3) $39,982.45 37.16 (1,3,3) $43,941.35 35.54
(3,1,1) $22,262.89 36.92 (3,1,3) $22,811.44 40.96
(3,3,3) $49,952.29 37.29 (2,1,3) $18,698.81 39.66
(3,3,2) $38,302.08 37.22 (2,2,3) $28,370.03 97.64
(2,3,1) $40,312.11 38.06 (2,3,2) $40,031.26 38.49
(2,1,1) $18,008.19 36.63 (1,1,1) $18,433.30 89.98
(3,2,1) $36,706.60 37.36 (1,1,2) $22,432.70 67.68
(3,2,3) $39,901.01 37.23 (1,2,1) $33,842.24 94.17
(2,2,2) $30,960.60 39.55

Figure 2 shows the main effects of the best solutions for the 27 instances considering the iGWO
algorithm. The best results are presented considering case 3 of demand, case 3 of the total available
space, and case 3 of supplier capacity. There is a large difference in the profit when the total available
space is increased.
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Figure 3 presents the main effects of the processing time for the best results (27 instances)
considering the iGWO algorithm. Observe that the lowest time is obtained considering case 3 of
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Figure 3. Main effects for the processing time.

From the numerical results, it can be stated that, different from the linear programming techniques,
the proposed method is able to solve the supplier selection and purchasing problems under very complex
and realistic scenarios, since it does not assume linearity and unimodality in its operation. On the other
hand, in comparison to the original GWO and other metaheuristic schemes, our approach is capable
of obtaining optimal solutions due to the improved capacity to avoid sub-optimal search locations.
Despite its interesting performance properties, the proposed scheme maintains two disadvantages of
very high computational cost and difficulty in implementation, as it is not incorporated within the
suite of commercial software.

5.2. Statistical Analysis

In this section, we present a statistical analysis of the instances (1,1,1), (2,1,1), (3,1,1), (1,2,1), (1,3,1),
(1,1,2), and (1,1,3), in order to show whether there is a significant difference between the profits obtained
by LINGO and the metaheuristic methods (iGWO, mGWO, PGWO, TGWO, PSO, DE, and L-SHADE).

The instances were executed using LINGO and the metaheuristic algorithms, each algorithm for
10 independent times. Then, the non-parametric statistical technique, the Kruskal–Wallis test, was used
to test for significance. Recall that this statistical test compares the medians among the nine methods
used. Table 16 shows the p-values, which present evidence of a significant difference between the
medians of the methods (LINGO, iGWO, mGWO, PGWO, TGWO, PSO, DE, and L-SHADE) around
the total profit; also, it is possible to observe that the iGWO algorithm presents the best median in five
out of seven instances.
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Table 16. Kruskal–Wallis test for the total profit.

Comparison of the Total Cost, Instance (1,1,1)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $11,364.9

iGWO $16,626.3

Adjusted for ties 8 44.86 0.000
GWO 0.0

mGWO 0.0

PGWO 0.0

TGWO 0.0

No ties 8 79.07 0.000
PSO 0.0

DE 0.0

L-SHADE 0.0

Comparison of the Total Cost, Instance (2,1,1)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $5525.6

iGWO $14,915.5

Adjusted for ties 8 47.14 0.000
GWO 0.0

mGWO 0.0

PGWO 0.0

TGWO 0.0

No ties 8 83.09 0.000
PSO 0.0

DE 0.0

L-SHADE 0.0

Comparison of the Total Cost, Instance (3,1,1)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $21,008.8

iGWO $19,175.8

Adjusted for ties 8 54.51 0.000
GWO $12,937.3

mGWO $15,235.6

PGWO 0.0

TGWO 0.0

No ties 8 66.74 0.000
PSO 0.0

DE $19,330.20

L-SHADE 0.0

Comparison of the Total Cost, Instance (1,2,1)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $11,364.9

iGWO $30,388.0

Adjusted for ties 8 72.56 0.000
GWO $23,346.8

mGWO $25,093.5

PGWO 0.0
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Table 16. Cont.

TGWO 0.0

No ties 8 78.58 0.000
PSO 0.0

DE $22,952.1

L-SHADE 0.0

Comparison of the Total Cost, Instance (1,3,1)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $11,364.9

iGWO $42,000.1

Adjusted for ties 8 68.65 0.000
GWO $37,452.5

mGWO $36,718.0

PGWO 0.0

TGWO 0.0

No ties 8 69.76 0.000
PSO $34,925.1

DE $35,512.9

L-SHADE $3571.7

Comparison of the Total Cost, Instance (1,1,2)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $11,364.9

iGWO $15,214.9

Adjusted for ties 8 44.35 0.000
GWO $16,560.68

mGWO 0.0

PGWO 0.0

TGWO 0.0

No ties 8 71.31 0.000
PSO 0.0

DE 0.0

L-SHADE 0.0

Comparison of the Total Cost, Instance (1,1,3)

Algorithm Median
Method Degrees of Freedom H-Value p-Value

LINGO $11,364.9

iGWO $17,778.3

Adjusted for ties 8 44.79 0.000
GWO 0.0

mGWO 0.0

PGWO 0.0

TGWO 0.0

No ties 8 74.12 0.000
PSO 0.0

DE 0.0

L-SHADE 0.0

5.3. Exploration-Exploitation Study

Exploration represents the ability of a metaheuristic scheme to produce solutions within different
areas of the search space. Exploitation is the process in which the search process is intensified over
promising areas of the space with the objective of refining the existing solutions [42]. A metaheuristic
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approach initially promotes exploration. However, as the generations progress, the exploitation should
be intensified to improve existing solutions.

Schemes based on metaheuristic principles involve a set of solutions to exploit and explore the
search space in order to obtain the optimal solutions for an optimization task. In their operation,
the best quality solutions attract other agents conducting the search process towards their locations.
As a result of this effect, the distance among individuals decreases while the results of the exploitation
increase. Conversely, if the distance among solutions increases, the consequences of the exploration in
the metaheuristic scheme are reinforced.

To evaluate the distance among search agents, a diversity index called the dimension-wise
diversity assessment [43] is assumed. Under this index, the diversity is computed as follows:

Div j =
1
n

n∑
i=1

∣∣∣∣median
(
x j

)
− x j

i

∣∣∣∣, Div =
1
m

m∑
j=1

Div j, (21)

where median
(
x j

)
corresponds to the median value of the j-th dimension from the complete population.

x j symbolizes the j-th dimension corresponding to the i-th search agent. n represents the total number
of individuals in the population, whereas m corresponds to the number of variables that involve the
optimization formulation to be solved.

Under this procedure, the evaluation of the diversity in every dimension Div j is formulated as
the mean distance between the j-th dimension of each individual and the median value from that
dimension. Therefore, the diversity of the complete population Div is evaluated by calculating the
averaged value of Div j for each dimension. Div is computed in each iteration during the complete
evolution process.

Once computed the value of Div, the exploration-exploitation balance can be computed as the
percentage of the time that the processes of exploring or exploiting invest in terms of its diversity.
Such values can be evaluated at every iteration by using the following models:

XPL% =
( Div

Divmax

)
× 100,XPT% =

(
|Div−Divmax|

Divmax

)
× 100, (22)

where Divmax corresponds to the maximum Div obtained in the complete optimization process.
XPL% represents the percentage of exploration, which corresponds to the level of exploration.

It relates the diversity in each iteration with the maximal reached diversity. On the other hand, XPT%
represents the percentage of exploitation that expresses the level of exploitation. It is computed as the
complementary percentage of XPL%, since the difference between the maximum diversity and the
current diversity from a particular iteration is generated as a result of the attraction of search agents.
Therefore, both indexes XPL% and XPT% are mutually complementary. Figure 4 shows the evolution
of the balance between exploration and exploitation obtained by the original GWO (Figure 4a) scheme
and the improved GWO (Figure 4b) method, considering as an optimization problem the instance
(1,2,2). This instance corresponds to a representative optimization task that reflects the complexity of
the purchasing problems from an optimization perspective. In the simulation, a total number of 100
iterations have been considered.

In order to compare their performance, the point in which both process exploration and exploitation
maintain the same proportion (XPL% = 50, XPT% = 50) is evaluated. This point represents the
location at which the algorithm changes its behavior from the exploration (where the value of
XPL% > XPT%) into exploitation (XPL% < XPT%).
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GWO scheme and (b) the improved GWO method considering as optimization problem the instance
(1,2,2).

As can be seen from Figure 4, the improved GWO maintains a higher level of exploration, since the
balance point (B) is reached in 500 generations. On the other hand, the original GWO method presents
a lower exploration level, considering that its balance point (A) is located around the 200 generations.
This fact demonstrated that the improved version of GWO is able to explore the search space extensively
in order to obtain globally optimal solutions to the complex purchasing problems. This remarkable
result is provoked by the inclusion of (I) weighted factors and (II) a displacement vector. These elements
avoid the excessive concentration of the search agents in locations, allowing a better distribution within
the search space.

6. Conclusions

Supply chain management requires that processes and models may be able to provide solutions
in a fast and efficient manner. This paper addresses the supplier selection and order quantity
allocation problem. This problem is characterized by its discontinuity, non-linearity, and high
multi-modality. In this paper, a modified version of the GWO scheme is introduced to solve this
type of complex optimization problem. The improved GWO method called iGWO includes weighted
factors and a displacement vector to promote the exploration of the search strategy, avoiding the use of
unfeasible solutions.

A representative difficult problem of the literature was selected with the purpose of testing the
behavior of the proposed algorithm. Solutions were obtained using LINGO and the proposed iGWO
scheme. After exhaustive experimentation, the results demonstrate that the proposed algorithm
does not just lead to lower total cost solutions, but also performs a better search strategy in all the
compared scenarios.
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