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These polynomials have lowering and raising operators, which lead to the Rodrigues formula, difference
equation of order r + 1, and explicit expressions for the coefficients of recurrence relation of order r 4 1.
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1. Introduction

Hermite’s proof [1] of the transcendence of the number e uses the notion of simultaneous
approximation, which was subsequently studied in approximation theory and number theory [2-8].
Multiple orthogonal polynomials are polynomials that satisfy orthogonality conditions shared with
respect to a set of measures [9-17]. They are related to the simultaneous rational approximation of
a system of r analytic functions [18,19] and play an important role both in pure and applied mathematics
(see for instance [20-22] as well as [23-27]). In this context, some families of continuous and discrete
multiple orthogonal polynomials have been studied [3,28-30] as well as some multiple g-orthogonal
polynomials [31-33]. The goal of the present paper is to study some multiple Meixner polynomials on
a non-uniform lattice x(s) =¢° —1/9—1,s =0,1,...

The paper is structured as follows. Section 2 is devoted to introduce the necessary background
material. In Section 3, we consider two families of multiple g-orthogonal polynomials, namely, multiple
g-Meixner polynomials of the first and second kind, respectively. They are analogous to the discrete
multiple Meixner polynomials studied in [28]. We obtain the raising and lowering g-difference operators
as well as the Rodrigues-type formula, which lead to an explicit expression for the multiple g-Meixner
polynomials. Then, the recurrence relations as well as the g-difference equations with respect to the
independent variable x(s) are obtained. In Section 4, some limit relations as the parameter g approaches
1 are studied. An appendix to the Section 3 is considered in Section 5, in which the AT-property of the
involved system of g-discrete measures is addressed. We make concluding remarks in Section 6.

2. Background Material

Let ji = (y1, ..., 4r) be a vector of r positive Borel measures supported on R with finite moments.
By ); we denote the smallest interval that contains supp (;). Define a multi-index 7#i = (n1,...,n,) € N,
where N stands for the set of nonnegative integers. For the multi-index 7, a type II multiple orthogonal
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polynomial P; is a polynomial of degree < |fi| = nj + --- 4+ n,, which satisfies the orthogonality
conditions [34]

/ Pﬁ(x)xkdyi(x) =0, k=0,...,n,—1, i=1,...,r 1)
Special attention is paid to a unique solution of (1) (up to a multiplicative factor) with deg P (x) = |7|
for every 7. In this situation the index is said to be normal [34]. In particular, if the above system of

measures forms an AT system [34], then every multi-index is normal.
Qii(2)
Py(z)

The polynomial P;(z) is the common denominator of the simultaneous rational approximants
to Cauchy transforms

ﬁi(z):/ dL(x), zg¢ Q; i=1,...,r, )

0 z—X
of the vector components of ji = (y4,...,}iy), i.e., for function (2) we have the following simultaneous

rational approximation with prescribed order near infinity [34]

Pa@)fi(2) — Quse) = ot - = O™, i=1,..r

If the measures in (1) are discrete

N;
Ui = Z W; kOx; s wir >0, xix €R, N; € NU{+o00}, i=12,...,1, (3)
k=0
where Jy,, denotes the Dirac delta function and x; x # Xt k = 0,...,N;, whenever i1 # iy,

the corresponding polynomial solution P;(x) of the linear system of Equation (1) is called discrete
multiple orthogonal polynomial (see [28] and the examples therein). In particular, the paper [28] considers
discrete multiple orthogonal polynomial on the linear lattice x(k) =k, k=1,...,N, N € NU{+oo}.

We will deal only with systems of discrete measures, for which (2; = Q C R™ (the set of nonnegative
reals) foreachi = 1,2,...,r. Recall that the system of positive discrete measures p1, yy, . . ., ir, givenin (3),
forms an AT system if there exist  continuous functions vy, ..., v, on Q with v;(xx) = wix, k=0,...,N;,
i=1,2,...,r, such that the |7i| functions

ny—1

v1(x), xv1(x), ..., X" Loy (x),. .., 0.(x), x0.(x), ..., x" "L (x),

form a Chebyshev system on () for each multi-index 7 with |7i| < N + 1, i.e., every linear combination

r
Y Qu—1(x)vi(x), where Q,._1 € P,,,_; \ {0}, has at most |7i| — 1 zeros on Q). Here P, C [P denotes the
i=1

linear subspace (of the space P) of polynomials of degree at most m € Z*.
In the sequel we will consider discrete multiple orthogonal polynomials on a non-uniform lattice
x(s) =q° —1/q — 1 (see [35,36]).

Definition 1. A polynomial P;(x(s)) on the lattice x(s) = c1q4° + c3,q € RT \ {1}, ¢1,¢3 € R, is said to be a
multiple g-orthogonal polynomial of a multi-index 7i € N" with respect to positive discrete measures yuy, U, ..., hr
(with finite moments) such that supp (p;) C Q; CR,i=1,2,...,r, if the following conditions hold:

deg P;(x(s)) < [ii[ = ny +na+--- +ny,
N;
ZPﬁ(x(s))x(s)kdyi =0, k=0,...,n,—1, N; € NU{+oo}. 4)
=0

Ej
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In Section 3 we will deal with particular measures involving the g-Gamma function, which is defined
as follows

I1(1 -4
. _ _ \1-s k>0
)(s) = f(s;9) =(1-9q) TﬂTj$g§,0<q<lf )
(s=1)(s—2) =0
g 2 f(ssq), q>1

See also [37,38] for the definition of the g-Gamma function. In addition, we use the g-analogue

of the Stirling polynomials denoted by [s],gk>, which is a polynomial of degree k in the variable

x(s)=(g°—-1)/(g—1),1ie,

k=1 _s
k
sy =1

=0 1

j—
_11:x(s)x(s—1)~~~x(s—k—|—1) for k>0, and [s],(io)zl. (6)

Hereafter, confusion should be avoided between (6) and the notation for the g-analogue of a complex
number z € C,

qz - q—z
zZ| = .
3 q—q!

7)
The relation between (6) and (7) is as follows: [z] = g!~2 [22]‘(11) /(g +1). The term g-analogue means
that the expression [z] tends to z, as g approaches 1. In general, we say that the function f;(s) is a
g-analogue to the function f(s) if for any sequence (g ),>0 approaching to 1, the corresponding sequence
(f34(8)) 0 tends to f(s) (see Section 4).
The following difference operators are used throughout this paper

def A def \V4

A= Nx(s—1/2) V= vx(s+1/2) ®
Vi=V---V, neN, 9)
1; times

where v/ f(x) = f(x) — f(x — 1) and Af(x) = v f(x + 1) denote the backward and forward difference
operators, respectively. When convenient, a less common notation taken from [38] will also be used:

vxi(s) def vx(s+1/2) = Ax(s—1/2) = qsfl/z.

Observe that
m m _
v (0860 = 3 (7) (F0) (v st k), men, (10)
k=0 k
is a discrete analogue of the well-known Leibniz formula (product rule for derivatives). In particular,
v 16 = L1 () s - b an
k=0

Finally, we will make use of the following notations for multi-indices: The multi-index €; denotes
the standard r-dimensional unit vector with the i-th entry equals 1 and 0 otherwise, the multi-index &
with all its r-entries equal 1. In addition, for any vector & € C" and number p € C,

[oN

- f -
dip = d—wa;(1—ple; = (..., paj, ..., &). (12)
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Multiple Meixner Polynomials of the First and Second Kind

In [28], for multiple Meixner polynomials, it was considered two vector measures ji = (y1,. .., ir)
and 7 = (14,...,v,), where in both cases each component is a Pascal distribution (negative binomial
distribution) with different parameters

o0 T(+x) of _
Y (e, vbx) = (B Tarny *EENE A AmL B2 ),
=0 0, otherwise,

Zv“ﬁz )ox, i=1,...,1.

Notice that v*Fi (x) is a C®-function on R\ {—B;, —B; — 1, —B; — 2,...} with simple poles at the
points in {—p;, —p; —1,—B; —2,...}. For the above measures 0 < w,a; < 1, with all the «; different,
and B, B; > 0 (B; — Bj & Z for all i # j). Under these conditions for both ji and v the multi-index 7 € N
is normal.

For the monic multiple Meixner polynomial of the first kind [28] corresponding to the multi-index
#i € N" and the vector measure ji, define the monic polynomial MZ”S (x) of degree |7i| and different
positive parameters a1, ...,«, (indexed by & = (a1,...,a,)) and the same B > 0 which satisfies the
orthogonality conditions

where (x); = (x)(x+1)---(x+j—1), (x)o = 1, j > 1, denotes the Pochhammer symbol.
This polynomial of degree j is used to deal more conveniently with the orthogonality conditions (1)-(3)
on the linear lattice {x = 0,1,... }.

For the monic multiple Meixner polynomial of the second kind [28] corresponding to the multi-index
i € N and the vector measure 7, define the monic polynomial M%’ﬁ " (x) of degree |fi| and B = (B1, ..., Br),
with different components, which satisfies the orthogonality conditions

ZM;”B(x)(—x)]»v“"gi(x):O, i=0,...,m—1, i=1,...,r
x=0

For both families of multiple orthogonal polynomials the following r raising operators were found

£ (MpP () = —Mpf, (x), (13)
Lo (Mﬁ (x)> = MY (), (14)
where
cor e TG, (00 € (@B UL )Y, =1

(1—0)vo™1(x) Vv

As a consequence of (13) and (14), there holds the Rodrigues-type formulas

MEP(x) = (B)jq (H(a'x_l)> M (il ) (15)

i1 B+ [l (x+1)

M
M (x) = (“fl)ﬁl <ﬁ(ﬁi)ni> x“ ( T i1 ) (16)

SR
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where M% = il;ll (a7 /" af) and ./\/ﬁﬁ =TT, F{ﬁ(ﬁ)x) Vil r%ﬁ(’gi‘z)") Then, from (10) and (11) the above

Formulas (15) and (16) provide an explicit expressions for the above polynomials Mg’ﬁ (x) and Mg’ﬁ (x).
Two important algebraic properties are known for multiple Meixner polynomials [28], namely the
(r + 1)-order linear difference equations [39]

. ' . r 14 . v
Hﬁai,ﬁ+z+17r (AMg’ﬁ(X)) = — Zninﬁlxﬁﬁ+]+17r (M%zﬁ(ﬂ) ’ (17)
i=1 =1 =1

#i

di T (n + B1 — Bi) .
— ; [Tc+ (Mﬁ <x>), (18)
=TT (Bi—Be) T (Br—Bi) I

ki I=i+1

:w

-
X

r S
Hﬁzx,ﬂi-&-l (AM;"B (x)) —

i=1

X.
I
—
T

where
(1) T (n; + B — )
di = Z r—1 = r ’
=1 (nj + Bj — Bi) kﬂ# (e —nj+ B — By) I (nj—m +Bj—Bi)

I=j

and the recurrence relations [28]

XMy (x) = Mf, (x) + <(ﬁ+ i) () + L ) i)

N i ain; (B + |7 — 1)M§,ﬂq (x), (19)

P (y). (20)

Note that each relation (19) and (20) involve r relations of nearest-neighbor polynomials.

Moreover, each family of multiple Meixner polynomials Mz’ﬁ (x) and M;’ﬁ (x) forms common
eigenfunctions of the above two linear difference operators of order (r + 1), namely (17)-(20), respectively.

3. Multiple Meixner Polynomials on a Non-Uniform Lattice

Some algebraic properties will be studied in this section: The Rodrigues-type formula, some recurrence
relations and the difference equations with respect to the independent discrete variable x(s). For the
g-difference equation (of order r + 1) we will proceed as follows. First, we define an r-dimensional
subspace V of polynomials of degree at most |#i| — 1 in the variable x(s) by using some interpolation
conditions. Then, we find the lowering operator and express its action on the polynomials as a linear
combination of the basis vectors of V. This operator depends on the specific family of multiple orthogonal
polynomials, therefore some ‘ad hoc” computations are needed. Finally, we combine the lowering and
the raising operators to derive the g-difference equation. A similar procedure is given in [31,32,36,39—-41].
Finally, the recurrence relations will be derived from some specific difference operators used in Theorems 2
and 4.



Mathematics 2020, 8, 1460 6 of 33

3.1. On Some g-Analogues of Multiple Meixner Polynomials of the First Kind

Consider the following vector measure ﬁq with positive g-discrete components on Rt,
[ee]
Hi= Z wi(k)o(k —s), w; >0, i=1,2,...,71 (21)
s=0

Here wj(s) = vf;‘”ﬁ(s) A x(s—1/2),and

aily (B+s) .
. LT if se RTuU{0},
Ugwﬁ(s):: Ty(s+1) {0} (22)
0, otherwise,

where0 < a; < 1,5>0,i=1,2,...,r, and with all the «; different.

The system of measures y1, yi2, . .., yr given in (21) forms an AT system on R™ (see Lemma 9).
Definition 2. A polynomial M?S (s), with multi-index # € N’ and degree |ii|, that verifies the
orthogonality conditions

E%N@gﬁbmbﬁﬁG)Ax@—Lﬂ):O, 0<k<m—1, i=1,...r 23)
s=!

is said to be the q-Meixner multiple orthogonal polynomial of the first kind. See also (4) with respect to measure (21).

Notice that for r = 1 we recover the scalar g-Meixner polynomials given in [35] and that the
orthogonality conditions (4) have been written more conveniently as (23), in which the monomials x(s)*

(k)

were replaced by [s];’. In addition, because we have an AT-system of positive discrete measures the

. . . s ap N
g-Meixner multiple orthogonal polynomial of the first kind M, (s) has exactly || different zeros on R

(see [28], theorem 2.1, pp. 26-27). Finally, in Section 4 we will recover the multiple Meixner polynomials

g L ip
of the first kind given in [28] as a limiting case of Mq,ﬁ (s).

Let us replace [s}ék) in (23) by

k—-1/2

k k+1
859 = T — VIs+ 157, (24)
[k+1]4
then, we have
Y M AV + sy Axs—1/2) =0, 0<k<m-1,  i=1..r
s=0
Using summation by parts and condition U,‘;"(—l) = vg‘i(oo) = 0, we have that for any

two polynomials ¢ and ¢ in the variable x(s),

[e9)

fOAws)lp(s)vz‘f'ﬁ(s) vals) = = Y o6V (9(6)0 7 (s)) A x(s—1/2). 25)

5=0
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Thus, the following relation

Y.V (Mj;,f(s)ug‘f'ﬁ(s)) SV Ax(s—1/2) = = Y MR o P (o)Al Ax(s —1/2)
s=0 s=0
— — Y MY (5) Vs + 15 Ax(s—1/2),
s=0

holds. Equivalently,

ZV( 55 ﬁ(s)) [S]fng)Ax(s_l/z):O/ 0<k<mn-—-1, i=1,...,r.

Observe that
CtXf,[B—l
LB o\ P (s)) = gl +1/2__9i____ wi/ap-1 o
V(Mq/ﬁ(s)vq (s)) q a(p=1) (5) Qg+ (),
where
e = (wg P —1). (26)

This coefficient will be extensively used throughout the paper and Q, ;| (s) represents a monic
polynomial xI#1*1 4 lower degree terms. Consequently,

[ee] (o)

Z Quits (S)U;i/q,ﬁfl( s ](k+1) Ax(s—1/2) = 2 \Y (M:,’g(s)vgiﬁ(s)) [s }(k+1) Ax(s—1/2)=0. (27)

1

5=0 s=0

From the next Lemma 1 we will conclude that Qg ;5 (s) = Mslﬁ+g i/ e B “s).
Lemma 1. Let the vector subspace W C IP of polynomials W (s) of degree at most |ii| + 1 in the variable x(s) be

defined by conditions

Y W(s) k a]/qﬁ 1()vx1(s):0, 0<k<m, j=1...r,
—0

W(-1) £

%}

g1, 0\ : .
Then, the spanning set of the system {Mq]nlfeﬁ (s)} coincides with W (see notation (12) for
] .
j=1

the index &;1/4).

Proof. The polynomials M q] 1fe/5 1(—1) #0,j =1,...,r, because they have exactly |ii| + 1 different

zeros on R*. Moreover, from orthogonality relations

o Fiq/B—1 k) a/q.p—1 .
Z()qu%feqj (s)[s]g)v,/ (s)vxi(s)=0, 0<k<mn, j=1,...,r,
5=

we have that the system of polynomials Mq];ff ! (s),j=1,...,r, belongs to W.
j

Assume that there exist numbers Aij=1,...1, such that

,
Z/\ My s =0, where Y- |A] > 0. (28)
=1
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Multiplying the previous equation by [s] ,;"k_l) vg"'ﬁ )

00, one gets

¥ x1(s) and then summing from s = 0 to

D Zqu,:ff OBV (5 v ls) =0

Thus, from relations

0 i1, B—1 _ B-1
Y M @R g ) v n(s) = o c € R\ {0}, 29)
s=0

one concludes that Ay, = 0 for k = 1,...,r. Here ¢ ik denotes the Kronecker delta symbol.

P
Thus, the assumption (28) is false, so the system {M q’nl feﬁ 1(5)} is linearly independent in W.
i=1

Moreover, we know that any polynomial from vector subspace W is determined by its || 4 2 coefficients

while (|7i| + 2 + r) conditions are imposed on W. Consequently the dimension of W is at most 7.
b1, "
Therefore, span {ijfa (s)} 1 —W. 0O
1=

From Equation (27) and Lemma 1 we have

(X ,B 1
ap a;,p __—i|+1/2 q, a;/q,8-1 01y / Geestiy f—1
\V/ (qu( )o v (s)) =g |ii|+1/ ailx(ﬁ 1>vq (s)Mq’ln_m (s).

Then, for monic g-Meixner multiple orthogonal polynomials of the first kind we have
7 raising operators

DI MU (s) = g M s),  i=1, (30)
where
. x(B—1) 1 ,
plif def _ HiX (B voliP(s) ).
i q—\ﬁ|c2‘;’f71 vg"/q’ﬁfl(s) !
Furthermore,
) |ri|+1/2 B
D) = Lo (w1 = ) = 3(9)) + () T = 2(5) v ) £6),
‘7/

for any function f(s) defined on the discrete variable s. Here Z denotes the identity operator. We call
Df; P a raising operator since the i-th component of the multi-index 7 in (30) is increased by 1.

In the sequel we will only consider monic g-Meixner multiple orthogonal polynomials of the
first kind.

Proposition 1. The following g-analogue of Rodrigues-type formula holds:

naﬁr’i(ﬁ)FQ(s+1) o Fq(ﬁ+|ﬁ|+5)
Ty(B+s) Mai (Tq(ﬁ+ IﬁI)Fq(sH))’

MyE(s) = g (31)
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where
HMq n;s 33;4,- = (‘xi)isvni(“iqni)sr (32)

and

j=1

ni T gl Bi—1
%i I1q" a r ﬂii_”f
119 7 . (33)
NAL

nj = .
i=1 Hl (aiq|”|+f5+f_1 -1
]:

with |#|; = ny + - - -+ n;_q, |#jy = 0.

Proof. Fori =1,...,r, applying k;-times the raising operators (30) in a recursive way one obtains

ki ‘
T (Oéiq‘me‘Bi] — 1)
T8\ ghys Ta(Bts) 4 _ UKD g2 |yt

i=

ro—n; Zk] r— 1q* 1‘] z+1 i tX]/q ,ay/qk’,ﬁflﬁl (S) Fq(ﬁ — |k| —|—S)

1:1 i=1 q,n+k rq(,B - |%|)rq(s + 1) '

Taking 17 = 11y = - - - = n, = 0 and replacing g by B + |k|, a; by a;q", and k; by n;, fori = 1,...,r,
yields the Formula (31). O

3.2. g-Difference Equation for the q-Analogue of Multiple Meixner Polynomials of the First Kind
We will find a lowering operator for the g-Meixner multiple orthogonal polynomials of the first kind.

We will follow a similar strategy used in [32].

Lemma 2. Let V be the linear subspace of polynomials Q(s) on the lattice x(s) of degree at most |#i| — 1 defined
by the following conditions

LO@E 0 vne =0 0sksm-2 ad  j=lin

ig B+l . . .
Then, the system {Ma 7 ﬁ+ (s)}i_y whered;q = (aq,...,q9a;, ..., &), is a basis for V.

Proof. From orthogonality relations

) Mﬁjf'ﬁjl(s)[s},gk)vgaj'ﬁﬂ(s) v x1(s) =0, 0<k<n;-2 j=1,...,r,

i—¢€;
s=0 1 /

we have that polynomials maP H( ),i=1,...,r,belong to V.

q,ii—¢
Now, aimed to get a contradiction, let us assume that there exist constants A;,i = 1, ...,r, such that

u figpt1 4
EAiMﬂiﬁffi (s) =0, where Zi |A;| > 0.
1= 1=
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Then, multiplying the previous equation by [s ]("" D vg" p (s) v x1(s) and then taking summation
on s from 0 to oo, one gets

Thus, from relations
ad &i, ,B+1 -1 ,
Y MU ) Vo s) v () = o c R\ {0}, (34)
s=0
we deduce that Ay = 0 for k = 1,...,7. Here J;; represents the Kronecker delta symbol.
1q/ﬁ+1

;
Therefore, the vectors {Mq 25 (s) } _are linearly independent in V. Furthermore, we know that

any polynomial of V can be determined with |7i| coefficients while (|7i| — r) linear conditions are imposed

i Bt1 r
on V. Consequently the dimension of V is at most r. Hence, the system {M . é’i (s) } | spans V,
’ i i=

which completes the proof. [

Now we will prove that the operator (8) is indeed a lowering operator for the sequence of g-Meixner
. . . . ap
multiple orthogonal polynomials of the first kind M 1 (s).

Lemma 3. The following relation holds:

ith

aﬁ m\n+uzl_“ﬂ (1) p Ria B+
( ) gq — q|n|+ﬂ } Mq,ﬁff?i (S) (35)
Proof. Using summation by parts we have
1 o A k) qujp+1
2 AMEE )] 0f 7 (5) 7 () = = Y MU ()9 (51500 () 7 3 (s)

s=0
= — Y. MY () giu(s)vy () 7 (s), (36)

s=0

where

B
oiats) =0 (U 1) 4 -2

is a polynomial of degree < k + 1 in the variable x(s). Consequently, from the orthogonality
conditions (23) we get

ZAM B ) vaE) =0, 0<k<m-2 =1

Hence, from Lemma 2, AM?E (s) € V. Moreover, AM?g (s) can be expressed as a linear combination

)Y,

of polynomials {M T ie,

251 j,;’;(s), Y &l >o. (37)
i=1
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Multiplying both sides of the Equation (37) by [s],(in"_l)vglx"”g (s) v x(s) and using
relations (34) one has

) . r )
- AME () [s] Vol (5) & xa (s 2 Z miaP
s=0 i=1 s=0

Z M (5) sl VoI (5) 7 30 (s). (39)

qmn—ex

(s pI*% B (5) 7 2 (s)

If we replace [S]‘SH by [s]é"k_l) in the left-hand side of Equation (36), then Equation (38)
transforms into

Y- AMYE(s)[s)§" Vol P (s) 7 2 (s 2 M () i1 (5) v (5) 7 x1(5)
s=0
_ ’771/2 (1 _ “kanJrﬁ) o LB nk) txk B
- wex(B) S;OMq,ﬁ (s)[sg (s) v xi(s). (39)

For this transformation we have used that x(s)[s — 1] énk_l) =s ](”" ) to get

g 1% (1 - mg"tP)

— _ (nx)
Pr—1(8) = < (B) [s]g * + lower degree terms.

On the other hand, from (30) one has that
g1/2 (1 _ “kqwﬂ%)
aex(B)

Considering (40) and using once more summation by parts on the right-hand side of Equation (39)
we obtain

o ()M () = —qlT =129 (o P ()M (s)). (40)

qmn—ex

Y- AMYE(s) s Vol P (s) 7 2 (s)
5=0

. _ n+p o a
11— g tP [V s S s) v )

_qln g E L 9,
_ i ls ;‘,’:Zkﬁi ¥ MU ) (Al ) o 5) ¢ 1 9)
Since A[s]gn") = g3/27 [nk],gl) [s]é”"fl), we have
L AMR e B ) v o)
= g2 ) ffkk;’:; VL M Ol ) v ).

Comparing this equation with (38), we obtain the coefficients in the expansion (37), i.e.,

£ = gl nk+1/2 1 — ayeg"c P

](1)
— q|”H/5 ’

Therefore, relation (35) holds. O
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Theorem 1. The q-Meixner multiple orthogonal polynomial of the first kind M?’s (s) satisfies the following
(r 4 1)-order g-difference equation

r = — i ﬁ
i, BH1 5 p 8B |7t —n; +1 1 — g™ 1) qajpF1, . p
qu M) = ;q q\nlﬂ% HD My (5)- D

/#z

Proof. Since the operators (30) commute, we write

r 7 _ _
[[Dfftt = [ T]Di P | Dbt 42)
i=1 =1

i

Using (30) when acting on Equation (35) with the product of operators (42), we obtain (41), i.e.,

— i /3 2.
qu; B+1 rxﬁ 1/2 1—wq" i B+1 (o gug, Bl y g Bt
[Toyam; qu S HD (PF M)
i=1 — &g
i
i+p r .
- _ |7i|—n;+1 1- lq (1) quj,p+1, &,B
12167 1= g1 h [nilg qu qu( 5).
j#i

This completes the proof of the theorem. [J

3.3. Recurrence Relation for q-Meixner Multiple Orthogonal Polynomials of the First Kind

In this section we will study the nearest neighbor recurrence relation for any multi-index 7.
The approach presented here differs from those used in [28,42]. We begin by defining the following linear
difference operator

Fam = 847 ()V"ggx(s), (43)

where n; is the i-th entry of the vector index 7 and g, s is defined in the variable s and depends on the
i-th component of the vector orthogonality measure ji. In the case that g, x depends also on the i-th
component of 7, then the index k = n;; otherwise k = i.

Lemma 4. Let n; be a positive integer and let f(s) be a function defined on the discrete variable s. The following
relation is valid

Fanx(s)fa(s) = q "1 2x(ni)g () V" gq () fy(5) + 97" (x(s) — x(n:)) Fym fo(s).  (44)

Proof. Let us act n;-times with backward difference operators (9) on the product of functions x(s) f(s).
Assume thatn; > N > 1,

Vix(s)f(s) = V" (Vx(s)f(s)) = V(g V2 f(s) + x(s — 1)V f(s))
=g V2V f(s) + VI (x(s — 1)V £(s))
_ q—l/Zvn,'—lf(s) + vi—2 (VX(S — 1)Vf(s)) (45)

Repeating this process, but on the second term of the right-hand side of Equation (45)

Vnix( ( 1/2—n; 4ot q—5/2 + q—3/2 + q—l/Z)vn,-—lf(s) + x(s _ ni)V”if(s)
= g2 () V() + 3(s — n) V().
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Thus,

Vix(s)f(s) = q " () V() g7 (x(s) = x(n)) VIf(s),  mi > 1. (46)

Now, to involve the difference operator /; ,; in the above equation, we multiply the Equation (46)
from the left by g,;(s)~" and replace f(s) by gox(s)f(s). Therefore, the Equation (46) transforms
into (44). O

Theorem 2. The g-Meixner multiple orthogonal polynomials of the first kind satisfy the following (r 4 2)-term
recurrence relation

i, , - Jaig "L (B + i — 1) ,
x(s)MYE(s) = MYE L (s) + bag 2 oy BriMy% (), (47)
i=1 q.fi+n;e; " q5i+ne;
where
i x(B+ 1) -
bﬁ,k _ —“kqlankHW + (q _ 1)1—[ |n\+/31—10é 11
q,i+nyey =1¢ q, n+n i€
. @i, 7 L . 7| n;
i =1 Cqi g TP gt — 1 g™ — g
+2 q- \"\ ( P U i, i, p—1 a;,p [l wiq"i — a;q"i
i=1 gi T T itne; q,ii+n;é q,7i+n;e; j#i /
and
wig" — 1 Lo gl — g o€ ﬁﬁ
Bﬁ,l_ (Xﬁ .qniia,q]]i[ lX‘B
Coitng; J7i A ] i=1 Cq,n+n i;
Proof. Let T )
I,(B+n+s
q -
s;B) = , where n = [i].
&) = E T, e+ 1) i

We will use Lemma 4 involving this function fn(s;) as well as difference operator (32).
Consider equation

() =V (g ) f (55 8) = () 9" (77127 (g™ ) fasa (5:B)) )

Cock,ﬂJrl
= q"% () V"™ <("‘k‘7nk)s (1 " (akanfi”)+'zk/§k+ i) T )> fn(s;ﬁ)) ,

which can be rewritten in terms of difference operators (32) as follows

Pl
qfl/zMankﬂan(S}ﬁ) = M?fnkfn(s;ﬁ) + T an X(s)fu(s: B)- (48)

(g™ 1) x (B + [7i])
Since operators (32) commute, the multiplication of Equation (48) from the left-hand side by the

product H My qn; yields the following relation
z;ék

B 1 i .
Mg,ﬁx(s)fn(s;ﬁ) _ (“kq “kr)‘;:_(lﬁ + |i|) (q—1/2./\/[gn+ekfn+1(s,‘ ‘B) — M;[;J%(S;ﬁ)) . (49)

q,7i-+n 8
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Let us recursively use Lemma 4 involving the product of r difference operators acting on the function
fn(s; B), which in this case is the operator ./\/lg,ﬁ (see expression (32)). Thus,

&, B
x(n ) qn-&-n]e]

M g2 i *”‘1‘1 " T
q M ZH i — r a ’BHM%;’[}—(B,”- fn(S/lB)
S T (g — 1)1 ] P
v=1 "
= T
ﬂ(zl,B r |ﬁ‘ 1 — qz‘n‘+ﬁ H 0(1 .
Cqi+n; q"x(n;) i=1 x(n;) 2
—~ -+ i Y ME fa(s;B). (50)
-1:[ b 121 c“”ﬁ (aig" — 1) (g—1)1! g b aifn(5:P)
e q e

Using the expressions (49) and (50) one gets

y o n+1 + |7
( )M“ﬂfn( q‘nl l/ZH (x,q ( q ,Xk)‘B+(]IB | |> qn+gkfn+1( ,B)
=1 Co itz 4,7+ 1 B
. — 2B T
road [ g - e, g n
9.1 q"x(n;) i=1 x(ni)  q"Max(B+1A) | a
+ 1—[ ’XiuB 2 Tl] 1 : “zr.B - (q — 1)_1 H N, ;3 ng— 1 le,‘B+l M;‘,ﬁfn(s, IB)
=1 Cofitnie; (g = 1)~ =1 Coii T Citn,

r Il _ nj i — 1
1/2 aiq ajq" x(n;) (wiq"
1 121]1;[1 gt — o i " C‘)‘l/S HMq =0 fn 'B)

q,7i+n;e;
Observe that when [ = i in the above expression we have
/S‘Hfl‘l“rrli*l 1
¥ .
qn 1fn(sB) = l/zq,x,TMgfmfn(S?ﬁ) - W qn o 1fn-1(5:B)-
q,7ii+n;€; Cq/ﬁJrnret
Therefore,
x(5) M fa (3 B)
i
, ag™ N x (B + |id .
—qlil- WH o A P D M o (5B) + baa M)
i=1 q fi+n;€; q,7i+n€
roaig ™ — aig" x(n) (wig" 1) 1
N ql/z ZH al'qni — lxi’]nj &, ,B ) “uﬁ 1 HMq ny— 51 fn 1( 'B>
i=1j#i =1 / Cq i+n;€; q,ii-+n;€; =1

ia,p Fq(ﬁ)(l"q(s—)&-l) and
B+s
using Rodrigues-type Formula (31) we obtain (47). This completes the proof of the theorem. [

Finally, multiplying from the left both sides of the previous expression by G,

3.4. On Some g-Analogue of Multiple Meixner Polynomials of the Second Kind

Consider the following vector measure ¥; with positive g-discrete components

2:% (k—1/2)6(k—s), i=12,...,1, (51)
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where vg’ﬁ (s) is defined in (22), but here the domain for its non-identically zero part is
s€Q=R\{Z U{-B;,—Bi—1,-Bi—2,...}}, Bi>0,B;— B & Zforalli # j,and 0 < & < 1. Indeed,

a*Ty(Bi +5)
Ug"Bi(S) = Fq(s—i—l) !
0, otherwise.

ifse ),

Definition 3. A polynomial M;’S (s), with multi-index # € N’ and degree |ii| that verifies the
orthogonality conditions

ZM"‘ﬂ SWobisy Ax(s—1/2) =0, 0<k<m—1, i=1,...r (52)

is said to be the g-Meixner multiple orthogonal polynomial of the second kind.

The general orthogonality relations (4) have been conveniently written involving the g-analogue
of the Stirling polynomials (6) as in relations (52). In Section 5 we will address the AT-property of the
system of positive discrete measures (51). This fact guarantees that the g-Meixner multiple orthogonal

polynomial of the second kind M‘X P ~(s) has exactly |7i| different zeros on R™ (see [28], theorem 2.1, pp. 26-27).
In Section 4, the multiple Melxner polynomials of the second kind (16) given in [28] will be recovered as
g approaches 1.

To find a raising operator we substitute [s]gk) in (52) for the finite-difference expression (24) and then

we use summation by parts along with conditions vg”s (-1) = v?’ﬁ "(00) = 0. Thus,
Z()Mf;,’g(s)v[s—i— YD) Ax(s—1/2) =0, 0<k<m—1, i=1,...,r
Ss=

Using (25), one gets

MZ:S(s)vg’ﬁi (S)A[s]ng) Ax(s—1/2)

e

ZV< 5)og?(s )) )V Ax(s —1/2) = -

@
Il
o

Fis) Vs + 1 Ax(s —1/2).

I
\
il agk
o
Sip
S
—
195}
SN—
<
==
=

ZV(MZ’E(S)U?’ﬁi(s)) [s],(ikH)Ax(s—l/Z):O, 0<k<mn;—1, i=1,...,r,

s=0
where
gl A
B g PiT
v(MZ‘f( >v2‘ﬁ(s>)_ A P o)
1

Pyii+z (s) denotes a monic polynomial of degree |7i| + 1. Therefore, from (52) the relation

qu”ﬂz 'X/Ms’ ( )[](k+1)Ax s—1/2) = ZV< 'Xﬁ’( )> [s]ékH)Ax(s—l/Z):O,
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implies that P ;i 7 (s) = Ma/ﬂ’ﬁ:a (s). Therefore

gte;
v M‘Xﬁ B _ q—\ﬁ\+1/2 Z’fl a/q,pi—1 M“/qrﬁ—?f
qn( Jug"i(s) ) = W% (s) q,i+2; (s),

which leads to the following r raising operators for the monic g-Meixner multiple orthogonal polynomials
of the second kind .
,Bi /q,B—¢;
DyP ML (5) =~ MR (s) (53)

The operator DZ‘ Piis given in (30) with the replacements: «; by « and B by ;, respectively. Indeed,

|7
Dg'ﬁif(s) _1 Ty ( (aqﬁl (x(1—B;) —x(s)) + x(s)) Z—x(s) v )f(S), (54)

holds for any function f(s) defined on the discrete variable s.

Proposition 2. The following finite-difference analogue of the Rodrigues-type formula holds:

|7]
0B _ gibales+1) ) g (”“7 )
Myi(s) =G o N T,(s+1) |’ (55)
where Fy(B) o TalB )
8 ! , . ; i +n;+s
N.Bﬂ: N.Bz_’ N}gt: g\ n; ~ g\t ! , 56
o 1131 T T (B + ) Ty (Bi+ ni) %6
and
H qﬁiJr]'*l
=3 N T = L
G = (=) (™) " g2 [T I1 ) (57)
i=1 H C“ Bitj—1 i

Proof. We follow the same pattern given in Proposition 1 adapted to the operator N qﬁ a-Pori=1,...,1,
by applying k;-times the raising operators (53) in a recursive way, the following expression holds

11[ (!3:— ki) ok, rq(ﬁifS) (@)* M (s) = ﬁ[ﬁi_1]c<ikl-)q|1?|/zqf(u?\)|m
(:Bz k+s) Fq(lgz) rﬁ(s+1) q i=1

4 a,Bi—j oc/q‘z‘,ﬁrkl,m,ﬁr*kr (“/q\ﬁ\)s
8 (ﬂ“ HC ) g ii+k (S)Fq(s+1)'

Letny = ny = --- = n, = 0 and replace B; by B; + k; and a by zxq'm. Finally, if we rename the new
index component k; with the old index component n;, fori =1,...,r, the expression (55) holds. O
3.5. g-Difference Equation for the q-Analogue of Multiple Meixner Polynomials of the Second Kind

In this section we will find the lowering operator for the g-Meixner multiple orthogonal polynomials
of the second kind.

Lemma 5. The g-Meixner multiple orthogonal polynomials of the second kind satisfy the following property

-

r

> Bre _ Brt1 > B+e 1
ZOMZ,‘;‘ig () [s]" Y P (s) v 3 () = mii 3 My () (510D o P (s) 7 31 (s),
S= s=
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where

1 — agli+pi 1 r gl .
;= ] _ x(ng+Br—Bi), ki=12,...,r 58
my i aq‘nHﬁf X(le + :Bk - ,Bl) j=1 1-— aq‘nHﬁi ( k ‘Bk ‘BJ) ( )

and €=1Y) ;€.

Proof. By shifting conveniently the parameters involved in (53) and (54), respectively, one has

B - Bitl P
M) = —g o (Mt )

i1 L o
-7 pi+1 (=B — q0,B+¢; g0+
= { (07 (00 2 (p0) 2 MIFE) 1 x(6) 9 M0}
Thus,
) - || —1 0
ap (ng—1) B +1 ___ 1 (ng=1) ,oBr+1
L MO P 0 v = - o L AP 6 vat

{ (a0 a6) = () = x(0)) MIFET5) 4206) v M0 ).

Using summation by parts in the above expression we have

Y- MYE(s) (5] o P (5) w7 2 (5)
s=0

(xq‘mJﬁBi i

B+é - Brtl
= T g+ B B) LML @) [0 of T 0 v ()
~ ; )y
[7i|—ng+2 © o
i , i — , 1
T g B~ DXt 1) L MEEE ) B ) 9 )
N s=0

From the orthogonality conditions the following relation holds:

Y MIEE(5) 51002 of P () 7 xa(s) =0

7i—¢; q
s=0
Therefore,
© 7 [7i|+Bi
wpB (me—1) B+l __q _ B
S;)Mq,ﬁ (s) [S}q oM (s) v xq(s) = Wx(”k + B — Bi)

x Yo MIEEE o) [s] D o P (s) v (s). (59)

Then, by iterating recursively (59), the relation (58) holds. This completes the proof of the lemma. [J

Lemma 6. Let M = (my;); ._, be the matrix with entries given in (58). Then, M is non-singular.
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Proof. Let us rewrite the entries in M as my; = cxd;/ [ny + B — Bilq, where

aq\ﬁHﬁj

1 Wx(”k + Br — Bj),

g — ﬂi/z 1— aq‘m"‘ﬁi
i=4 aq|ﬁ|+lgi ’

[+ B — Bilg = g PP 2x (e + i — By).

Ck — q(lfnkflgk)/z

The matrix M is the product of three matrices; thatis M = C- A - D, where A = (1/ [nk + Bx — Bil ) ) ki=1

and matrices C, D are the diagonal matrices C = diag(cy, ¢y, .. .,¢r), D = diag(dy, dy, . . ., dy), respectively. [

In ([31], lemma 3.2, p. 7) it was proved that A is nonsingular. Therefore, M is also a nonsingular
matrix. Indeed,

r
det M = U~ D/2 (]‘[c]-dj> det A,
j=1

rﬁl ; x(B1 — Br)q" x(ng — ny + B — Br)
_ kzll:kJrl

_ _ . (60)
I1 11:[1 x(n; + Br — B)

k=1

Lemma 7. Let V be the subspace of polynomials & on the discrete variable x(s), such that deg® < |ii| — 1 and

219(5) [s}ék) vga'ﬁﬁl (s)vxi(s)=0, 0<k< ni—2, j=12,...,r

_— r
Then, the system { MZ"%’lj;@i (s) } is linearly independent in V.
o i=1

Proof. From orthogonality relations
A +1 ,
)y M) 0 o P ) v =0, 0<k<mi—2, j=12,..1,

we have that polynomials Mzaﬁ’i J;]. (s)eV,fori=1,2,...,r
Suppose that there exist constants A;,i = 1,...,r, such that

r r
Y AMI ’iﬁft( )=0,  where Y |A]>0. (61)
i i=1

Then, multiplying the previous equation by [s] ,(7""_1) vZ“’ﬁ ¥1(s) 7 x1(s) and then taking summation
on s from 0 to oo, one gets

r

Y A ZMg”;ﬁjff s VI P (6) 7w (5) = O,

i=1
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Using Lemma 5 and relation Z M % +e’( )[s] ,(1”" _1)03“43 it (s) v x1(s) # 0, we obtain the following

s=0 "¢

homogeneous linear system of equatlons
r
ka,i/\,':o, k:1,...,1",
i=1

or equivalently, in matrix form MA = 0, where A = (Aq,..., Ar)T. From Lemma 6, we have that M

is nonsingular, which implies A; = 0 for i = 1,...,r; that is, the previous assumption (61) is false.
r

Therefore, {MW P +e’ (s) } is linearly independent in V. Furthermore, we know that any polynomial
i_

from subspace V can be determined with |i| coefficients while (|#| — r) conditions are imposed on

V, consequently the dimension of V is at most r. Therefore, the system {Mguji gl( s)}i_, spans V.

This completes the proof of the lemma. [

Now we will prove that operator (8) is indeed a lowering operator for the sequence of g-Meixner

multiple orthogonal polynomials of the second kind M B = (s).

Lemma 8. The following relation holds:

- r Z. >
AMIE(s) = Y &MY (s), ©62)
i=1
where
Ty x(m + B1 — i) (1 agh P g2

6= Mz X(Bi = Bi) =1 ¥(B1 = Bi) 5 (1 — ag"P7)x(n; + B; — ;)

(1) TTiy x(n; + B — Br)

. (63)
Hk 1k#j q ]x(nk —nj + Bx — :B]) H;:jJr] q”lx(n]- —n+ ,B]' - ,Bl>
Proof. Using summation by parts we have
+1 B k). qaBj+1
z AMYE )1 oy P (5) 7 () = = Y MU ()T (818000 () 7 3 s)
s=0
== L M09 () 7 0 (6) (64)
s=

where

B qPix(s) ® 172 x(s) (k)
qoj,k(s) - ql/z ( x(ﬁ]) +1> [S]q -9 l/zﬁ[s - 1]17 ’

is a polynomial of degree < k + 1 in the variable x(s). Then, from the orthogonality conditions (52) we get

ZAM GO P ) x(s) =0,  0<k<m-2  j=1,...n
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From Lemma 7, AM“’E (s) € V. Moreover, AMZS (s) can be expressed as a linear combination of

qa, /3+ez( N

polynomials {M I ie,

,
Z M), Y 6l > o. (65)

i=1

Thus, for finding explicity &y, . . ., §; one takes into account Lemma 5 and (65) to get
’ -1
£ amf e w0 = (S £l o
X UZ "wpit (s) 7 x1(s). (66)

If we replace [s]( ) by [s ]("" Y in the left-hand side of Equation (64), then left-hand side of
Equation (66) transforms into relation

L AM e B 6 7 (e) = - 3 M e g (165 (9) 7 1
5=0
1/2 1 — q g tPBe) = - ,
- ! (“an—fgk ) Z M;,’g(s)[s]g 2 gﬁk-H( ) YV X1 (S)
s=0

We have used that x(s)[s — 1],(711"_1) = [s]gn") to get

-1/2 _ n +ﬂk
q L —ag™
q)k,nk—l (S) = - (UCJC(‘Bk) )

[s}énk) + lower degree terms.

Using Lemma 5, we have that

Y- AMIE(S) ) Vol P (s) 7 21 (s)

1 — ag™kTBx |ﬁ\—"k+1/2 N
o ) 3 M 9

Z T P ) Dol P 5) G (s), (67)

where
ql/z(l — “an"'lgk) r (xq‘n""'ﬁl

by = Déan+ﬁk gl |n‘+lg (nk+ﬁk_18i)‘

From Equations (66) and (67) we get the following linear system of equations for the unknown
coefficients &y, ..., ¢,

b]‘:Z(:iS]‘,,‘, k=1,...,r, < S=0b, 62(61,...,(’:}), (68)
i=1

where the entries of the vector b and matrix S are as follows

_ (L= agithi)ghi it
g

’ Sj,i = mj,l-.
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The above system (68) has a unique solution if and only if the matrix S is nonsingular. From Lemma 6,
Formula (60), this condition is fulfilled. Accordingly, if C;; stands for the cofactor of the entry s;; and
S;(b) denotes the matrix obtained from S replacing its ith column by b, then

det Sl(b)

Gi = detS ’

i=1,...,r.

From Lemma 6,

r
det Sl(b) = Zb]C],Z
=

— 4 IT;-] Lot U112 9" % (e = my + Bre — Bir)
1)i+i _ j j ‘
I Thmt i T, X (i + B — Br)

k=1k#i 1=k+1,1%i

|
Amw

Il
—_

]

Therefore, relation (62) holds. [

Theorem 3. The q-Meixner multiple orthogonal polynomial of the second kind Mg’g (s) satisfies the following
(r + 1)-order q-difference equation

;
H,anﬁ +1AM0([3 2 UD‘?"‘ /51+1 )’ (69)

J#l

where ;s are the constants in (63).

Proof. Since the operators (53) commute, we write

1_ +1 Bit1
HDW A HDW Pt prett, (70)
7
0

Using Formula (53) in Equation (62) by acting with the product of operators (70), we obtain the
desired relation (69); that is,

Hqux /S,JrlAMoc /S( ) _ Zng,DZi‘f]+1 <an /31+1M3f;1/5261 (S))

i=1  j=1
J#
r 11
Y e IOl M),
i=1 j=1

3.6. Recurrence Relation for q-Meixner Multiple Orthogonal Polynomials of the Second Kind

Theorem 4. The q-Meixner multiple orthogonal polynomials of the second kind satisfy the following (r + 2)-term
recurrence relation

x(s)MYE(s) = MYE . (5) + b M s)

r r z
2fii| -1\~ X (1) x(Bi +n;i — 1) x(ni + Bi — Bj) o
C = SC = j#i 1 i ] Ji
qn+n;e; " q,n+n;e;
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where
(g ag ()
bix =1+ )y - 1
AL B = q”zc“ﬁ’ s
q,ii-+n;¢; q.n+ngey
B
r Tl—|— _ r xn.+ L R. r_xn, r C -
+(q—-1) ( q‘n 2 vcﬁz l a/lefl )Hx(n(—;ﬁ!ilnﬁi])ﬁ) +H “(/511).1—[ ”‘//Zi,n )
=1 qn+n elcq 7i4-1;€; J#i : : 7 / i=1 qn i=1 Cq/ﬁ+"i€i
and
= xBi—1
Caghil -1
A B B
Cqiitnig; =1 Cqitn;
Proof. Let (aq™)*
&q
— h —
gn(S,DC) Fq(s—i-l)' where n |1’l|

We will use Lemma 4 involving this function gn (s; &) as well as difference operator (56).
Consider the following equation

Mvnk+1 Tg(Bx+ g +1+5) (aglH1)s
Tq(Br +5) T,(Be+n+1) To(s+1)

_ Fq(ﬁk) )Vﬂk <q—s+1/2 v (FQ(ABI( +me+1+ S) (D‘qﬁHl)S))

- Ty(Br+s Ly(Bk+ne+1) Ty(s+1)

a,Br+1 -
T T c’nh o |7 \s
_ ql/Z q(Br) v ( g(Be+ e +s) (1 : q,7+ne x(s ) (ag™) ) )

Ty(Br+s) Ty(Br + ny) a1 x (B + ) Ty(s +1)

which can be rewritten as follows
~ ~ o, Br+1 ~
NG i W VE YV S b R VS £ S (6)- L .
Ty (s+ 1) ML) T Gag (et T 1)

Since operators (56) commute, the multiplication of Equation (72) from the left-hand side by the
product H /\/};g 1, yields
z#k

P ooy (@™ wx(Brm) (5 g s (gl
Yo ()WSH) glil=1/2cM Bt Npiar,cr1 1 Mitsrn ) @

q,1i+nie

Let us recursively use Lemma 4 involving the product of r difference operators [T/_; JF; », acting on

the function gn(s; «), that is, the operator /\/q ﬁ 5 (see expression (56)). Thus,

Bj
roor 1/2 L _R. x( ) b
|n|Nﬁ_.x L (s; lX T’lz +ﬁ1 ,B]) qn+n e] (s
q 5)gn( IZJI]#I! FCIEY —y ﬁ o 11211 s, 8n(550)
() 0 o 5
+ 4"y qn.cl’:’ﬁi +(q-1) c /\/’ﬁngn (s;a +H qr:&;: E’x(s)Nfﬁgn(s;a). (74)
i=1 ! = =1 = i=1
qn 11,” qn
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Hence, using expressions (73) and (74) one gets

Bi a,pr+1
q,ii+n;e; q,7i+niey

" r lx'gi [7i]+1
il — 18 +n
x(s)./\/'ﬁﬁgn(s;ﬂé) _ qlnl 1/21—[ . €y q x(Br k)_/\/qﬁn+€kgn+1(s )

ok " x(n 'x(n; aglil+1y
’ 7 ‘ +n
+HTwp— "X .(le,;a[ +@-1]] Sxﬁ) g a/sk(ff 2 Nﬁngn(s «)
il —~ n !
1 =147, 5 i=1 qn qﬁ+nkEk
VT q'%x x(n; + Bi — B;
i=1j#i x(ni+ Bi —nj— ,3])

a/S, H q,n, i gn 5 a)'

anrne -
Observe that
—1)agllx(n; + ;i —1 agll —1
NE gni—18n(5:4) = q 17208 = 1g lxrﬁi(—lz b )Nﬁ" §n(s; ) + Zﬁ -1 Nrﬁz “18n-1(s30),

q,7i4n;€; q,7i+n;e;

which is used in the previous expression when the indices ! and i coincide. Therefore, the following
expression holds

x(s )./\/B (55 0) _qlnl 1/21—[ lXﬁ, (“‘i‘ﬁ‘H) (ﬁk"‘”k)/\/ﬁ Zni1(s;)

,Br+1 4,71+
€ jitn;é; q,7i+n,8;
B 12 x(n; + Bi — Bj) x(n
+bﬁka£ﬁgn(Si“)—q (1 aq") ZH (ni + Bi —nj— Bj) Mbi aﬁl—l HNqﬁ;l«z 5, 8n-1(5;0).
i= 1]7&1 ! ! / an+n e,Cq,n-i-n i@ I=1

Finally, multiplying from the left both sides of the previous expression by G, if, T T(Bi)/Tq(Bi+s)
and using Rodrigues-type Formula (55), we obtain (71). This completes the proof of the theorem. [J

4. Limit Relations as g Approaches 1

The lattice x(s) = (g° —1)/(q — 1) allows to transit from the non-uniform distribution of
points (¢° —1)/(g—1), s = 0,1,..., to the uniform distribution s, as q approaches 1. Under this
limiting process one expects that the g-algebraic relations studied in this paper transform into the
corresponding relations for discrete multiple orthogonal polynomials [28]. Indeed, the g-analogue of
Rodrigues-type Formulas (31) and (55) will be transformed into their discrete counterparts (15) and
(16), respectively. As a consequence, the recurrence relations (19) and (20) can be derived from (47) and
(71), respectively.

We begin by analyzing the Rodrigues-type formulas, which then can be used for addressing the
limit relations involving other algebraic properties.

Proposition 3. The following limiting relations for q-Meixner multiple orthogonal polynomials of the first kind
(31) and second kind (55) hold:

” C(a \UTEITEA) Py o (DB ]+
i = @nll (%) “Hpes 17 (b ) @

il (1 Is+1) 5 TBi) _n L(Bitni+s) )
%er}Mrﬁ() (ag) (H(ﬁi%,-) S(xs rig sy Vo r(gi.tnf (r(saﬂ))' (76)

i=1

The right-hand side limiting results are the corresponding discrete multiple orthogonal polynomials Mg’ﬁ (s) and
M;”S (s) given in (15) and (16), respectively.
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Proof. We begin by proving (75). Let us rewrite the m-th action of the difference operator V on a function
f(s) defined on the g-lattice x(s) as follows (see formula (3.2.29) from [38])

ORI Rl i (VIR TIEE) 77

k=0

where

MZ(W)’" m=12,...
(7:9

k k(5 9)m—k
k-1 .
@q)k=]]1—ag)) for k>0, and (a;9)p =1
=0

Here the expression (a;4); denotes the g-analogue of the Pochhammer symbol [37,38,43,44].
Moreover, expression (77) is a g-analogue of (11).
In (31) we have the following expression

Vi T D TR )
M) = G T v e (8 1)

where the normalizing coefficient gq is given in (33) and it tends to the following expression, as g

approaches to 1
r o n;
(B H(M—J -

Without loss of generality, let us consider a multi-index # = (ny,np) and rewrite
the above expression in accordance with Formula (77); that is, we first need to express
V™ (a1q™ )Ty (B + |7i| +5)/(T4(B + |7i] )T (s 4+ 1)) in terms of a finite sum and then compute the action
of V"2 on the product formed by this resulting expression and («24"2)°. Namely,

Ly(B+ i +5)
Ty(B+|i])T(s +1)

a,00,p ”1”2“1“2/5 (:B)rq(s+1) A np\s —sy7n n1\s
M) = ) F ey (€7 ")) (V" (wg"))

_ gmmemnb () (%) /2 Tg(B)Tq(s +1)
g T,(B+3s)Ty(B+n+mn)

2 R [HZ} { } g% )t (kT (B by — k14 s)
k

X (78)
ZOIZO aéalf Fq(s—k—l—f—l)
Applying limit in the above expression as q approaches to 1 yields
np np
0, 062‘5 D‘l 0(2 r(ﬁ)r<s+l)
llqunlnz( )*(ﬁ)i’ll-‘rnz (0(1-1) <“2_1> 1—-('8+S)
o &2 1 T(B+n+ny—k—1+s)
= —1) <”2) <”1) ! . (79)
IO A WD AN v i vy
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Using (11), one rewrites Equation (79) such that it involves the product of raising operators as in (13)

s i \" (e \"TEIG+)
%ll)n Mq,nl,nz (S) - (‘B)”1+”2 (“1 — 1) <0¢2 - 1) r(ﬁ + S>

T(B+mny+ny+s)
B+ny+n)l(s+1)

to obtain

<" v ) (o7 9" ) g

which coincides with (15) for 7i = (ny, ny). Observe that repeating the aforementioned procedure for a
multi-index 7 of dimension r, we obtain for the polynomial

. . I T (ﬁ)r (S + 1)
MY (s) = ghAb i (2 alP) g 4
() = 90 Tq(B+5)Tq(B+1iil)
L H . [nl] g2 e () ki T (8 4 |7 — K| +-5)
8 ay ! Ty(s — [kl +1)

XZZ

7’

where k = (ki,...,ky), the following relation

. o w \P\ T o T(E il +s)
fimg My (5) = (B (E(ai—l) ) P 1o v (g e on)

P (s).

This proves the expression (75).

Next, we will prove the second limiting relation (76). Notice that the normalizing coefficient Q,? b
given in (57) has the following limit expression, as q approaches 1,

I—[ qﬁz""] 1
. 7B . i i il _ lal ! =1 r n:
hmgqﬁ :hm(—l)‘ \< q\ |) 2 H - ! | < [_ﬁi]é J)
1 i

g—1 9—1 i=1 1] (aglil+Biti=1 —

a N\l [.r -
- () <1-_1 </sz->nl.> -

From (55) and (77) we have

ap _ ﬁ,B,lX Y /2 ! z rq(5+1)
Mq,ﬁ (S) gq q H rq ,Bz +n; ) s

q(”';"') —kyttpe (") kg

* ,20 Z ok {n:] r’ﬂ La(Br+s)Tq(Br—1+s—ke) - Tg(Br+s—kr— - —ka)

N\ s—IR .
((xq‘”‘) Ty(Br+nr+s—ke) - -Tq(Bo+ny+s—ky—--- —ko)Tq(Bq +n1+s— k)

X =
T,(s— [F]+1)
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Therefore, we evaluate the following limit:

i a \ ([ I'(s+1)
tim MEA(s) = (25 (Hwi)n,,)as

Zo Z 'k'()"'(2>r<ﬁr+s>r<ﬁr1+s—kr>~1--r<ﬁ1+s—kr—---—k2>

as"k‘l"(ﬁ,—l—nr—l—s—kr)---1"(/32+n2+s—kr—~~~—kz)l"(ﬁl—i—nl +5—|k|)
I(s— [k +1)

X

Finally, using (11) one rewrites the right-hand side as follows

- 7| r r s
B (o M) T(B) o T(Bitmi+s) [ a
%f%Mw(5>‘(a1) (H(ﬁi)nz) g v Y (D)

i=1

This completes the proof of expression (76). [

5. Appendix: AT-Property for the Studied Discrete Measures
Lemma 9. The system of functions

a5, x(s)as, ..., x(s) 7 tas, .., ad, x(s)al, ..., x(s)" Las, (80)

with «; > 0,1 = 1,2,...,r, with all the ; different, and (vci/zxj) + qk, keZij=1,...r1i#]
forms a Chebyshev system on R for every 7i = (nq,...,n,) € N

Proof. For a Chebyshev system every linear combination Z Qn;—1(x(s))a; has at most |7i| — 1 zeros on
i=1
R* for every Q. —1(x(s)) € P,,_1 \ {0}. Since x(s) = c14° + c3, where ¢y, c3 are constants, we consider

r
';1 Qn;—1(q°)a;, instead. Thus, the system (80) transforms into

S S S S S S
allo, al,l’ e ,al,nlil, e ,ur,o, arll, e ,ar,nril,

where a;; = (qkzxi), withk = 0,...,n;—1,i = 1,...,r. Observe that a;,, # a;, for j #1,m# p.
Hence, identity a;; = elog ik yields the well-known Chebyshev system (see [34], p. 138)

&8 logaw, & log ap , & log 111,,,1,1, e log a,/or & log a,,,ll o, & log rpp—1
Then, we conclude that the functions (80) form a Chebyshev system on R™. [

Lemma 10. Let B; > 0and B; — Bj & Z whenever i # j. Assume v(s) is a continuous function with no zeros on
R, then the functions

0(s)Ty (s + 1), v(s)x(s)Tq (s + B1) -, v(s)x(s)" Ty (s + 1),
: (81)

v(s)Ty (s + Br),v(s)x(s)Ty (s + ,Br) e, v(s)x(s)”’*ll"q (s+ B:),

form a Chebyshev system on Q) for every i € N'.
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Proof. For the system of functions (81) we have a Chebyshev system on () for every #i € N” if and only if
every linear combination of these functions (except the one with each coefficient equals 0) has at most
|7i| — 1 zeros. This linear combination can be rewritten as a function of the system
v(s)Ty (s+B1),0(s) [s+ Bl Ty (s + 1) -,
v(s)[s+B1+ny— 2]‘(1"1_1> L;(s+B1),
1
0(s)Tq (s+ Br), v(s) [s+ B Ty (s + ).,
o(s) s+ prt e =20 VT (s 4+ ),

where [s + ‘Bi}‘gni) , i=1,...,r,isgivenin (6).
Observe that

s+ k—1)09Ty(s) =Ty (s +k),

holds. Therefore, the above system transforms into
v(s)Ty (s+ B1),v(s)Ty(s+p1+1),...,0(s)Ty (s + p1 +n1 —1),

: (82)
v(s)Ty (s+Br),v(s)Tg(s+Br+1),...,0(s)Ty (s + Br+n, —1).

Thus, it is sufficient to prove that these systems (82) form a Chebyshev system on () for every 7i € N'.
If we define the matrix A (ﬁ, S1,... 'S\ﬁl) by

Iy (s1+p51) Iy (s2+p1) Iy (S\m + 51)
Fq(s1+ﬁ1.+n171) rq(52+ﬁ1.+n1*1) rq(s|ﬁ+/5‘1+n11)

(514 ) S (sﬁm%r) |
rq(s1+ﬁ;+n1f1) Fq(sz+ﬁ;+n1—1) Fq(sﬁ+ﬁ'r+n11>

the proof is reduced to showing that det A (ﬁ, S1,. "’S\ﬁ\) # 0, for every |ii|, and different points

S1/- -/ S|ji| in Q, because |v| > 0 on Q). Now we replace the g-gamma function in A (ﬁ,sl, .. "Slﬁ\) by the
integral representation

e _ x(e0) _
T,(s) = /01 "#1E, qtdqt:/O F1E Tt s >0, (83)
where

E; =090 (= =9, —(1—q)2)
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denotes the g-analogue of the exponential function. From multilinearity of the determinant we take |7i|
integrations out of || rows to obtain

detA(ﬁ,sl,...,sﬁ>:/OX(OO).../OX(OO) ] E; e
—_—

1<i<||
|7i| times
x det BB (ﬁ, t1/~--rt|ﬁ\> dgty - doti|, (4)
where B B B
1 1 !
t] t T B
rim=lprimol el
||
B (ﬁ,h,- tw) = : :
Br br
) R
ﬁr+.1’lr*1 ﬁr+.1’lr*1 ﬁri:nril
tl t2 o t|ﬁ|

Notice that, from ([34], p. 138, example 4) we know that the functions

thr o pprtm=l B Pl

form a Chebyshev system on R if all the exponents are different, which is in accordance with our choice
Bi — Bj & Z whenever i # j. Moreover, if all n; < N + 1, then the exponents involved in the above matrix
are different for §; — ﬁj ¢ {0,1,...,N} whenever i # j. Hence, det B (fi, t,..., t\'ﬂ) does not vanish for

distinct ¢4, ..., tal- Now, for a permutation ¢ of {1, ..., |/i|} we make a change of variables t; — te(i) in
the integral (84). Thus, we have

7 qti
det.A(Tl,tl,...,t‘ﬁO / / 1<Ilg‘n‘E detB(n tl,...,t|ﬁ|>
—_—
|7i| times
X sgn 1—[ t ce dqtm‘. (85)
1<j<|i|

We average (85) over all permutation o, i.e.,

(o0)
detA(ﬁ,Sl/--.,Sw) :% / /" IT & —qt;

’ UESW\ _ 1<i<[id|

|7| times

xdetB(ﬁ,tl,...,tM)sgn H f ]) .dqt|ﬁ|,

<j<|A|
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being S the permutation group. Now, relabeling the choice of points, i.e., f1,..., 5,
where0 < ) < -+ < t|, we have

) 1 ) () . )
detA(I’l,tl,...,t‘m) = E/() /0 H Eq qt; detB(i’l,tl,...,t‘ﬁl)
—_—

- 1<i<]|ii|
0<f1<~~~<tm
si—1
X 2 Sgl’l((?') H tU](]) dqtl"-dqt\iﬂ- (86)
(TGSW 1§]§|ﬁ‘

As a result, from the definition of determinant we have

gl T
s1—1  ,sp—1 sja|—1
s BT ot g
Z sgn (0) H tg](]‘) =1 . (87)
e - tsm|—1

I || I

Taking into account that ¢4, . .., b7 are strictly positive and different, then using the result in
([34], p. 138, example 3) with multi-index (1,...,1), will imply that (87) is different from zero if all
the s1,..., s are different. Accordingly, for distinct s, ..., 5|5, the integrand of Equation (86) has

a constant sign in the region of integration and hence det.A (ﬁ, S1,-+4s S‘ﬁ‘) does not vanish. [

As a consequence of Lemma 10 the system of measures i1, ya, . . ., yir given in (51) forms an AT
system on ().

6. Concluding Remarks

We have studied two families of multiple orthogonal polynomials on a non-uniform lattice,
i.e., g-Meixner multiple orthogonal polynomials of the first and second kind, respectively. They are
derived from two systems of g-discrete measures. Each system forms an AT-system. For these families of
multiple g-orthogonal polynomials we have obtained the Rodrigues-type Formulas (31) and (55) as well
as the recurrence relations (47) and (71), and the g-difference equations (41) and (69). The use of some
g-difference operators has played an important role in deriving the aforementioned algebraic properties.
Finally, in the limit situation g — 1, we have obtained the multiple Meixner polynomials given in [28].

In closing, we address some research directions and open problems:

Problem 1. A description of the main term of the logarithm asymptotics of the q-analogues of multiple Meixner
polynomials deserves special attention. For such a purpose, we will use an algebraic function formulation for the
solution of the equilibrium problem with constraints [45—47] to describe the zero distribution of multiple orthogonal
polynomials [48]. This approach has been recently developed for multiple Meixner polynomials in [21] (see [49]
as well as [17,50] for other approaches). Moreover, by analyzing the limiting behavior of the coefficients of the
recurrence relations for such polynomials we expect to obtain the main term of their asymptotics.

Problem 2. In [51] the authors use the annihilation and creation operators a;, al (i =1,...,r) satisfying the
commutation relations

[ai,a;] = 6i, [a}‘, a}r] = [ai,a]-} =0, i,j=1,...,r
The generated Lie algebra is formed by r copies of the Heisenberg—Weyl algebra W; = span{a;,af,1}.
For a more detailed and technical information about orthogonal polynomials in the Lie algebras see [52] as well
as [53] for quantum mechanics and polynomials of a discrete variable.
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The normalized simultaneous eigenvectors of the r number operators N; = al a; are denoted by
|7’l1, n2/ LIC /nr> = |nl> |n2> e |n?’>/
Indeed,

Nilny, ny, ..., np) = niny, no, ..., ny),

<ml/m21 .- -rmr|n1rn21 .o ~/nl’> = (57711,711 o 57117,%7'

Moreover,

a:«r|n1,n2,...,n,> =/n+1ny,...,ni+1,...,n),

ajlny, ny, ..., np) = /miny,...,np—1,...,n),

The Bargmann realization in terms of coordinates z;, 1 = 1,...,r,in C" has

Eli:afZi, H?ZZZ',
an...zn"
<zl,zz,...,zrnl,nz,...,nr):ﬁ.
eyl
For the model in [51]
H‘W—a-+i N a +Z at Xr;N +B|, i=1,...r
i - "M k:11_lxk 1—061 170(] ] = k 7 — Lyl

represent the set of non-Hermitian operators defined in the universal enveloping algebra formed by the r copies W;.
The operators making up the H; generate an isomorphic Lie algebra to that of the diffeomorphisms in C”
spanned by vector fields of the form

Z= Zﬁza ¢(@), Z=(z1,---,2s).
Zi
The authors indicated that although in the coordinate realization where

1 9 .1 d
ﬂi:\ﬁ Xit =) “:ﬁ Xi—ao )
1 1

the operators H; are third order differential operators, they can be considered as Hamiltonians and are simultaneously
diagonalized by the multiple Meixner polynomials of the first kind.
Consider the states |x,, B) defined by means of the combination of states |ny, ..., n,) as:

) = Mg Lo
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Thus,

= (1)

In [51], by using the recurrence relation (19) for multiple Meixner polynomials of the first kind,
the following relation
aB. = _ -
H; |x, &, B) = x|x,& B),

holds.

Despite the fact the operators are non-Hermitian, they have a real spectrum given by the lattice,
i.e., the non-negative integers. The states |x, &, B) are uniquely defined as the joint eigenstates of the Hamiltonian
operators with eigenvalues equal to x. Moreover,

(HF, 1P |x,@, ) =0,
However, these Hamiltonians do not commute pairwise. Indeed,

&;

- - _a r
[H?’ﬁ, Ht?c,ﬁ} =a;—a;+ 7 <,B + Nk> .
L A (s el G

Finally, because they do not commute and yet have common eigenvectors, the authors in [51] say that they
form a ‘weakly” integrable system.

The physical model described above motivates the study of a q-deformed model, which is currently being
considered by using the results of the present paper involving the q-analogue of multiple Meixner polynomials of
the first kind. In particular, the recurrence relation (47).
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