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Abstract: When making statistical analysis of single-objective optimization algorithms” performance,
researchers usually estimate it according to the obtained optimization results in the form of
minimal/maximal values. Though this is a good indicator about the performance of the algorithm,
it does not provide any information about the reasons why it happens. One possibility to get
additional information about the performance of the algorithms is to study their exploration and
exploitation abilities. In this paper, we present an easy-to-use step by step pipeline that can be used
for performing exploration and exploitation analysis of single-objective optimization algorithms.
The pipeline is based on a web-service-based e-Learning tool called DSCTool, which can be used
for making statistical analysis not only with regard to the obtained solution values but also with
regard to the distribution of the solutions in the search space. Its usage does not require any special
statistic knowledge from the user. The gained knowledge from such analysis can be used to better
understand algorithm’s performance when compared to other algorithms or while performing
hyperparameter tuning.

Keywords: numerical optimization; statistical analysis; exploration; exploitation; DSCTool

1. Introduction

In-depth understanding of optimization algorithm behavior is crucial for achieving relevant
progress in the optimization research field [1]. Analyzing optimization algorithms from the perspective
of achieved results (minimum/maximum value) provides only information about their final
performance [2]. This could be probably enough for the algorithm that returns the best results for all
optimization problems, since it outperforms every other algorithm on every problem. According to
the no-free-lunch theorem [3], no such algorithm exists, so one also needs to consider and understand
the reasons why the tested algorithm does not perform as well as some other algorithm on some
specific set of problems. Two important aspects that determine the achieved algorithm’s performance
are its ability to perform quality exploration followed by quality exploitation [4]. The exploration
is related to the algorithm’s ability to efficiently explore the search space, so it can find the region
that contains optimal solution quickly. While the exploitation is related to the algorithm’s ability to
efficiently exploit the knowledge about the region, identified by the exploration, to find the actual
optimal solution. To find the optimal solution efficiently, it is clear that the algorithm must possess
both abilities. Having weak exploration, the algorithm will not be able to find the region with optimal
solution (e.g., it will be stuck in some region with local optimum) and consequent exploitation is
limited to the region identified by exploration. So for every algorithm, it is paramount to have a good
exploration ability before one can even consider evaluating the exploitation ability.

Recently, we have proposed an extension of Deep Statistical Comparison (eDSC) [5],
which provides comparison not only according to the obtained solutions values (i.e., fitness function
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values), but also according to the distribution of the obtained solutions in the search space. Using it,
we have shown that it is possible to identify differences between algorithms not only on the level of
solution values, but also on the level of exploration and/or exploitation abilities. Since such in-depth
statistics requires large amount of statistical knowledge to be properly performed, we have also
developed a web-service-based e-Learning tool called DSCTool [6], which reduces the amount of
required knowledge to some basic decisions (e.g., defining a significance level) and guides the user
through all the necessary steps required to perform a desired statistical analysis.

Benchmarking has become a primary tool for evaluating the performances of newly proposed
optimization algorithms [7]. There are many benchmarking tools that provide many optimization
functions on which algorithms can be compared. The most used ones can be found in various IEEE
CEC competitions [8-10] and black-box optimization algorithm benchmarking (BBOB) workshops [11].
Typically, the benefit of using benchmark functions from such conference events is that they also
provide results from various optimization algorithms that were tuned to perform to their best
capabilities, so they provide quality information on which the newly proposed algorithm can be
evaluated. Since we are interested not only in the obtained solution values, but also in their distribution
in the search space, we become quickly limited by the amount of data stored from the above mentioned
events. Namely, in CEC competitions, we are presented only with solution values, while for BBOB
workshops the solution locations are in fact stored, but unfortunately algorithm runs are repeated on
different problem instances, where each instance is represented by different part of the problem search
space. This makes applying eDSC approach on the gathered data from BBOB workshops inappropriate,
since all runs for one problem should be made on the same problem instance.

Using benchmarking, we can either compare performances of different optimization algorithms
or compare influences of different algorithm hyperparameter settings. Nowadays, optimization
algorithms are typically automatically tuned by some tuning approach (e.g., iRace [12] and SPOT [13]),
but this only provides the best hyperparameter settings without providing any information why this
setting was selected.

The main contributions of this paper are:

e  Anapplication of DSCTool with emphasis on making extended Deep Statistical Comparison analysis
to compare exploration and exploitation abilities between different optimization algorithms.

e Providing more insights into the algorithm’s exploration and exploitation abilities during the
optimization process and not only at the end.

e Application of the extended Deep Statistical Comparison approach for understanding
contributions of different hyperparameters on algorithm’s exploration and exploitation abilities.

To show how we can get better insight into the performances of different optimization algorithms
or influences of different algorithm hyperparameters, we used different variants of basic Differential
Evolution (DE) algorithm [14], where we changed the algorithm’s parameters. The comparison was
made using the BBOB testbed, since it inherently stores solution value and its location. To show how
such analysis can be easily performed, the DSCTool was used, where each step from the DSCTool
pipeline is to be explained in more detail in the following sections.

The paper is organized as follows: In Section 2 extended Deep Statistical Comparison and the
DSCTool are shortly reintroduced. This is followed by Section 3, where different statistical analysis
performed by the DSCTool are presented. Finally, the conclusions of the paper are presented in
Section 4.

2. Related Work

Next, we present the main idea behind the eDSC approach, which was published in [5] and
is used for providing more insights into the exploration and exploitation powers of meta-heuristic
stochastic optimization algorithms.
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2.1. Extended Deep Statistical Comparison Approach

To provide additional insight into algorithm’s performance, an extended Deep Statistical
Comparison (eDSC) approach [5] was proposed that provides insights into the exploration and
exploitation powers of compared algorithms. The main idea behind it is to look at the obtained
solutions not only with regard to their values (fitness reached), but also to their distribution in the
search space (location). Using it, an algorithm can be checked as to how it performs with respect to its
exploration and exploitation abilities, for which the users should select which kind of solutions are
preferred (i.e., clustered or spread set of solutions). Preference typically depends on problem domain,
weather the user prefers lots of different solutions with similar solution values (quality) or desires
that solutions returned by the algorithm should be clustered solution(s) of highest quality (e.g., user is
interested in robust algorithm that always returns very similar solutions). To achieve this, the eDSC
approach introduces a generalization of the Deep Statistical Comparison (DSC) ranking scheme [15] for
high-dimensional space. The main difference with the DSC ranking scheme is that high-dimensional
data are involved, so classical statistical tests used for one-dimensional data, such as the two-sample
Kolmogorov-Smirnov (KS) test and the two-sample Anderson—Darling (AD) test, cannot be used. For this
reason, a multivariate £ test [16] was used, which is one of the most powerful tests available for
high-dimensional data. The eDSC approach (see Algorithm 1) combines DSC and eDSC ranking
schemes to transform the data with regard to the obtained solution values and their distribution in the
search space, respectively, which are then further analyzed with an appropriate omnibus statistical test.

Algorithm 1 eDSC approach

1: Compare the obtained solutions values using DSC ranking scheme;
2: Compare distributions of the obtained solutions in the search space using eDSC ranking scheme.

The results from eDSC approach provide us with four possible scenarios.

o  The compared algorithms are not statistically significant with regard to the obtained solutions
values (from DSC ranking scheme) and their distribution (from eDSC ranking scheme).
Compared algorithms have the same exploration and exploitation abilities.

o  There is no statistical significance between the performances of the compared algorithms with
regard to the DSC ranking scheme, but there is a statistical significance with respect to the eDSC
ranking scheme. The compared algorithms differ only in exploration abilities.

o  There is a statistical significance between the compared algorithms with regard to the DSC ranking
scheme, but there is no statistical significance with respect to eDSC ranking scheme. The compared
algorithms differ only in exploitation abilities.

o  The compared algorithms have statistically significant performance with regard to DSC and eDSC
ranking schemes. The compared algorithms differ only in exploration abilities, while nothing can
be said about exploitation abilities.

To get a better understanding of exploration and exploitation abilities, the eDSC approach can be
used to evaluate any solution in the optimization process while not only focusing on the final obtained
solution value and its location. In this way, we can get additional insight into how the compared
algorithms are performing with respect to exploration and exploitation abilities during the optimization
process. To achieve this, one can preset different target evaluations budgets (i.e., number of evaluations).
When a preset target budget is reached, the best solution is stored. For example, if we are interested in
quick convergence, an evaluation budget with low number of evaluations can be set. On the other
hand, if we are interested in linear progression of algorithm’s performance, different budgets can be
distributed over the whole optimization process evenly. As noticed, this is primarily users preference
in what they are interested while analyzing optimization algorithm’s performance.
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2.2. The DSCtool

The DSCTool [6] is an e-Learning tool where different scenarios for statistical analysis of single-
and multi-objective optimization algorithms performance is implemented. It provides the user with
all the required information to perform a statistical analysis without significant statistical knowledge.
The user must provide the results of optimization algorithms, select the desired comparison scenario,
and follow the instruction provided by the DSCTool. The required knowledge is reduced to selecting
significance level that is applied to the statistical test. Everything else is managed by the DSCTool,
since it provides the user with appropriate statistical tests with regard to the obtained data. For in-depth
optimization algorithm analysis with respect to exploration and exploitation abilities, the user must
provide data (algorithms solutions values and locations in search space), decide on statistical test
(KS or AD) and significance level for DSC ranking, and define its preference (clustered or spread)
for eDSC ranking. Following the pipeline that leads to the final conclusion is trivial as shown in the
following sections.

The DSCTool implementation is based on the Deep Statistical Comparison (DSC) approach [15]
and its variants. Because of that it provides robust statistical analysis, since comparisons are based
on data distribution, which reduces the influence of outliers and small differences in the data.
In this research, we only used web services that implement DSC and eDSC ranking scheme used for
establishing exploration and exploitation abilities for single-objective optimization algorithms.

The DSCTool e-Learning tool applies REST software architectural style to access its web services.
Consequently, the JavaScript object notation (JSON) format was used to represent input and output data.
The DSCTool is accessible from the following base HTTPS URL https:/ /ws.ijs.si:8443 /dsc-1.5/service /
followed by appropriate web service URI. A detailed documentation about using DSCTool is accessible
from https:/ /ws.ijs.si:8443 /dsc-1.5/documentation.pdf, where examples of representations of the
results can be observed.

3. Experiments

To show how the DSCTool can be used for identifying the exploration and exploitation abilities of
the compared optimization algorithms, basic variants of Differential Evolution (DE) were implemented,
where mutation strategy, scaling factor F, and crossover probability Cr can be changed. The DE
pseudocode is presented in Algorithm 2.

Algorithm 2 Differential Evolution Algorithm

Input: strategy, F, Cr, population_size
Output: best solution

1: P = Create and initialize the population of population_size;

2: while stopping condition(s) not true do

3 for each individual, x; € P do

4: Randomly select individuals;

5: Create an offspring, x/, by applying strategy with scaling factor F on selected individuals;
6 Update x} using binomial crossover on x; with probability Cr;

7 Evaluate the fitness, f(x!);

8

1

if f(x}) is better than f(x;) then

9: Replace x} with x; in P;
10: end if
11: end for

12: end while
13: Return the individual with the best fitness as the solution;

We would like to point out that for the purpose of this paper, it is not important which algorithms
were selected /compared and which hyperparameters were chosen, but the process (i.e., the steps of
the analysis) itself, which shows how one can easily obtain a better understanding of the algorithm’s
performance using the DSCTool.
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The variants of DE algorithms (shown in Table 1 and defined by randomly selected strategy,
F, and Cr) were compared on the 2009 Genetic and Evolutionary Computation Conference
workshop on the black-box-optimization-benchmarking (BBOB) [17] testbed. The testbed consists
of 24 single-objective, noise-free optimization problems, where for each problem first five instances
were selected. This provided us with 120 test instances. This is one of the most popular testbeds for
evaluating an algorithm’s performance and has been used in many articles and dedicated workshops
on comparing different algorithms performances. For these reasons it was selected as a testbed to
showcase our approach. The benchmark set consists of five types of functions that try to cover different
aspects of the problem space that try to mimic different real-world scenarios (i.e., separable functions,
functions with low or moderate conditioning, functions with high conditioning and unimodal,
multi-modal functions with adequate global structure, and multi-modal functions with weak global
structure). All the functions are non-constrained (except for range of functions), but this is not relevant
for our approach, since we are working with solutions locations (in discrete or continuous search
space) and its values. Here we assume that even the solutions outside of the constrained space have
some values (e.g., using penalty function). If this is not the case then some post-processing must
be applied on the values otherwise our approach will not work (it requires single solution value).
All the details about the testbed can be found at https:/ /coco.gforge.inria.fr. All DE variants were run
25 times on every test instance with population size set to 40 and dimension set to D = 40. Since we
are interested in showing the applicability of the proposed approach and not to compare the specific
algorithms (DE variants in our case), we have randomly selected three DE variants and also defined
theirs parameters with no specific goal in mind.

Table 1. Hyperparameters of randomly selected Differential Evolution (DE) variants.

Denotation Strategy (Equation) F Cr

DE1 rand/2/bin (x' = x5+ F(x1 + xp —x3 — x4)) 0.377 0.379
DE2 best/1/exp (X' = Xpes + F(x2 — x3)) 0.450 0.664
DE3 rand/1/exp (x' = x1 + F(xp — x3)) 0.994 0.658

To show how to track exploration and exploitation abilities during the optimization process,
the best solutions after D*(1000, 10,000, and 100,000) evaluations are taken.

The results from running the DE variants on each test instance can be found at http://cs.ijs.si/dl/
dsctool/eDSC-data.csv.zip. To make the statistical analysis, we performed all pairwise comparisons
(i.e., how does exploration and exploitation abilities differ between two compared algorithms), since we
are more interested in performances between every pair of algorithms.

Next, we present the DSCTool steps required for a single pair of algorithms. In order to do this
for all pairs, we should repeat the process for every pair separately. The required DSCTool steps for a
single pair comparison are presented in Figure 1.

Gather data from
optimization runs of two

DSC ranking scheme compared algorithms

(solutions values)

Rank service
URI: rank

Omnibus service Omnibus service
URI: omnibus URI: omnibus

eDSC approach
conclusions

Figure 1. Extended Deep Statistical Comparison approach.

eDSC ranking scheme
(solutions distribution)

Multivariate service
URI: multivariate
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As we have already mentioned, this analysis consists of two main phases: (i) comparison made
with regard to the obtained solutions values (i.e., DSC ranking scheme) and (ii) comparison made with
regard to obtained solutions distribution in the search space (i.e., eDSC ranking scheme).

3.1. Comparison Made with Regard to the Obtained Solutions Values (i.e., DSC Ranking Scheme)

The first step in this phase was to use the DSC ranking scheme in order to rank the compared
algorithms according to the obtained solutions values on each test instance. For this purpose,
the DSCTool rank service was used. For the ranking service, the only decision that should be made
was the selection of the statistical test (e.g., KS or AD) that is used to compare the one-dimensional
distribution of the obtained solution values and the statistical significance, « [18]. In our case, the AD
statistical test was selected to be used by the DSC ranking scheme and a statistical significance of
0.05 set. Since we performed the comparison at several time points from the optimization process,
the input JSONs for the ranking service should be prepared for each time point. The JSON inputs for
the rank service for all pairwise comparisons and all time points from the optimization process can be
found at http://cs.ijs.si/dl/dsctool /eDSC-rank.zip. The results of calling the rank service are JSONs
that contain DSC rankings for each algorithm pair on every problem instance.

Once the DSC rankings are obtained, the next step is to analyze them using an appropriate
omnibus statistical test. In the literature there are a lot of discussions on how to select an appropriate
omnibus statistical test [19]. One benefit of using the DSCTool is that the user does not need to take
care about this, since the appropriate omnibus statistical test can be selected from the result of the rank
service. The DSCTool is an e-Learning tool, so all conditions for selecting an appropriate statistical test
have been already checked by the tool and the required statistical knowledge from the user’s side is
consequently significantly reduced.

To continue with the analysis, we used the DSCTool omnibus web service. For creating the
input JSONs required for the omnibus web service, the results from the rank service were used.
Since only two algorithms were compared, the one-sided left-tailed Wilcoxon Signed Rank test was
selected, which was proposed by the ranking service. The one-sided left-tailed was selected, since we
are interested in if one algorithm performs significantly better and not only if there is a statistical
significance between their performances (i.e., two-sided hypothesis). The input JSONSs for the omnibus
test can be found at http://cs.ijs.si/dl/dsctool/eDSC-rank-omnibus.zip. The omnibus test returns
mean DSC rankings for the compared algorithms and p-value, which tells us if the null hypothesis
is or is not rejected. In general, if the p-value is lower than our predefined significance level then the
null hypothesis is rejected and we can conclude that there is statistical significance between algorithm
performances (i.e., the first algorithm has better performance since we are testing one-sided hypothesis).
Otherwise, if the p-value is greater or equal then we can conclude that there is no statistical significance
between compared algorithms performances.

By performing the first phase of the eDSC approach, we have obtained results for comparing the
algorithms with regard to the obtained solutions values using the DSC ranking scheme.

3.2. Comparison Made with Regard to the Distribution of the Obtained Solutions in the Search Space
(i.e., eDSC Ranking Scheme)

The second phase involves comparison with regard to the distribution of the obtained solutions in
the search space. This requires application of the eDSC ranking scheme. The main difference with the
first phase is that we need to use the DSCTool multivariate service instead of the DSCTool rank service.
Accordingly, one needs to use actual locations of the solutions when preparing the input JSONs for the
multivariate service. This should be done for every pair of algorithms and every time point from the
optimization process. The only information that needs to be set in the case of the multivariate service
is the distribution preference of the solutions (i.e., clustered or spread) and the statistical significance.
In our case, clustered distribution preference has been used and statistical significance of 0.05 set.
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The JSON inputs for the multivariate service for all pairwise comparisons and every time point from
the optimization process can be found at http://cs.ijs.si/dl/dsctool/eDSC-multivariate.zip.

The resulting JSON from the multivariate service has the same structure as the result from the rank
service. For this reason, after obtaining the eDSC rankings for every pairwise comparison, they can be
further analyzed using the DSCTool omnibus web service (i.e., same as in the first phase). The input JSONs
for the omnibus test can be found at http://cs.ijs.si/dl/dsctool /eDSC-multivariate-omnibus.zip.

3.3. Results and Discussion

To provide more information about the exploration and exploitation abilities of the compared
algorithms during the optimization process, we compared them in different time points,
D*(1000, 10,000, 100,000, and 1,000,000). In Tables 2-5 the results for eDSC approach are presented for
every selected time point, respectively. Each table consists of results obtained by both phases of eDSC
approach (i.e., DSC and eDSC ranking scheme) with obtained p-values written in brackets. The results
are separated by the | sign. On the left side is the result of comparison between algorithms based on
solution values (i.e., DSC ranking scheme), while on the right side is the result for comparison based
on solution locations (i.e., eDSC ranking scheme). The / sign represents that the comparison is not
logical (i.e., we cannot compare the algorithm with itself), while the + sign indicates that the algorithm
written in row significantly outperforms algorithm written in column, while the — sign indicates
that the algorithm written in row has statistically significantly worse performance of the algorithm
written in column. This interpretation comes from the definition of the null and the alternative
hypothesis of the left one-sided test (i.e., Ho: #1 > pp and Ha: p1 < pp, where y’s are sample means of
compared algorithms).

Table 2. Extension of Deep Statistical Comparison (eDSC) analysis at D*1000 function evaluations (FEs).

Algorithm DE1 DE2 DE3

DE1 / —(1.00) 1 —(1.00)  + (0.00) | + (0.00)
DE2 +(0.00) 1 +(0.00) / +(0.00) 1 +(0.00)
DE3 —(1.00)| —(1.00) —(1.00) I —(1.00) /

Table 3. eDSC analysis at D*10,000 FEs.

Algorithm DE1 DE2 DE3

DE1 / —(0.97)1+(0.00)  +(0.00) I +(0.00)
DE2 +(0.03) 1 —(1.00) / +(0.00) I +(0.00)
DE3 —(1.00) | —(1.00)  —(1.00) | —(1.00) /

Table 4. eDSC analysis at D*100,000 FEs.

Algorithm DE1 DE2 DE3

DE1 / —(0.98) 1 +(0.00)  +(0.00) | +(0.00)
DE2 +(0.02) 1 —(1.00) / +(0.00) I +(0.00)
DE3 —(1.00)| =(1.00)  —(1.00) | —(1.00) /

Table 5. eDSC analysis at max FEs, D*1,000,000.

Algorithm DE1 DE2 DE3
DE1 / +(0.00) 1 +(0.00)  +(0.00) I +(0.00)
DE2 —(1.00) | —(1.00) / +(0.00) I —(0.06)

DE3 —(1.00) | —(1.00)  —(1.00) | —(0.94) /
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D*1000 Function Evaluations:

The Table 2 represents the results for comparing the algorithm performance achieved on D*1000
function evaluations (FEs). In this case, we are primarily interested in the quality of the algorithm
performance at the beginning of the optimization, or it can be a case when we have only relatively small
number of FEs at our disposal. Looking at the results, it is obvious that DE2 performs significantly
better than the other two DE variants (DE1 and DE3) with regard to the solutions quality and their
distribution, indicating superior exploration and exploitation abilities. We should point here, that we
set the preference of distribution for the eDSC ranking scheme on clustered solutions. Further, DE1 has
significantly better exploration and exploitation abilities than DE3, and DE3 performs significantly
worse than the the other two DE variants. So if we would had at our disposal only D*1000 evaluations
the DE2 is the obvious choice. But if we have more FEs at our disposal, then we do not know if this is
the case.

D*10,000 Function Evaluations:

If we have at our disposal more FEs, then having more clustered distribution of solutions early
in the optimization process does not necessary guaranty high quality of solutions later on. If all runs
quickly converge to the same area in solution space, one could see this as too quick convergence.
In such cases when multimodal search space is explored, the algorithm might be trapped in some local
optima. So quick convergence at the beginning of the optimization process is not guaranty of high
quality algorithm or its hyperparameters in the long run. Let us look at the Table 3, where results for
comparing the algorithm performances achieved on D*10,000 FEs are presented. The DE3 algorithm
stayed as the worst performing algorithm, but the relation between the quality of DE1 and DE2 has
significantly changed. As we can observe, the preferred distribution of solutions is now significantly
better for DE1 algorithm. So seemingly worst initial exploration abilities of DE1 algorithm paid
dividends that allowed for achieving significantly better preferred solution distribution. The question
that arises is, did we choose the correct preferred distribution when evaluating algorithms at D*1000
FEs? If target FEs would be D*1000 then the selection was correct; however, looking at the results
obtained at D*10,000 FEs the answer is not so clear.

D*100,000 Function Evaluations:

Now let us look at Table 4 and see what happens at D*100,000 FEs. The comparison results stay
the same, so no significant changes can be observed between the performances of the algorithms.

D*1,000,000 Function Evaluations:

Finally, using the Table 5 where the results for comparing the algorithm performances achieved
on D*1,000,000 FEs (i.e., the end of the optimization process), it is obvious that the results have
changed again. DE3 stayed the worst performing algorithm. The randomly selected hyperparameters
for DE3 turned the basic DE into a low performing algorithm (compared to DE1 and DE2) with
inefficient exploration abilities, and consequently we cannot say much about exploitation abilities.
DE2 significantly worsened its performance compared to DE1 throughout the optimization process,
obtaining significantly worse solutions with respect to the solution value and their distribution.
The selected hyperparameters worked the best for scenarios when very limited number of FEs are
used, but with a higher number of FEs allowed, the performance deteriorated compared to DE1.
Finally, the DE1 concluded our analysis as significantly better performing algorithm, that acquired
the best solutions with respect to their values and distribution, and showing the best exploration and
exploitation abilities among the compared algorithms at D*1,000,000 FEs.

To get a better perception of what is happening during the compared algorithms runs with regard
to solutions values and their distribution, a graphical representation of the results for DSC and eDSC
ranking schemes is shown in Figures 2 and 3, respectively. On x-axis all time points are represented,
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while on y-axis, respective rankings of algorithms defined according to results (see Tables 2-5) of
one-sided Wilcoxon Signed Rank test between all compared algorithms are presented (i.e., one means
best performance, while three means the worst performance).

Solution value ranking

3 L L L L
2 L L
1 A& &
1000 10000 100000 1000000

-8-DE1 -A-DE2 -e-DE3

Figure 2. Deep Statistical Comparison (DSC) ranking.

Solution (clustered) distribution ranking

3 ® @ @ L

2 A A

1 i i
1000 10000 100000 1000000

-8-DE1 -A-DE2 -@-DE3
Figure 3. eDSC ranking.

Finally, we can conclude that the hyperparameters of DE3 are not suitable in any scenario
(i.e., time point) since exploration and exploitation performance on our testbed is below the other two
DE variants. Next, if we performed the same analysis using experiments with hyperparameters that are
in some e-neighborhood, we could obtain further information which of the hyperparameters contribute
to improving/declining efficiency of exploration and exploitation abilities. The hyperparameters of
DE2 provide good initial exploration and exploitation abilities with regard to the other two DE variants.
In case when we have scenario with low number of FEs, it is a good starting point to further investigate
parameters in some e-neighborhood of the DE2 parameters. Such investigation will provide us with
information how to further improve the performance in this kind of scenario. Finally, DE1 turned
out to be the best performing algorithm when there is a large number of FEs available. Since this is
a limited experiment designed to show how we can efficiently use eDSC approach in combination
with DSCTool, our conclusions are limited to these three algorithms. If we are comparing different
algorithms, this would be enough so one can focus on improving exploration or exploitation abilities
of the developed algorithm. In cases when the goal is to understand influence of hyperparameter
selection on exploration and exploitation abilities of the algorithm, much more testing would be
needed to acquire enough information.

4. Conclusions

One of the most important steps into further development and consequent improvement of new
single-objective optimization algorithms is understanding the algorithm’s performance by focusing
on the reasons that lead to it. In this paper, we showed how we can easily identify weaknesses and
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strengths of algorithms’ performances during different stages (e.g., number of solution evaluations)
of the optimization process. For this purpose, the DSCTool can help users to make proper statistical
analysis quick and error free. Due to its ease of use, the user is able to go through all analysis steps
effortlessly by receiving all needed information for performing the analysis. The only important step is
the selection of the desired distribution preference of the solutions in the search space (i.e., clustered or
spread distributed solutions). As was shown in the experiments, the distribution preference can greatly
influence the understanding of the optimization results.

For future work, we would like to extend this analysis focusing on the distribution of population
at different time points of the optimization process of single algorithm run, which will provide
information about the exploration and exploitation abilities based only on information gathered from
solutions in current population, and not compare best solutions between different algorithms runs as
it is done here.
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Abbreviations

The following abbreviations are used in this manuscript:

DSC  deep statistical comparison
eDSC  extended deep statistical comparison

KS Kolmogorov-Smirnov

AD Anderson-Darling

FE function evaluation

DE differential evolution
JSON  JavaScript object notation
URI uniform resource identifier
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