
mathematics

Article

Efficient Methods for Parameter Estimation of
Ordinary and Partial Differential Equation Models of
Viral Hepatitis Kinetics

Alexander Churkin 1,*, Stephanie Lewkiewicz 2, Vladimir Reinharz 3 , Harel Dahari 4

and Danny Barash 5,*
1 Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva 8410501, Israel
2 Department of Mathematics, University of California at Los Angeles, Los Angeles, CA 90095, USA;

slewkiewicz@math.ucla.edu
3 Department of Computer Science, Université du Québec à Montréal, Montreal, QC H3C 3P8, Canada;

reinharz.vladimir@uqam.ca
4 Program for Experimental and Theoretical Modeling, Division of Hepatology, Department of Medicine,

Stritch School of Medicine, Loyola University Medical Center, Maywoood, IL 60153, USA; hdahari@luc.edu
5 Department of Computer Science, Ben-Gurion University, Beer-Sheva 8410501, Israel
* Correspondence: alexach3@sce.ac.il (A.C.); dbarash@cs.bgu.ac.il (D.B.); Tel.: +972-8-647-5281 (A.C.);

+972-8-647-2714 (D.B.)

Received: 30 June 2020; Accepted: 24 August 2020; Published: 2 September 2020
����������
�������

Abstract: Parameter estimation in mathematical models that are based on differential equations
is known to be of fundamental importance. For sophisticated models such as age-structured
models that simulate biological agents, parameter estimation that addresses all cases of data points
available presents a formidable challenge and efficiency considerations need to be employed in
order for the method to become practical. In the case of age-structured models of viral hepatitis
dynamics under antiviral treatment that deal with partial differential equations, a fully numerical
parameter estimation method was developed that does not require an analytical approximation
of the solution to the multiscale model equations, avoiding the necessity to derive the long-term
approximation for each model. However, the method is considerably slow because of precision
problems in estimating derivatives with respect to the parameters near their boundary values,
making it almost impractical for general use. In order to overcome this limitation, two steps have
been taken that significantly reduce the running time by orders of magnitude and thereby lead to a
practical method. First, constrained optimization is used, letting the user add constraints relating
to the boundary values of each parameter before the method is executed. Second, optimization
is performed by derivative-free methods, eliminating the need to evaluate expensive numerical
derivative approximations. The newly efficient methods that were developed as a result of the above
approach are described for hepatitis C virus kinetic models during antiviral therapy. Illustrations are
provided using a user-friendly simulator that incorporates the efficient methods for both the ordinary
and partial differential equation models.

Keywords: parameter estimation; constrained optimization; derivative free optimization; multiscale
models; differential equations; viral hepatitis

1. Introduction

Chronic viral hepatitis (hepatitis C, hepatitis B, and hepatitis D) is a major public health concern.
Approximately 500 million individuals worldwide are living with chronic viral hepatitis; above a
million of those who are infected die each year, primarily from cirrhosis or liver cancer resulting from

Mathematics 2020, 8, 1483; doi:10.3390/math8091483 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0001-8481-1094
https://orcid.org/0000-0002-3357-1817
https://orcid.org/ 0000-0003-4389-5302
http://dx.doi.org/10.3390/math8091483
http://www.mdpi.com/journal/mathematics
https://www.mdpi.com/2227-7390/8/9/1483?type=check_update&version=2

Mathematics 2020, 8, 1483 2 of 31

their hepatitis infection [1–3]. Deaths related to chronic hepatitis are as many as those due to human
immunodeficiency virus (HIV) infection, tuberculosis, or malaria [4], and are projected to exceed the
combined mortality associated with HIV infection, tuberculosis, and malaria by 2040 [5]. Only a small
subset of patients are cured with currently available drugs for hepatitis B and hepatitis D. As such,
a deeper understanding of hepatitis B and D infection dynamics is needed to enable the development
of more curative therapeutics. Despite the significant advances in hepatitis C therapy, it is widely
acknowledged that cost remains a major barrier for achieving global elimination. Thus, there still exists
a need for affordable therapy with similar high efficacy and with much shorter treatment durations
and vaccine development.

Mathematical models have been developed to provide insights into viral hepatitis and host
dynamics during infection and the pathogenesis of infection [6–11] . The standard biphasic model for
viral infection is a set of three ordinary differential equations (ODEs) with three variables. This ODE
model has been used to study hepatitis C virus (HCV), hepatitis B virus (HBV), and hepatitis D
virus (HDV) kinetics during antiviral treatment. It contributed to the assessment of antivirals efficacy
and to our understanding of their mechanism of action [9,12–18]. The ODE model can be further
simplified (termed biphasic mode) by assuming that target cells remain constant during antiviral
treatment. The biphasic model has been extensively used for modeling HCV [19–27], HBV [28–31],
or HDV [32–35] kinetics during antiviral treatment. Notably, we recently showed in a proof-of-concept
pilot study that using the biphasic model in real time (i.e., on treatment) can shorten HCV treatment
duration (and cost) with direct-acting antivirals without compromising efficacy or patient safety [36],
which confirmed our retrospective biphasic modeling reports in more than 250 patients [37–41].

Modeling efforts using ODEs for understanding the intracellular viral hepatitis genome dynamics
have been done in [7,42–46]. Recently, partial differential equation (termed PDE, age-structured or
multiscale) models for HCV infection and treatment were developed [47–50]. These PDE models are an
extension to the classical biphasic models in which the infected cell is a “black box”, producing virions
but without any consideration of the intracellular viral RNA replication and degradation within the
infected cell [42,43,51]. The multiscale models consider the intracellular viral RNA in an additional
equation for the variable (R), with the introduction of age-dependency in addition to time-dependency,
making it a PDE model. They are considerably more difficult to solve and to perform parameter
estimation on compared to the biphasic model. Unlike the construction of numerical schemes in other
applications, for example in the nonlinear diffusion of digital images [52–54] where accuracy can be
limited, herein it is advisable to construct a stable and efficient scheme that belongs to the Runge–Kutta
family with a higher accuracy than in nonlinear diffusion. Our numerical solution strategy was
outlined in [55–57] and herein we continue [57] by providing an efficient parameter estimation method
that follows this strategy.

Parameter estimation (or calibration) of multiscale HCV models with HCV kinetic data measured
in treated patients is challenging. To overcome this, several strategies have been employed. The first
strategy, employed in [48], utilizes an analytical solution named long-term approximation for solving
the model equations along with calling the Levenberg–Marquardt [58,59] as a canned method for
performing the fitting. The second strategy, employed in [60], transforms the multiscale model to a
system of ODEs and, as such, simple parameter estimation methods can be used in the same manner
as the biphasic model. The third strategy, employed in [50] that also deals with spatial models of
intracellular virus replication, is based on the method of lines and utilizes canned methods for both the
numerical solution of the resulting equations (Matlab’s ode45) and for performing the fitting (Matlab’s
fmincon). While these strategies are adequate for specific cases, they rely on canned methods and
are problematic when it comes to the user’s capability to access and control them. For these reasons,
we have developed our own open source code released free of charge for the benefit of the community
that allows the user to make modifications to the model and provides prospects for future development,
while ensuring that it is practical in running time and enabling the user to insert constraints for the
parameters that need to be estimated. In contrast to these approaches, our strategy does not rely

Mathematics 2020, 8, 1483 3 of 31

on any canned method but fully implements our own optimization routine, thus making it suitable
to other multiscale model equations by modifications inside the routine and an early preparation
of the multiscale model equations by taking derivatives with respect to the parameters before the
optimization procedure.

The general ideas that have led to [57], including the parameter estimation procedure described
in this reference, have been laid out in order to remain self-contained. The motivation of the
present work is to develop a tool that can provide similar calibration values in significantly less
time. More specifically, the main contribution herein is as follows. Because of precision problems
in [57] encountered with Levenberg–Marquardt that caused the parameter estimation procedure
to become highly non-efficient, we developed an efficient constrained optimization procedure that
is based on damped Gauss–Newton instead such that we avoid problematic use of derivatives,
while alternatively offering the possibility to apply Powell’s Constrained optimization by linear
approximation (COBYLA) [61] for the optimization procedure. In the following sections, we describe
the model and the optimization procedure that is used in our HCVMultiscaleFit simluator. Illustrations
of simultations using HCVMultiscaleFit are provided and the efficiency and practicality relative to the
initial version put forth in [57] are discussed.

2. Methods

2.1. Development of Mathematical Models

2.1.1. The Standard Biphasic Model

The three variables this model keeps track of are the target cells T, in Equation (1), the infected
cells I in Equation (2), and the free virus V in Equation (3). The target cells T are produced at constant
rate s, die at per capita rate d, and are infected by virus V at constant rate β. The infected cells I
increase with the new infections at rate βV(t)T(t) and die at constant rate δ. The virus V is produced
at rate p by each infected cell and is cleared at constant rate c. The ε term denotes the effectiveness of
the anti-viral treatment that decreases the production from p to (1− ε)p. Formally, the ensemble of
ODEs for this model is:

dT(t)
dt

= s− βV(t)T(t)− dT(t) (1)

d I(t)
dt

= βV(t)T(t)− δI(t) (2)

dV(t)
dt

= (1− ε)pI(t)− cV(t). (3)

From the mathematical perspective, the standard biphasic model is relatively much simpler than
the multiscale model. Although it is nonlinear, it can be solved analytically when assuming that T is
constant (target cells remain constant during antiviral treatment).

2.1.2. The Multiscale HCV Model

A multiscale PDE model for HCV infection and treatment dynamics was introduced in [47–49].
Intracellular HCV RNA plays a biologically significant role during the HCV replication and multiscale
models are considering it by additional equations for the RNA that are age-dependent, with the most
complete model to date that was recently put forth in [50].

The multiscale model [47–49] can be formulated as follows:

dT(t)
dt

= s− dT(t)− βV(t)T(t) (4)

∂ I(a, t)
∂t

+
∂ I(a, t)

∂a
= −δI(a, t) (5)

Mathematics 2020, 8, 1483 4 of 31

dV(t)
dt

= (1− εs)
∫ ∞

0
ρR(a, t)I(a, t)da− cV(t) (6)

∂R(a, t)
∂t

+
∂R(a, t)

∂a
= (1− εα)αe−γt −

(
(1− εs)ρ + κµ

)
R(a, t), (7)

with the initial and boundary conditions T(0) = T̄, V(0) = V̄, I(0, t) = βV(t)T(t), I(a, 0) = Ī(a),
R(0, t) = 1, and R(a, 0) = R̄(a). The initial condition R(0, t) = 1 reflects the assumption that a cell is
infected by a single virion and therefore there is only one vRNA in an infected cell at age zero.

The four variables this model keeps track of are the target cells T in Equation (4), the infected
cells I in Equation (5), the free virus V in Equation (6), and the intracellular viral RNA R in an infected
cell in Equation (7).

The target cells T are produced at constant rate s, and decrease by the number of cells infected
by virus in blood V at constant rate β and their death rate d. The infected cells I die at constant
rate δ. The quantity of intracellular viral RNA R depends on its production α and its degradation µ

and expulsion from the cell ρ. The quantity of free virus V depends on the number of assembled
and released virions and their clearance rate c. The parameter γ represents the decay of replication
template under therapy. The decrease in viral RNA synthesis is represented by εα, the reduction in
secretion by εs, and the increase in viral degradation by κ ≥ 1.

The parameters that were used in the multiscale model described in [48] are depicted in Table 1.
The model forms an example of our parameter estimation calibration method for PDE models
developed herein that can easily be extended to include additional parameters.

Table 1. The 12 parameters of the model.

s (cells mL−1) Influx rate of new hepatocytes
d (d−1) Target cell loss/death rate constant
β (mL d−1 virion−1) Infection rate constant
δ (d−1) HCV-infected cell loss/death rate constant
ρ (d−1) Virion assembly/secretion rate constant
c (d−1) Virion clearance rate constant
α (vRNAd−1) vRNA synthesis rate
µ (d−1) vRNA degradation
κ Enhancement of intracellular viral RNA degradation
γ (d−1) Loss rate of vRNA replication complexes
εs Treatment vs. secretion/assembly effectiveness
εα Treatment vs. production effectiveness

An important consideration in this model is that the treatment starts after the infection has reached
its steady state. The steady states of the different variables are R̄(a, t), Ī(a, t), V̄, and T̄. The term N
represents the total number of virions produced by infected cells.

These values have been previously derived in [48] and can be expressed as follows:

T̄ = c/βN (8)

V̄ = (βNs− dc)/(βc) (9)

Ī(a) = βV̄T̄e−δa (10)

R̄(a) =
α

ρ + µ
+

(
1− α

ρ + µ

)
e−(ρ+µ)(a) (11)

N =
ρ(α + δ)

δ(ρ + µ + δ)
(12)

Mathematics 2020, 8, 1483 5 of 31

It has been shown that the equations for I(a, t) and R(a.t) can be solved by the method of
characteristics to yield:

I(a, t) =

{
βV(t− a)T(t− a)e−δa a < t
Ī(a− t)e−δt = βV̄T̄e−δ(t−a) = (βNs− dc)/(βN)e−δa a > t

(13)

and

R(a, t) =



(1−εα)αe−γt

(1−εs)ρ+κµ−γ
+

(
1− (1−εα)αe−γ(t−a)

(1−εs)ρ+κµ−γ

)
e−((1−εs)ρ+κµ)a a < t

(1−εα)αe−γt

(1−εs)ρ+κµ−γ

+

(
α

ρ+µ +
(

1− α
ρ+µ

)
e−(ρ+µ)(a−t)

− (1−εα)α
(1−εs)ρ+κµ−γ

)
e−((1−εs)ρ+κµ)t

a > t

(14)

whereas the equations for V(a, t) and T(a, t) cannot be solved analytically without any approximations.
The equations for V(a, t) and T(a, t) when using the short-term and long-term approximations can be
found in [48].

2.2. Data Description

Calibration of the model was performed with data from treated patients by [48]. The data points
to fit the model and on which the error is computed are only V. We assume that we start at a steady
state and begin by computing the steady state given the initial parameters by using Equation (8).
While the raw data are not available, we used the freely accessible tool of [62] to retrieve it from the
figures directly. A visual example for one patient is available at [57].

In our method, we mostly use the default parameters from [48] that are shown in Table 2. The main
difference concerns parameter s. The pre-treatment steady state viral load V̄ in each patient is different.
Since V̄ is a necessary value in computing the long-term approximation, it was approximated as the
pre-treatment viral load observed per patient. In the full model that we are implementing, we do
not directly use V̄. Instead, we have from Equation (9) that V̄ is a function of many parameters,
in particular s which is not present in the long term approximation that was outlined in [48]. Inspired
by the method of [48], we chose to also fix V̄. The counterpart in our method is that s changes per
patient being, by Equation (9), equal to

(
V̄βc + dc

)
/
(

βN
)
, where N is from Equation (12).

More details about preparing the system with data from patients and the model parameters
are available in [57]. Herein, the methods are different from [57] and are significantly more efficient,
but the model parameters and the system preparation are exactly the same.

Table 2. Default parameters that are used herein. Parameter s comes from Equation (9), taking V̄ as the
max Virions value.

α 40 d−1 β 5× 10−8 mL d−1

c 22.3 d−1 δ 0.14 d−1

µ 1 d−1 d 0.01 d−1

ρ 8.18 d−1 s
(
V̄βc + dc

)
/
(

βN
)
cells/mL

2.3. Solving the Model Equations

In [48], the multiscale model equations were solved by analytical approximations but, as discussed
in [56], those analytical approximations have limitations that should be alleviated. The long-term
approximation is an underestimate of the PDE model since some infection events are being ignored.
Moreover, for each multiscale model, the long-term approximation needs to be derived analytically,

Mathematics 2020, 8, 1483 6 of 31

which is not a trivial task. Thus, numerical solutions provide an attractive alternative and could be
easier to adjust when introducing changes to the model. A more general and comprehensive approach
to parameter fitting without relying on analytical approximations would be useful. In addition,
although it was shown recently that it is possible to transform the PDE multiscale model to a
system of ODEs [60], this transformation problematically introduces some of the boundary conditions,
e.g., ζ, as new parameters inside the model equations. A numerical approach to parameter fitting of
multiscale models was recently put forth and described in [50], by the use of the method of lines and
canned methods that are available in Matlab. Our new numerical approach that originated in [56] and
described in [57] in detail does not rely on canned methods, with considerable benefits.

For the numerical solution of the multiscale model equations, properties such as approximation,
stability, and convergence were discussed in [56] and numerical robustness was discussed in [55,56].
Future work should expand towards the advanced treatment of properties as covered in [63,64].
Concerning the numerical solution itself, we showed in [56] that the full implementation of the
Rosenbrock method is preferable over the use of a canned solver in terms of efficiency and stability.
Therefore, the Rosenbrock method has been implemented for the purpose of our parameter fitting
method as well. In order to apply the Rosenbrock method, it is simplest to represent the system to be
solved as a vector f of two functions:

y′ = f (t, y) =
[

dT
dt , dV

dt

]ᵀ
=
[
s− dT − βVT,

(1− εs)
∫ ∞

0
ρR(a, t)I(a, t)da− cV

]ᵀ
,

(15)

where y is a vector with the values of [T, V]ᵀ and the transpose symbol can be omitted from now on
for brevity. This representation has originated in [56] for convenience with formulating the numerical
schemes described in that reference. This function depends on three variables, t, V and T. While V
and T are the values at the time point we are evaluating, inside the equation of I, the function V(t− a)
and T(t− a) do depend on t directly. In our implementation, when computing the integral, we need
to divide into two cases. If a > t, we analytically determine the values of R(a, t) and I(a, t) for small
time steps a. When a < t, the system was previously solved at times τ0, . . . , τn. Therefore, we evaluate
the integrals at times a0 = t− τ0, . . . , an = t− τn, ensuring that the required values of V(t− a) and
T(t− a) are already known, following the scheme presented in [56].

The Rosenbrock method additionally requires the Jacobian matrix, denoted by f ′. As was shown
in [57], the Jacobian can be controlled and, with some proper computational simplifications to avoid
singularities that were shown to yield correct results in [57], we can implement the Rosenbrock method
convincingly for both solution and parameter estimation of the multiscale models.

2.4. Parameter Estimation

2.4.1. Preliminaries

As outlined in [48], the HCV multiscale model has 12 parameters (Table 1) and the nonlinear
differential equations that comprise it are stiff [56]. In addition, the integral term in the equation
complicates matters, as described in [56,57]. Parameter fitting is known to be a difficult problem in
general and for multiscale models, in particular, one needs to approach it carefully with the use of
robust techniques for the optimization, but, at the same time, these techniques can be made highly
efficient for practical computations. The novelty in this work is described next.

For efficiency reasons, we revert from the Levenberg–Marquardt method for optimization that
was used in albeit different ways in both [48,57] and implement significant improvements. Already
in [57], we have noticed that more difficult fitting cases take several hours to perform, and this situation
needs to be remedied for a practical use of our simulator. The reason for the lengthy running times
was non-trivial and only after a considerable period of time, having tried the simplest numerical

Mathematics 2020, 8, 1483 7 of 31

method for the solution of the equations (the Euler method instead of the Rosenbrock method)
and not noticing a significant time reduction in the parameter estimation calculation, we began to
understand that the problem lies in the optimization method being used. We then examined interior
point methods for performing constrained optimization instead of the Levenberg–Marquardt method
we used in [57] and found out that the Hessian calculations in these interior point methods are
problematic, causing precision problems near the parameter boundaries that are the source of running
time accumulations. There was definitely a need to avoid the use of derivatives and therefore two
alternative approaches were taken. The first was to try a constrained damped Gauss–Newton strategy,
which can also be looked at as a simple version of Levenberg–Marquardt without gradient descent,
or alternatively Levenberg–Marquardt is a pseudo second-order method with added derivatives to
approximate the Hessian and thereby adds complications that should better be avoided. While in
general Levenberg–Marquardt is considered more robust than Gauss–Newton, for our constrained
application, the simplicity of the damped Gauss–Newton in terms of derivative calculations relative
to Levenberg–Marquardt, in which also the Lagrange parameter needs to be calculated at each step,
makes the damped Gauss–Newton significantly preferable. The second approach taken was that,
while developing our own damped Gauss–Newton method for the constrained application, we also
examined a completely derivative-free approach based on COBYLA (Constrained Optimization by
Linear Approximation). These two approaches turned out to be complementary to each other as by
default the quicker and sometimes somewhat more accurate damped Gauss–Newton can be tried first,
but, when it fails, COBYLA can provide a good alternative or it can even be used from the start and all
along a research study as the difference in the calculated error that has been minimized is quite small.
This contribution allows for reaching an overall procedure for parameter estimation that is practical
and by orders of magnitude less demanding in computing time relative to [57], which provides a
technical breakthrough from the computational standpoint.

Thus, two newly developed methods have been introduced to perform constrained optimization
for this application in an efficient manner: LSF (Least Squares Fitter using Gauss–Newton) with
a flowchart shown in Figure 1 and Powell’s COBYLA (Constrained Optimization by Linear
Approximation) with a pseudocode shown in Algorithm 1. The latter is a derivative-free optimization
method that solves the constrained optimization by linear programming. The former is a constrained
optimization that performs linearization in the manner described herein.

In both approaches, the objective function to be minimized is described as follows. The objective
consists of adjusting the parameters of a model function to best fit a data set. A simple data set consists
of n points (data pairs) (xi, yi), i = 1, . . . , n, where xi is an independent variable and yi is a dependent
variable whose value is found by observation. The model function has the form f (x, p), where m
adjustable parameters are held in the vector p. The goal is to find the parameter values for the model
that best fits the data. The fit of a model to a data point is measured by its residual, defined as the
difference between the actual value of the dependent variable and the value predicted by the model:

ri = yi − f (xi, p) (16)

The least-squares method obtains the optimal parameter values by minimizing the sum of
squared residuals:

S =
n

∑
i=1

(ri)
2 =

n

∑
i=1

(yi − f (xi, p))2 (17)

Mathematics 2020, 8, 1483 8 of 31

Figure 1. A flowchart of our constrained damped Gauss–Newton method.

2.4.2. Optimization by a Constrained Version of Nonlinear Least Squares (Gauss–Newton Method)

If we assume that f (x) is twice continuously differentiable, then we can utilize Newton’s method
to solve the system of nonlinear equations:

∇ f (x) = J(x)Tr(x) = 0, (18)

which provides local stationary points for f (x), where r(x) is the vector of residuals associated with
data points as functions of parameter vector x and J is the Jacobian. Written in terms of derivatives of
r(x) and starting from an initial guess x0, this version of the Newton iteration scheme takes the form:

xk+1 = xk −
[

J(xk)
T J(xk) + S(xk)

]−1
J(xk)

Tr(xk), k = 0, 1, 2, . . . (19)

where S(xk) denotes the matrix:

S(xk) =
m

∑
i=1

ri(xk)∇2ri(xk). (20)

In order to obtain the correction ∆xk = xk+1 − xk, a linear system is solved by a direct or
iterative method: [

J(xk)
T J(xk) + S(xk)

]
∆xk = −J(xk)

Tr(xk). (21)

Mathematics 2020, 8, 1483 9 of 31

For our application, we use the Gauss–Newton method, which neglects the second term S(xk) of
the Hessian, and the computation of the step ∆xk involves the solution of the linear system:[

J(xk)
T J(xk)

]
∆xk = −J(xk)

Tr(xk), (22)

and xk+1 = xk + ∆xk.
In our application, we use the following steps that comprise a damped Gauss–Newton strategy:

• Start with an initial guess x0 and iterate for k = 0, 1, 2, . . .
• Solve min∆xk‖J(xk)∆xk + r(xk)‖2 to compute the correction ∆xk.
• Choose a step length αk so that there is enough descent.
• Calculate the new iterate xk+1 = xk + αk∆xk.
• Check for convergence.

We choose αk to be 1.0 at the beginning of the algorithm and decrease it by dividing by two each
time the error increases relative to the previous iteration. More sophisticated damping strategies such
as the Armijo–Goldstein step-length principle are not suitable in our application because of constraints
violation that is described next. We also extend the Damped Gauss–Newton method to be constrained
in the following way: in the case that one of the parameters, during the convergence process, exceeds
its bounds (constraints provided in the GUI by the user), the algorithm assigns to this parameter its
corresponding bound value instead. For this reason, we cannot apply the Armijo–Goldstein condition
and need to revert to a simple damping strategy that is suitable with our constrained modification of a
damped Gauss–Newton method. A flowchart of our method is shown in Figure 1.

2.4.3. Optimization by Derivative-Free Methods (COBYLA Method)

Should the Gauss–Newton method fail to carry out the optimization of Equation (18), a helpful
alternative is the COBYLA algorithm, a derivative-free simplex method originally developed by
Powell [65]. The parameters in the algorithm have mathematical meanings that are outside the scope
of the model employed, as will be shown herein, and a pseudocode of the algorithm is available in
Algorithm 1. In general, a simplex method seeks to minimize an objective function using simplices,
where simplex refers to the convex hull of a set of n + 1 points in n-dimensional space. Such an
algorithm begins by evaluating the objective function at the vertices of an initial simplex, and then
strategically adjusting the simplex so that the objective function attains generally smaller values at the
vertices of the new simplex than it did at those of the previous simplex. At each iteration, a vertex of
the simplex may be altered, or the simplex itself rescaled, so as to guide the simplex into a region at
which the objective function is minimized. When sufficient accuracy is attained, the vertex of the final
simplex at which the objective function is smallest is returned as the function’s minimizer.

A major benefit of both the Gauss–Newton and COBYLA algorithms is in reducing and even
abolishing the use of derivatives of the objective function. In our model, the Hessian matrix associated
with our objective function imposes a heavy computational burden on the optimization problem,
and methods that do not require it are preferable. Numerical results indicate that COBYLA is generally
very effective when the Gauss–Newton method fails; the latter, however, is quicker and more accurate
than COBYLA. By default, we use the Gauss–Newton method, and, when it fails, the user is prompted
to initiate COBYLA. The details of the COBYLA algorithm are described in Appendix A, beginning with
a description of the Nelder and Mead simplex method from which it is derived.

Mathematics 2020, 8, 1483 10 of 31

Algorithm 1: COBYLA method.

1 begin
2 ρ←− ρbeg

3 µ←− 0
4 Branch←− (∗)
5 Form the initial simplex
6 loop
7 Ensure that x0 is the optimal vertex and that Flag = ON iff the simplex is acceptable
8 if Branch = (∗) or Flag = ON then
9 Generate x∗

10 if ‖x∗ − x0‖2 ≥ 0.5ρ then
11 if µ is not large enough then
12 Revise µ

13 if x0 is not optimal vertex then
14 Continue
15 end
16 end
17 Calculate f (x∗) and { ci(x∗) : i = 1, 2, . . . , m }
18 if Φ(x∗) < Φ(x0) or the change may help acceptability then
19 Revise the simplex
20 end
21 if (Φ(x∗)−Φ(x0))/(Φ̂(x∗)− Φ̂(x0)) ≥ 0.1 then
22 Branch←− (∗)
23 Continue
24 end
25 end
26 if Flag = ON then
27 if ρ ≤ ρend then
28 Break
29 else
30 Branch←− (∗)
31 Update ρ and µ

32 end
33 else
34 Branch←− (∆)
35 end
36 else
37 Calculate x∆ , f (x∆) and { ci(x∆) : i = 1, 2, . . . , m }
38 Make x∆ a vertex of the simplex
39 Branch←− (∗)
40 end
41 endloop
42 end

2.5. Method Scope and Other Approaches

The strategy that was introduced in [57] and also implemented herein prepares the multiscale
model equations for parameter fitting by working on them directly as an initial step. This strategy is
beneficial in postponing approximations to later steps and ensuring full control of the user during the

Mathematics 2020, 8, 1483 11 of 31

whole fitting procedure. It should be noted that, for each parameter introduced in future multiscale
models, the derivative with respect to the new parameter needs to be taken and more equations
need to be derived, as illustrated in this section. However, this technical procedure is significantly
less complicated than deriving analytical approximations to a modified model with a change in the
parameters. In our package, the code is written in Java and at present the method is hard coded for the
model; therefore, some technical expertise is needed if a new model is given and the method needs
to be hard coded in Java for the new model. In future work we plan to separate the model from the
method and make it generic, which needs to be done only once and then it can easily handle various
modifications to the model and become modeler friendly. Until that time, we do rely on some amount
of expert knowledge, but, overall, it should still be easier than deriving analytical approximations to a
modified model.

The importance of parameter estimation to the model was already noted in previous studies.
It was addressed in [48] and attempts to come up with improved strategies were tried thereafter in [60]
and in [50]. Here, we briefly relate to each of these approaches in order to remain self-contained.
More information can be found in [57].

2.5.1. Parameters Change When Transforming a PDE Multiscale Model to a System of ODEs

An approach taken in [60] showed how a PDE multiscale model of hepatitis C virus can be
transformed to a system of ODEs. In principle, parameter estimation should then become easier,
avoiding the complications in dealing with the PDE multiscale model. However, there are side effects
introduced in such a transformation, as can be noticed in Equation (9) of [60] where the boundary
condition R(t, 0) = ζ gets inside the differential equations. Consequently, as admitted in the discussion
of that reference, all parameters in Equations (7)–(10) must be estimated including ζ. The inclusion
of boundary conditions as new parameters inside the model equations is a drawback compared to
parameter estimation performed on the original multiscale model equations before the transformation.
Another drawback from the perspective of parameters change is the fact that the simplest PDE
multiscale model appearing in [47] was used in the transformation to ODEs, but important additions
such as the inclusion of parameter γ as in [48] are not taken into account. It is not obvious how
to include the parameter γ and other developments to the multiscale model inside the system of
ODEs. Finally, any information regarding the age of the cell since infection is lost. Thus, if one would
wish, for example, to vary the parameter α from infection to a certain time; this is not possible.
In summary, while the transformation works for the simplest multiscale model, it is limited in
considering developments to the multiscale model and the parameters in the system of ODEs are not
the same as the parameters in the multiscale model.

2.5.2. Problematic Issues in Strategies Relying on Canned Methods

The previous approaches for parameter fitting of the multiscale model with age are all relying on
canned methods. The two main strategies are the ones worked out in [48,50]. In [48], the long-term
approximation is used for the solution of the multiscale model equations and Levenberg–Marquardt is
used as a canned method. One drawback of such an approach is that it is limited to the multiscale
model under treatment. In addition, the analytical approximation would change when various
multiscale models are introduced and the elaborative derivations would need to be carried for each
one, with restrictions that are incorporated by the approximation being used. Finally, as elaborated
in [57], the use of a canned method is distancing the user away from having control over the main
optimization procedure and the ability to tune it from the programming standpoint.

3. Results

Having described the newer and significantly more efficient methods for parameter estimation
relative to [57], we present the new results obtained for both the biphasic model [26] and multiscale
models [47–50]. We first provide a basic illustration with the mutliscale model in which run-time and

Mathematics 2020, 8, 1483 12 of 31

performance comparisons between methods are generated. Then, in Appendix B, for each type of
model, some examples are described. The results are presented using a newer (efficient) version of the
user-friendly simulator that we have initially developed in [55,57] for both biphasic and multiscale
models. We start from the biphasic model in Appendix B and end with the multiscale model in
Appendix C. The simulator with a GUI is freely available at http://www.cs.bgu.ac.il/~dbarash/
Churkin/SCE/Efficient/Parameter_Estimation (the efficient version, with the option to either select
the biphasic or the multiscale model).

For a basic comparison between all relevant parameter estimation methods, we apply our new
methods on the difficult case of the retrieved data points that was also used for this purpose in [57]
to compare our efficient methods with the previous ones. Results were obtained after a few minutes
instead of the several hours that was reported in [57], making our tool practical also for difficult cases.
As in [57], we fitted the four treatment parameters κ, εs, εα and γ and all other parameters were selected
with the values of Table 2.

We show in Table 3 the different values of those four parameters and sum of squared-errors fitted
with the various methods (new efficient ones vs. previously published ones) to the data emanating
from a patient. In the rightmost column, we fitted the long-term approximation with the retrieved
data points using the scipy.optimize.curve_fit method, which is a Python implementation of a
simple Levenberg–Marquardt scheme as a canned method. The next column to the right are the values
obtained previously by the use of Levenberg–Marquardt along with the numerical method to solve the
model equations as outlined in [57]. In the left columns are the values obtained by our new efficient
methods. The small differences assure us that the significant efficiency achieved, thereby making our
simulator a practical and useful tool, did not result in less accuracy.

Table 3. Values of the parameters when fitted to the patient digitized data. The rightmost column has
the values when the retrieved data points are fitted to the long-term approximation as in [57]. The left
columns contain the fitted parameter values by our efficient methods. Except for the rightmost column,
all methods are combined with the Rosenbrock numerical scheme. The fixed parameters have the
values shown in Table 2. Run-time comparison is reported in seconds in the last row.

Gauss–Newton (LSF) COBYLA Levenberg–Marquardt Long-Term

εs 0.609 0.598 0.602 0.600
εα 0.995 0.994 0.995 0.994
κ 6.210 6.375 6.219 6.160
γ (d−1) 0.137 0.177 0.139 0.140
accuracy (sum error2) 0.538 0.582 0.538 0.587
run-time (s) 194 3698 70118 <1

To further illustrate the tool we provide, we show in Figure 2 the starting configuration after the
data was inserted as input. The shown fitting curve is the one for default parameters (not considering
data points) before running any fitting method. In Figures 3 and 4, the final results are shown when
selecting LSF and COBYLA, respectively. In Figures 5 and 6, we present the curves of all methods
shown in the same simulator window and in a separate graph, to which Table 3 corresponds.

http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation
http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation

Mathematics 2020, 8, 1483 13 of 31

Figure 2. Start fit that emanates from data of a patient reported in [48]. The fitting curve corresponds
to default parameters before fitting with our methods. The multiscale model is used.

Figure 3. End fit using Gauss–Newton (LSF) that emanates from data of a patient reported in [48].

Mathematics 2020, 8, 1483 14 of 31

Figure 4. End fit using COBLYA that emanates from data of a patient reported in [48].

Figure 5. Comparison between the line fits of different methods inside the simulator window for the
retrieved data points of patient HD that was reported in [48].

Mathematics 2020, 8, 1483 15 of 31

Figure 6. Comparison between the line fits of different methods for the retrieved data points of patient
HD that was reported in [48].

4. Discussion

A practical and user-guided automatic procedure for parameter estimation is an important goal
to achieve for mathematical models that are based on differential equations. It enables users to test
a variety of fitting scenarios, either for the model calibration or model calibration with validation,
by inserting different available data points of patients used for the fitting and fixed parameter values.
The motivation is to use the parameters obtained by the fitting procedure to perform successful
predictions for other data, where other data are data of new patients that form initial conditions
to the model and successful predictions mean that the solution of the model equations yields a
correct extraction of important quantities such as time to cure. In the context of viral dynamic
models, even a simple model such as the biphasic model [26] that is beneficial to be tested by
users requires a nonlinear method for the least squares minimization because a linear method is
not sufficient [57]. The development of more complicated models such as viral dynamic models that
consider intracellular viral RNA replication, namely age-structured PDE multiscale models to study
viral hepatitis dynamics during antiviral therapy [47–50], presents a need for even more sophisticated
strategies that perform parameter estimation while solving the model equations simultaneously.
Efficient methods as developed herein are crucial such that the parameter estimation can be performed
in a reasonable time.

From the parameter estimation standpoint, as previously outlined [57] and briefly mentioned in
the Introduction, multiscale models are even more challenging than the biphasic model. Not only is
conducting a search in at least a 10-parameter search space more difficult than in a 4-parameter search
space, but also the task of solving the model equations themselves and how to connect the equations
solution to the optimization procedure requires more sophistication. Previously, this was approached
in [48] by using the long-term approximation along with a canned method for Levenberg–Marquardt,
and in [50] by the method of lines and then employing Matlab’s 4th order Runge–Kutta solver along
with a canned method available in Matlab called fmincon for the optimization. While these strategies

Mathematics 2020, 8, 1483 16 of 31

work sufficiently well for specific cases because of their use of canned methods, they are problematic
from the standpoint of the user’s capability to access and control them. Thus far, to the best of our
knowledge, no specific source code for viral hepatitis kinetics besides our initial attempt at [57] (more
general software such as DUNE, DuMuX, and UG4 for the solution of PDE models are available
at [66–68] and would be worthwhile exploring in the future) has been released free of charge for
the benefit of the community and while these strategies were described coherently in the context of
presenting multiscale models, they were not intended to provide to the user a comprehensive solution
of their own. There is clearly a need to provide the user with a free of charge simulator that is effortless
to operate and a code that can be accessed for dissemination and future development. Furthermore,
it should be practical in running time and allow inserting constraints for the parameters that need
be estimated, which is not available in our initial attempt of [57] because of reverting to the standard
non-constrained Levenberg–Marquardt method for the optimization and encountering numerical
precision problems that were difficult to detect when developing the complete strategy for parameter
estimation in our initial attempt.

The strategy we presented herein is a direct continuation to [57] and requires no canned methods
utilization. It works directly on the multiscale model equations, preparing them in advance for the
optimization procedure by taking their derivatives with respect to the parameters, in contrast to solving
them first by an analytical approximation or performing the method of lines as a first step. For the
solution of the model equations, the Rosenbrock method described in [55] is employed, as was shown
to be advantageous in comparison to other solution schemes in [56]. For the constrained optimization
procedure, as a departure from [57], either the Gauss–Newton or COBYLA are employed in full (not as
a canned method) such that the user has access to the source code at each point in the procedure.
Both Gauss–Newton and COBYLA are significantly more efficient in their constrained optimization
procedure relative to the Levenberg–Marquardt employed in [57]. More complicated patient cases that
took several hours of run time simulation in [57] (19.48 h reported in Table 3 for Levenberg–Marquardt)
are now calculated in a few minutes (3.23 min reported in Table 3 for Gauss–Newton) on a standard
PC, and simpler cases that took several minutes are now performed in seconds. Thus, the obtained
results are much faster to compute than the existing solutions without sacrificing accuracy. The whole
method is provided in a form of a model simulator with a user-friendly GUI, letting the user insert
parameter constraints.

We note by passing that the aforementioned general software DUNE, DuMuX, and UG4 [66–68]
are written in C++ using the MPI library allowing for massively parallel evaluations in the context
of HPC, which might allow significantly more extended data sets to consider in the future. Thus,
High Performance Computing (HPC) might also be an option for future development.

The code is open source and is divided into several packages: two fitter packages and a third
default package with solver (Solver.java) class and GUI (GUI.java) class. The default package also
contains different helper classes, like a class with all parameters and adapter classes to define the
objective function for the fitters. The code is flexible and it is easy to add any new model solver class
or any new parameters fitting class, library, or package. We use adapter design pattern to connect
between the model solver and the parameters fitting algorithm. Thus, to add a new solver or fitter,
one should add the solver/fitter code to the project and implement the adapter class that matches
the interface of the model solver to the objective function interface of the parameters fitting method.
In addition, one should change 2–3 rows in the GUI.java class to make use of a new solver/fitter from
the GUI interface.

5. Conclusions and Future Work

The efficient methods described herein make the simulator a practical tool that is distributed free
of charge for the benefit of the community and the dissemination of viral hepatitis models. Furthermore,
the methods for parameter estimation employed can conceptually be used in other mathematical
models in biomedicine.

Mathematics 2020, 8, 1483 17 of 31

Future work would include the development of the code in several directions. First, the code can
be made more modular such that the modeler can easily implement the method for a different model or
a modified version of one of these models. In this way, portability of the method to other models can be
achieved such that a significant modification of the code is not needed as a consequence of a change in
the model, ensuring that the modification is relatively straightforward. Second, at present, individual
fits to individual time course profiles is available, which is useful when one wants to describe viral
dynamics within one patient. The code can be developed for use also for fitting the in vitro time
course profiles of pooled patient datasets. Thus, as future work, having the option to import and fit
the models to repeated/multiple measurements would be useful.

From the numerical perspective, it might be possible to try weak methods for the solution of
the model equations such as finite elements, finite volumes, or discontinuous Galerkin as described
in [63,64]. The two time scales might present different challenges as compared to PDEs that are
dependent on time and space in their partial derivatives. Independently, much of the computations
are present in the optimization stage as compared to the solution stage and therefore efforts centered
on the model equations solution could focus on simplified strategies, if at all possible, for the benefit of
gaining more efficiency.

Finally, machine learning methods can be used to improve parameter estimation. There are
already enough patient cases, as more than 250 patients have been modeled, which can be used to
prepare the data for the parameter estimation of our simulator. Machine learning can then be used for
outliers’ removal, replacement of the incorrect and missed data with the correct one (currently done
manually), and correction of the data for the parameters and time to cure estimation. The machine
learning algorithm can then be integrated with the parameter estimation method to yield an overall
improved procedure.

Author Contributions: Conceptualization, D.B.; methodology, A.C., S.L., V.R., H.D., and D.B.; software, A.C.,
V.R.; investigation, A.C., S.L., V.R., H.D., and D.B.; writing—original draft preparation, A.C., S.L., V.R., H.D., and
D.B.; writing—review and editing, A.C., S.L., V.R., H.D., and D.B.; supervision, D.B.; funding acquisition, A.C.,
D.B., V.R., and H.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the U.S. National Institutes of Health Grant Nos. R01-AI078881,
R01-AI144112, R01-AI146917, and R01-GM121600.

Conflicts of Interest: The authors declare no conflict of interest. The funders had no role in the design of the
study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to
publish the results.

Appendix A. Details of the COBYLA Method

The original simplex method, devised by Spendley, Hext, and Himsworth [61,69], seeks to advance
a simplex towards a minimizer of f (x) : Rn → R by reflecting vertices at which f is large across
opposite faces of the simplex in the hopes of reducing f . If the initial simplex has vertices x0, x1, . . . , xn,
ordered so that f (x0) ≤ f (x1) ≤ . . . ≤ f (xn), then xn is the vertex at which f is largest, and is
considered for revision. The vector x̂, defined below, is proposed as a replacement:

x̂ :=
2
n

(
n−1

∑
i=0

xi

)
− xn, (A1)

=
1
n

(
n−1

∑
i=0

xi

)
+

 1
n

(
n−1

∑
i=0

xi

)
− xn

 , (A2)

:= x̄ + (x̄− xn). (A3)

Note that the vector x̄ is the centroid of the convex hull of the points x0, x1, . . . , xn−1, so that x̂ is
the reflection of the vertex through the face of the simplex opposite xn. As such, the volume of the
simplex is preserved if the vertex exchange xn → x̂ is made, with the swap occurring if f (x̂) < f (xn−1).

Mathematics 2020, 8, 1483 18 of 31

If f (x̂) is comparable to f (xn), the assumption is made that f is minimized in the area between xn and
x̂, so that the change xn → x̂ simply bypasses this region. To access this interior region, the simplex is
rescaled without replacing any of the vertices with x̂. The optimal vertex, x0, is left alone, and each
vertex xk, for k = 1, . . . , n, is replaced with (1/2)(x0 + xk). Both such changes to the simplex are
illustrated in the case n = 2 in Figure A1.

x2

x1

x0

x̄
x̂

A

x2

x1

x0

(x2+x0)
2

(x1+x0)
2

B

Figure A1. Illustration of the original simplex method. The points x0, x1, and x2 form the initial simplex.
(A) The point x̄ is the midpoint of the line joining x0 and x1, and x̂ is the reflection of x2 through this
line. If f (x̂) < f (x1), x2 is replaced by x̂, shifting the location of the simplex. (B) If f (x̂) ≥ f (x1),
x2 is replaced with (1/2)(x2 + x0) and x1 is replaced with (1/2)(x1 + x0), reducing the volume of
the simplex.

The Nelder–Mead method [70] expands on this basic simplex method, removing much of the
inefficiency that arises when rescalings result in a small simplex that takes longer to converge to the
function’s minimizing region. It does so by moving the vertex xn to a new point along the line joining
xn and x̂, strategically chosen to reduce f as much as possible. A generic expression for the new vertex,
xnew, is now,

xnew := x̄ + θ(x̄− xn), (A4)

where θ > 0 may be different at each iteration. In the case of a linear f , we have that

f (xnew) = f (x̄) + θ(f (x̄)− f (xn)) ≤ f (x̄), (A5)

where the last equality above follows from the fact that f (xn) ≥ f (xk) for all k = 0, 1, . . . , n − 1,
which implies f (x̄) ≤ f (xn). Regarding the linear case as a proxy for the more general case, we expect
such a vector xnew to decrease the value of f , if θ is chosen well. One particular implementation bases
the choice of θ—and thus the new vertex—on the value of f (x̂) relative to the value of f at other
vertices. The new vertex, x̌, is defined as such:

2x̂− x̄ if f (x̂) < f (x0), (A6a)
1
2
(x̄ + x̂) if f (x0) ≤ f (x̂) < f (xn−1), (A6b)

1
2
(xn + x̄) if f (xn−1) ≤ f (x̂). (A6c)

The choices in Equations (A6a)–(A6c) are obtained by taking θ = 2, (1/2), (−1/2), respectively,
in Equation (A4), and are depicted in Figure A2. If f (x̂) < f (x0), as in Equation (A6a), then f decreases

Mathematics 2020, 8, 1483 19 of 31

so significantly along the line from xn to x̂ that choosing a new vertex, 2x̂− x̄, even further down the
line is presumed to result in a greater reduction. If f (x0) ≤ f (x̂) < f (xn−1), as in Equation (A6b),
the reduction in f is less significant, and the new vertex is placed between x̂ and the face of the simplex
opposite xn. If f (xn−1) ≤ f (x̂), as in Equation (A6c), the reduction in f at x̂ is minimal, and x̌ is placed
between xn and the face of the opposite simplex, as placement of the vertex near x̂ is not warranted.

x2

x1

x0

θ =
−1

2
θ =

1

2
θ = 2

Figure A2. Illustration of the Nelder–Mead method. The points x0, x1 and x2 form the initial simplex.
The vertex x2 is replaced with a vertex of the form xnew = x̄ + θ(x̄ − x2). If f (x̂) < f (x0), θ = 2,
if f (x0) ≤ f (x̂) < f (xn−1), θ = 1/2, and if f (xn−1) ≤ f (x̂), θ = −1/2.

The COBYLA algorithm is used to minimize an objective function f (x) : Rn → R subject to the
set of m ∈ N constraints,

{ci(x) ≥ 0 : i = 1, 2, . . . , m}, (A7)

where ci(x) : Rn → R for each i = 1, · · · , m. As derivatives are omitted from the algorithm entirely,
no smoothness assumptions are required for the functions f , ci; they must simply be well-defined
on Rn. After generating the initial simplex from an initial guess as to the location of the minimizer,
the optimal vertex is identified and labeled x0. In this case, a vertex of the simplex is considered
optimal if Φ(x0) ≤ Φ(xk), for k = 1, · · · , n, where the xk are the other n vertices of the simplex,
and Φ(x) is defined by

Φ(x) = f (x) + µ[max{−ci(x) : i = 1, · · · , m}]+, (A8)

with [x]+ = max{x, 0}, and µ ≥ 0 a constant parameter. The optimality of a point x is thus affected
by both the value of f (x) and how closely it satisfies the constraints in Equation (A7). If ci(x) ≥ 0
for all i = 1, · · · , m, then Φ(x) = f (x), but if at least one constraint is violated, then Φ(x) > f (x),
lessening the “worth” of the point x as an approximation to the minimizer. From there, each iteration
of the algorithm generates a new candidate vertex, designed to either replace an existing vertex
with one that decreases Φ(x) or improves the shape of the simplex. The shape of the simplex is
particularly crucial in this algorithm because its vertices are used to define linear programming
problems, from which new candidate vertices designed to improve the optimality condition are
derived. Specifically, if {xk : k = 0, · · · , n} are the vertices of the current simplex, we let f̂ (x) : Rn → R
be the unique affine function that passes through points (xk, f (xk)) ∈ Rn+1, and, analogously, we let
ĉi(x) : Rn → R be the unique affine function that passes through the points (xk, ci(xk)). Should the
shape of the simplex be “acceptable”—in a way to be defined later—a new candidate vertex is chosen
to improve optimality by minimizing f̂ (x) subject to the constraints {ĉi(x) ≥ 0}. Should the simplex

Mathematics 2020, 8, 1483 20 of 31

be of an unacceptable shape, the linear programming problem may be ill-defined or fail to provide a
reasonable approximation to the functions f (x), ci(x). If this newly generated vector improves the
value of Φ, it replaces a vertex of the simplex. This process continues until a pre-determined final
trust region radius, which represents the desired accuracy of the approximation to the minimizer,
is achieved.

The algorithm takes as inputs an initial guess, x0, as to the location of the minimizer, and the
constants ρbeg, ρend > 0, which represent the initial and final trust region radii. Additionally, µ is set
to zero. At the start, the initial simplex is generated from x0 and ρbeg. The vector x0 is one vertex,
with the other vertices, xk, k = 1, . . . , n, defined by xk = x0 + ρbegek, for k = 1, . . . , n. Here, ek is the
k-th coordinate vector. After each xk is generated, f (xk) is computed, and the labels of the vectors x0

and xk are swapped if f (xk) < f (x0), to ensure that f is minimized at x0. After the initial simplex is
defined, the algorithm proceeds to advance the simplex at each iteration by either generating a new
candidate vertex, denoted x∗, to decrease Φ(x), or an alternate vertex, denoted x∆, to improve the
shape of the simplex. Each iteration begins by ensuring that x0 is the optimal vertex–and relabeling
vertices if it is not–before assessing the suitability of the simplex. For this, denote by σk the Euclidean
distance from the vertex xk to the face of the simplex opposite xk, and, by ηk, the length of the segment
joining xk to x0. The simplex is deemed to have an acceptable shape if and only if σk ≥ αρ and ηk ≤ βρ

for all k = 1, . . . , n, where α, β satisfy 0 < α < 1 < β. These conditions prevent the development of
flat, degenerate simplices, which would result in poorly-formulated linear programming problems.
If the simplex is of an unacceptable shape, a vertex x∆ is generated; otherwise, a candidate vertex x∗

is computed.
The iteration immediately following formation of the initial simplex always generates a vertex

x∗, as the initial simplex satisfies σk = ηk = ρbeg for all k = 1, . . . , n, and is thus always acceptable.
The loop that generates such an x∗ in general is described below; in the very first iteration, ρ = ρbeg.
The vector x∗ is generated by minimizing f̂ (x) subject to the constraints in Equation (A7) and the trust
region condition,

||x− x0||2 ≤ ρ, (A9)

as illustrated in Figure A3. Should the constraints in Equations (A7) and (A9) be inconsistent with one
another, the candidate x∗ is chosen by minimizing the “greatest constraint violation” function, M̂(x),
defined by,

M̂(x) := max{−ĉi(x) : i = 1, . . . , m} (A10)

subject to the trust region constraint in Equation (A9). This process is illustrated in Figure A4. If there
exist multiple x∗ that satisfy M̂(x∗) = min{M̂(x) : ||x− x(0)||2 ≤ ρ}, then the x∗ that minimizes f̂ (x)
is chosen from among those that minimized M̂(x). If there are multiple such minimizers of f̂ (x),
then the one that minimizes ||x− x0||2 is chosen.

When the appropriate x∗ is identified, the condition ||x∗− x0||2 < 1
2 ρ is tested. If ||x∗− x0||2 ≥ 1

2 ρ,
the relative “size” of the parameter µ is evaluated. To this end, denote by µ̄ the smallest value of µ for
which Φ̂(x∗) ≤ Φ̂(x0), where

Φ̂(x) = f̂ (x) + µ[max{−ĉi(x) : i = 1, . . . , m}]+ = f̂ (x) + µ[M̂(x)]+. (A11)

If Equations (A7) and (A9) are consistent with one another, then x∗ had been chosen to minimize
f̂ (x), and it follows that Φ̂(x∗) = f̂ (x∗) ≤ f̂ (x0) = Φ̂(x0). In this case, µ̄ = 0. Should Equations (A7)
and (A9) be inconsistent, then x∗ had been chosen to minimize M̂(x) as in Equation (A10), implying
that M̂(x0)− M̂(x∗) ≥ 0. If M̂(x0)− M̂(x∗) = 0, then M̂ has at least two minimizers, and x∗ had
been chosen to minimize f̂ (x), implying Φ̂(x∗) ≤ Φ̂(x0) from Equation (A11). If M̂(x0)− M̂(x∗) > 0,
there exists a µ̄ sufficiently large to guarantee f̂ (x0) − f̂ (x∗) + µ

(
M̂(x0)− M̂(x∗)

)
> 0, even if

f̂ (x0)− f̂ (x∗) < 0, implying Φ̂(x∗) ≤ Φ̂(x0) for µ ≥ µ̄. If the current value of µ satisfies µ ≥ 2
3 µ̄,

then µ is considered “sufficiently large” and its value is left alone. Otherwise, µ is increased to 2µ.

Mathematics 2020, 8, 1483 21 of 31

x0

ĉ 1
≥
0

ĉ
2 ≥

0

ρ

R
2

Figure A3. Minimization of f̂ The candidate vertex x∗ is computed by minimizing f̂ (x) subject to the
constraints ĉ1, ĉ2 ≥ 0 within the trust region ||x− x0||2 ≤ ρ. (top) The region of optimization (green) is
the intersection of the trust region ||x− x0||2 ≤ ρ with the half planes defined by the affine constraints
ĉ1 ≥ 0 and ĉ2 ≥ 0. (bottom left) The function, f̂ , to be minimized is represented graphically by the
plane (blue) passing through points (x0, f (x0)), (x1, f (x1)), (x2, f (x2)). (bottom right) The vertex x∗ is
defined to be the point within the region of optimization (green) at which f̂ (blue) is minimized.

x0

ĉ1
≥ 0

ĉ2 ≥ 0

R
2

Figure A4. Minimization of M̂ Should the constraints ĉi(x) ≥ 0 be inconsistent with one another within
the trust region ||x − x0||2 ≤ ρ, the candidate vertex x∗ is chosen to minimize M̂ := max{−ĉi(x) :
i = 1, . . . , m}. (top) The constraints ĉ1(x) ≥ 0 and ĉ2(x) ≥ 0 are inconsistent within the region
||x− x0||2 ≤ ρ. (bottom left) Graphs of the affine functions −ĉ1(x) (blue) and −ĉ2(x) (green). (bottom
right) The vertex x∗ is defined to be the point within the trust region (black circle) at which M̂
is minimized.

Mathematics 2020, 8, 1483 22 of 31

If µ is increased, it may no longer be the case that x0 is optimal, in the sense that there may exist
some k between 1 and n for which Φ(xk) < Φ(x0). From the form of Φ in Equation (A8), this reversal
of the original order relation Φ(xk) ≥ Φ(x0) as µ increases can only occur if [M(x0)]+ > [M(xk)]+,
with M(x) defined as:

M(x) := max{−ci(x) : i = 1, . . . , m}. (A12)

If x0 is no longer optimal, the process returns to the start of the loop, from which it first rearranges
the labeling of the vertices so as to label the optimal one x0. No change was made to the vertices
of the simplex beyond this relabeling, and if the simplex had been acceptable previously, it will
remain acceptable. In this case, another candidate vertex x∗ will be computed with respect to the
new x0. The process of generating x∗, increasing µ, and then relabeling the vertices can only happen
a finite number of times; the labels of the vertices x0 and xk are only switched if M(x0) > M(xk),
meaning that the value of M decreases each time a vertex exchange is made. Thus, increasing µ can
only change the order relation between the values Φ(xk) until the optimal vertex x0 also satisfies
M(x0) = min{M(xk) : k = 0, . . . , n}, at the latest.

If µ is sufficiently large and x0 is optimal, or once these conditions have been achieved, the possible
replacement of one vertex with the new candidate vertex x∗ is considered. The values of f (x∗) and
ci(x∗) are computed, and the simplex is revised to incorporate x∗ as a vertex if Φ(x∗) < Φ(x0), or if
such a revision will improve acceptability of the simplex. The choice of which existing vertex should
be replaced with x∗ is determined by the predicted effect of the change on the acceptability conditions
and the volume of the simplex. For this, consider the quantity σ̄k, defined to be the Euclidean distance
from x∗ to the face of the simplex opposite xk. If xk is replaced with x∗, but all other vertices are left
unchanged, the volume, V∗, of the new simplex is related to the volume, Vk, of the original simplex by
the formula,

V∗ =
σ̄k

σk Vk. (A13)

This follows from the standard formula for the volume of a simplex in Rn, which yields
Vk = (1/n)VHσk, V∗ = (1/n)VH σ̄k, where VH is the volume of the convex hull of the n points
x0, x1, . . . , xj−1, xj+1, . . . , xn. It is considered advantageous for a change in the vertices to increase the
volume of the simplex, and, as such, vertices xk for which σ̄k > σk are sought for replacement by x∗.
Specifically, consider the set J defined by

J := {j : σ̄j ≥ σj} ∪ {j : σ̄j ≥ αρ}, (A14)

thus consisting of indices j for which xj could be replaced with x∗ either without decreasing the volume
of the simplex or without disturbing the acceptability condition σj ≥ αρ. To consider the effect of a
change on the acceptability condition ηk ≤ βρ, note that, if a vertex is replaced by x∗, the optimal vertex
of the new simplex will be either the previous optimal vertex, x0, or the vertex x∗ itself. Denoting the
new optimal vertex by x̄0, if J is nonempty, let ` ∈ N be defined as

` := min{k ∈ N∩ [1, n] : ‖xk − x̄0‖2 = max{‖xj − x̄0‖2 : j ∈ J}}, (A15)

so that x(`) is the vertex with smallest index at a maximal distance from the optimal vertex. If ‖x` −
x̄0‖2 > δρ, for 1 < δ ≤ β, then xk is replaced by x∗. If these conditions are not met, the simplex is
revised regardless, as long as either Φ(x∗) < Φ(x0) or there exists an index k for which σ̄k > σk—that
is, if Φ is smaller at the new candidate vertex, or a change increases the simplex’s volume. In this case,
x0 is replaced by x`, where ` is now defined as

` := min{k ∈ N∩ [1, n] : σ̄k�σk = max{σ̄j�σj : j ∈ N∩ [1, n]}}. (A16)

Note that, even though the simplex is updated whenever Φ(x∗) < Φ(x0), the vertex to discard
is chosen based on the effect the change will have on the volume and acceptability of the simplex,

Mathematics 2020, 8, 1483 23 of 31

with no regard for the values of Φ at different vertices. This process almost always results in an update
to the simplex, with an update failing to occur only if Φ is not decreased at x∗, no vertex swap would
increase the volume of the simplex, and either J is empty or ‖xj − x̄0‖2 ≤ δρ for all j = 1, . . . , n. The set
J is empty if each hypothetical vector swap actually decreases the volume of the simplex and fails to
maintain the first acceptability condition, σ̄j ≥ αρ.

After potentially making a vector replacement, the progress made in reducing Φ as the simplex
advances is examined. If sufficient progress is not made, the trust region radius, ρ, will be reduced.
To determine if such a reduction should be made, the change in Φ at x∗ is compared to the change
in Φ̂. The condition

Φ(x∗)−Φ(x0)

Φ̂(x∗)− Φ̂(x0)
≤ 0.1 (A17)

is tested. If Cond. (A17) fails, then the improvement to Φ is at least 10% of the improvement to Φ̂.
This improvement is considered significant enough, and the iteration returns to the start of the loop to
generate a successive x∗, assuming the simplex is still acceptable. If Cond. (A17) fails, the improvement
to x∗ will be less than 10% of the improvement to Φ̂, and a decrease in the trust region radius is called
for. Before the trust region radius is assessed, the acceptability of the simplex is checked. If the simplex
is unacceptable, the iteration returns to the start of the loop, and generates an alternate vertex x∆. If the
simplex is acceptable, the condition ρ ≤ ρend is tested. If ρ ≤ ρend, the final trust region radius has
been reached, and the algorithm terminates. If ρ > ρend, further advances to the simplex are required
to reduce the trust region radius to its final value. The iteration returns to the start of the loop, and will
generate a new candidate, x∗, as the acceptability of the simplex has already been verified. Before this,
ρ and µ are updated. If ρ > 3ρend, then ρ is decreased by half. If ρ ≤ 3ρend, then ρ is set to ρend itself.

It is considered sensible to update µ whenever ρ is updated, as the value of µ can become quite
large. A constraint function ci(x) is regarded as “significant” to Φ if i ∈ I, where

I := {i ∈ N∩ [1, m] : cmin
i < (1/2)cmax

i }, (A18)

with cmin
i and cmax

i representing the minimum and maximum values of ci at the vertices of the current
simplex. If I is empty, µ = 0, and if I is nonempty, µ is set to the value,

{maxk=0,1,...,n f (xk)−mink=0,1,...,n f (xk)}
min{[cmax

i]+ − cmin
i : i = 1, . . . , m}

, (A19)

assuming that the quantity in Equation (A19) is less than the current value of µ.
If after generating the candidate vector x∗ the condition ‖x∗ − x0‖2 < 1

2 ρ is met, much of the
previously described process is omitted. The algorithm proceeds as it did after advancing the simplex
and verifying Cond. (A17), by first checking the acceptability of the simplex and revising, if necessary,
and then checking the condition ρ ≤ ρend. As before, if ρ ≤ ρend, the algorithm terminates, and,
if ρ > ρend, ρ and µ are updated as previously described and the process returns to the start of the loop
to generate a new x∗.

It only remains to describe the process of updating the simplex to improve its acceptability. This is
done by generating an alternate vertex, x∆, to replace one of the vertices of the simplex. Recall that,
if the simplex is unacceptable, then there either exists a j ∈ N ∩ [1, n] such that σk < αρ or such that
ηk > βρ. If the latter is true, define ` ∈ N∩ [1, n] to be the index that satisfies

η` = max{ηk : k = 1, . . . , n}. (A20)

Otherwise, define ` to be the index that satisfies

σ` = min{σk : k = 1, . . . , n}. (A21)

Mathematics 2020, 8, 1483 24 of 31

The vertex x` is then one that violates one of the acceptability conditions most egregiously, either
by being the closest to the optimal vertex or the farthest from its opposite face. The vertex x` will be
replaced by, x∆, where x∆ is defined by

x∆ = x0 ± γρv`, (A22)

where v` is the unit vector perpendicular to the face of the simplex opposite the outgoing vertex x`,
and γ ∈ (α, 1). The + or − is chosen to minimize Φ̂. The new vertex x∆, illustrated in Figure A5,
maintains the general position of x` relative to the opposite face of the simplex, while satisfying
σ∆ = η∆ = ‖x∆ − x0‖2 = γρ ∈ (αρ, βρ). Even though the acceptability condition is not violated at
the new vertex x∆, acceptability may still be violated at other vertices. After replacing x` with x∆,
the process always generates a vertex of the type x∗, as opposed to conducting several replacements
to improve acceptability. As described previously, the algorithm continues to advance the simplex
by replacing current vertices with improvements of the form x∗ and x∆ until the condition ρ ≤ ρend
is achieved.

x1

x0 + γρvℓ

x0 − γρvℓ

x2
x0

Figure A5. Illustration of the new vector x∆, generated to improve the shape of the simplex. The vertex
x1 is replaced with either x∆ = x0 + γρv` or x∆ = x0 − γρv`, whichever point results in a smaller value
of Φ̂.

Appendix B. Parameter Estimation in the Biphasic Model

We begin with the standard model for HCV dynamics, the biphasic model of Neumann et al. [26].
Although the model is nonlinear, it can be solved analytically when assuming that the target cells T
variable is constant. We incorporated the analytical solution described in [26] to our simulator and
performed parameter estimation using a constrained optimization Gauss–Newton solver to solve the
minimum least squares problem, which is more efficient and stable than the non-constrained nonlinear
solver with a damping factor described in [57]. There can be instances in which the Gauss–Newton
solver fails, although it is the simplest and most efficient, in which case the COBYLA solver should
be used instead by selecting its option in the simulator or it can be used in all instances from the
start. Figures A6 and A7 present fitting results from two patients (Pts). Figure A6 corresponds to
Pt3 who was treated with mavyret [36] where LSF was selected for the optimization (default). In a
case that corresponds to Pt285003 who was treated with epclusa [36] where LSF was selected for the
optimization (default), a warning appeared because of a failure, after which Figure A7 corresponds to
the same case, but this time COBYLA was selected for the optimization and succeeded to yield a fit.

Mathematics 2020, 8, 1483 25 of 31

Our current method has recently been used in [71,72]. A webpage with user instructions is available at
http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Biphasic.

Figure A6. Biphasic model fitting example with data taken from [36] of a patient who was treated with
mavyret. The LSF method (default) is recommended for use.

Figure A7. Biphasic model fitting example with data taken from [36] of a patient who was treated with
epclusa. In this particular case, COBYLA was selected instead of LSF and succeeded to yield a fit.

http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Biphasic

Mathematics 2020, 8, 1483 26 of 31

Appendix C. Parameter Estimation in the Multiscale Model

Extending to the multiscale model for HCV dynamics, we perform parameter estimation on the
model taken from [48]. As previously described, in our simulator, we solved the model equations
using the Rosenbrock method [55] and performed parameter estimation after preparing the derivative
equations using a full implementation of our developed Gauss–Newton (LSF) and COBYLA methods
that are suitable to our application domain without reverting to canned methods.

To illustrate the tool we provide, we first show in Figure A8 the result of fitting to generated
data points from the default values of the parameters c ρ, when starting away from their real values
(with initial guesses of ρ = 7.95, c = 22.5) and selecting the LSF method. The predicted values after
running LSF (ρ = 5.0, c = 31.0) are very close to their real values (error of 2.58 · 10−6) and run-time
was 40 s. In Figure A9, we show the result of the selecting the COBYLA method for the case as in
the previous figure. The predicted values after running COBYLA are even slightly closer to their real
values (error of 1.34 · 10−8) for this particular case and run-time was 109 s. Thus, starting from initial
guesses that are far from the real values can be handled, indicating the robustness of our methods.
Run-times of our methods were significantly faster than a run-time of 1680 s (with even a larger error
of around 0.5 showing much less robustness) when using the Levenberg–Marquardt method that
was implemented in [57]. A webpage with user instructions is available at http://www.cs.bgu.ac.il/
~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Multiscale.

Figure A8. Fitting the parameters c and ρ of the multiscale model to generated data points using the
LSF method.

http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Multiscale
http://www.cs.bgu.ac.il/~dbarash/Churkin/SCE/Efficient/Parameter_Estimation/Multiscale

Mathematics 2020, 8, 1483 27 of 31

Figure A9. Fitting the parameters c and ρ of the multiscale model to generated data points using the
COBYLA method.

References

1. World Health Organization. Global Hepatitis Report 2017: Web Annex A: Estimations of Worldwide
Prevalence of Chronic Hepatitis B Virus Infection: A Systematic Review of Data Published between 1965 and 2017;
Technical Report; World Health Organization: Geneva, Switzerland, 2018.

2. Gilman, C.; Heller, T.; Koh, C. Chronic hepatitis delta: A state-of-the-art review and new therapies.
World J. Gastroenterol. 2019, 25, 4580. [CrossRef] [PubMed]

3. Blach, S.; Zeuzem, S.; Manns, M.; Altraif, I.; Duberg, A.S.; Muljono, D.H.; Waked, I.; Alavian, S.M.;
Lee, M.H.; Negro, F.; et al. Global prevalence and genotype distribution of hepatitis C virus infection in
2015: A modelling study. Lancet Gastroenterol. Hepatol. 2017, 2, 161–176. [CrossRef]

4. Stanaway, J.D.; Flaxman, A.D.; Naghavi, M.; Fitzmaurice, C.; Vos, T.; Abubakar, I.; Abu-Raddad, L.J.;
Assadi, R.; Bhala, N.; Cowie, B.; et al. The global burden of viral hepatitis from 1990 to 2013: Findings from
the Global Burden of Disease Study 2013. Lancet 2016, 388, 1081–1088. [CrossRef]

5. Foreman, K.J.; Marquez, N.; Dolgert, A.; Fukutaki, K.; Fullman, N.; McGaughey, M.; Pletcher, M.A.;
Smith, A.E.; Tang, K.; Yuan, C.W.; et al. Forecasting life expectancy, years of life lost, and all-cause and
cause-specific mortality for 250 causes of death: Reference and alternative scenarios for 2016–2040 for 195
countries and territories. Lancet 2018, 392, 2052–2090. [CrossRef]

6. Ciupe, S.M. Modeling the dynamics of hepatitis B infection, immunity, and drug therapy. Immunol. Rev.
2018, 285, 38–54. [CrossRef] [PubMed]

7. Means, S.; Ali, M.A.; Ho, H.; Heffernan, J. Mathematical Modeling for Hepatitis B Virus: Would Spatial
Effects Play a Role and How to Model It? Front. Physiol. 2020, 11, 146. [CrossRef]

8. Dahari, H.; Major, M.; Zhang, X.; Mihalik, K.; Rice, C.M.; Perelson, A.S.; Feinstone, S.M.; Neumann, A.U.
Mathematical modeling of primary hepatitis C infection: Noncytolytic clearance and early blockage of virion
production. Gastroenterology 2005, 128, 1056–1066. [CrossRef]

9. Dahari, H.; Layden-Almer, J.E.; Kallwitz, E.; Ribeiro, R.M.; Cotler, S.J.; Layden, T.J.; Perelson, A.S.
A mathematical model of hepatitis C virus dynamics in patients with high baseline viral loads or advanced
liver disease. Gastroenterology 2009, 136, 1402–1409. [CrossRef]

http://dx.doi.org/10.3748/wjg.v25.i32.4580
http://www.ncbi.nlm.nih.gov/pubmed/31528088
http://dx.doi.org/10.1016/S2468-1253(16)30181-9
http://dx.doi.org/10.1016/S0140-6736(16)30579-7
http://dx.doi.org/10.1016/S0140-6736(18)31694-5
http://dx.doi.org/10.1111/imr.12686
http://www.ncbi.nlm.nih.gov/pubmed/30129194
http://dx.doi.org/10.3389/fphys.2020.00146
http://dx.doi.org/10.1053/j.gastro.2005.01.049
http://dx.doi.org/10.1053/j.gastro.2008.12.060

Mathematics 2020, 8, 1483 28 of 31

10. Goyal, A.; Murray, J.M. Dynamics of in vivo hepatitis D virus infection. J. Theor. Biol. 2016, 398, 9–19.
[CrossRef]

11. Goyal, A.; Ribeiro, R.M.; Perelson, A.S. The role of infected cell proliferation in the clearance of acute HBV
infection in humans. Viruses 2017, 9, 350. [CrossRef]

12. Neumann, A.U.; Phillips, S.; Levine, I.; Ijaz, S.; Dahari, H.; Eren, R.; Dagan, S.; Naoumov, N.V.
Novel mechanism of antibodies to hepatitis B virus in blocking viral particle release from cells. Hepatology
2010, 52, 875–885. [CrossRef] [PubMed]

13. Dahari, H.; de Araujo, E.S.A.; Haagmans, B.L.; Layden, T.J.; Cotler, S.J.; Barone, A.A.; Neumann, A.U.
Pharmacodynamics of PEG-IFN-α-2a in HIV/HCV co-infected patients: Implications for treatment outcomes.
J. Hepatol. 2010, 53, 460–467. [CrossRef] [PubMed]

14. Dahari, H.; Ribeiro, R.M.; Perelson, A.S. Triphasic decline of hepatitis C virus RNA during antiviral therapy.
Hepatology 2007, 46, 16–21. [CrossRef] [PubMed]

15. Dahari, H.; Lo, A.; Ribeiro, R.M.; Perelson, A.S. Modeling hepatitis C virus dynamics: Liver regeneration
and critical drug efficacy. J. Theor. Biol. 2007, 247, 371–381. [CrossRef] [PubMed]

16. Dahari, H.; Shudo, E.; Ribeiro, R.M.; Perelson, A.S. Modeling complex decay profiles of hepatitis B virus
during antiviral therapy. Hepatology 2009, 49, 32–38. [CrossRef] [PubMed]

17. Koh, C.; Dubey, P.; Han, M.A.T.; Walter, P.J.; Garraffo, H.M.; Surana, P.; Southall, N.T.; Borochov, N.;
Uprichard, S.L.; Cotler, S.J.; et al. A randomized, proof-of-concept clinical trial on repurposing chlorcyclizine
for the treatment of chronic hepatitis C. Antivir. Res. 2019, 163, 149–155. [CrossRef]

18. Dubey, P.; Koh, C.; Surana, P.; Uprichard, S.L.; Han, M.A.T.; Fryzek, N.; Kapuria, D.; Etzion, O.; Takyar, V.K.;
Rotman, Y.; et al. Modeling hepatitis delta virus dynamics during ritonavir boosted lonafarnib treatment-the
LOWR HDV-3 study. Hepatology 2017, 66, 21A.

19. Pawlotsky, J.M.; Dahari, H.; Neumann, A.U.; Hezode, C.; Germanidis, G.; Lonjon, I.; Castera, L.;
Dhumeaux, D. Antiviral action of ribavirin in chronic hepatitis C. Gastroenterology 2004, 126, 703–714.
[CrossRef]

20. Neumann, A.U.; Lam, N.P.; Dahari, H.; Davidian, M.; Wiley, T.E.; Mika, B.P.; Perelson, A.S.; Layden, T.J.
Differences in viral dynamics between genotypes 1 and 2 of hepatitis C virus. J. Infect. Dis. 2000, 182, 28–35.
[CrossRef]

21. Dahari, H.; Shudo, E.; Ribeiro, R.M.; Perelson, A.S. Mathematical modeling of HCV infection and treatment.
Methods Mol. Biol. 2009, 510, 439–453.

22. DebRoy, S.; Hiraga, N.; Imamura, M.; Hayes, C.N.; Akamatsu, S.; Canini, L.; Perelson, A.S.; Pohl, R.T.;
Persiani, S.; Uprichard, S.L.; et al. hepatitis C virus dynamics and cellular gene expression in uPA-SCID
chimeric mice with humanized livers during intravenous silibinin monotherapy. J. Viral Hepat. 2016,
23, 708–717. [CrossRef] [PubMed]

23. Canini, L.; DebRoy, S.; Mariño, Z.; Conway, J.M.; Crespo, G.; Navasa, M.; D’Amato, M.; Ferenci, P.; Cotler, S.J.;
Forns, X.; et al. Severity of liver disease affects HCV kinetics in patients treated with intravenous silibinin
monotherapy. Antivir. Ther. 2015, 20, 149. [CrossRef] [PubMed]

24. Goyal, A.; Lurie, Y.; Meissner, E.G.; Major, M.; Sansone, N.; Uprichard, S.L.; Cotler, S.J.; Dahari, H. Modeling
HCV cure after an ultra-short duration of therapy with direct acting agents. Antivir. Res. 2017, 144, 281–285.
[CrossRef] [PubMed]

25. Dahari, H.; Shteingart, S.; Gafanovich, I.; Cotler, S.J.; D’Amato, M.; Pohl, R.T.; Weiss, G.; Ashkenazi, Y.J.;
Tichler, T.; Goldin, E.; et al. Sustained virological response with intravenous silibinin: individualized
IFN-free therapy via real-time modelling of HCV kinetics. Liver Int. 2015, 35, 289–294. [CrossRef]

26. Neumann, A.U.; Lam, N.P.; Dahari, H.; Gretch, D.R.; Wiley, T.E.; Layden, T.J.; Perelson, A.S. Hepatitis C viral
dynamics in vivo and the antiviral efficacy of interferon-α therapy. Science 1998, 282, 103–107. [CrossRef]
[PubMed]

27. Guedj, J.; Dahari, H.; Pohl, R.T.; Ferenci, P.; Perelson, A.S. Understanding silibinin’s modes of action against
HCV using viral kinetic modeling. J. Hepatol. 2012, 56, 1019–1024. [CrossRef]

28. Lewin, S.R.; Ribeiro, R.M.; Walters, T.; Lau, G.K.; Bowden, S.; Locarnini, S.; Perelson, A.S. Analysis of
hepatitis B viral load decline under potent therapy: complex decay profiles observed. Hepatology 2001,
34, 1012–1020. [CrossRef]

http://dx.doi.org/10.1016/j.jtbi.2016.03.018
http://dx.doi.org/10.3390/v9110350
http://dx.doi.org/10.1002/hep.23778
http://www.ncbi.nlm.nih.gov/pubmed/20593455
http://dx.doi.org/10.1016/j.jhep.2010.03.019
http://www.ncbi.nlm.nih.gov/pubmed/20561702
http://dx.doi.org/10.1002/hep.21657
http://www.ncbi.nlm.nih.gov/pubmed/17596864
http://dx.doi.org/10.1016/j.jtbi.2007.03.006
http://www.ncbi.nlm.nih.gov/pubmed/17451750
http://dx.doi.org/10.1002/hep.22586
http://www.ncbi.nlm.nih.gov/pubmed/19065674
http://dx.doi.org/10.1016/j.antiviral.2019.01.017
http://dx.doi.org/10.1053/j.gastro.2003.12.002
http://dx.doi.org/10.1086/315661
http://dx.doi.org/10.1111/jvh.12551
http://www.ncbi.nlm.nih.gov/pubmed/27272497
http://dx.doi.org/10.3851/IMP2806
http://www.ncbi.nlm.nih.gov/pubmed/24912382
http://dx.doi.org/10.1016/j.antiviral.2017.06.019
http://www.ncbi.nlm.nih.gov/pubmed/28673800
http://dx.doi.org/10.1111/liv.12692
http://dx.doi.org/10.1126/science.282.5386.103
http://www.ncbi.nlm.nih.gov/pubmed/9756471
http://dx.doi.org/10.1016/j.jhep.2011.12.012
http://dx.doi.org/10.1053/jhep.2001.28509

Mathematics 2020, 8, 1483 29 of 31

29. Ribeiro, R.M.; Germanidis, G.; Powers, K.A.; Pellegrin, B.; Nikolaidis, P.; Perelson, A.S.; Pawlotsky, J.M.
hepatitis B virus kinetics under antiviral therapy sheds light on differences in hepatitis B e antigen positive
and negative infections. J. Infect. Dis. 2010, 202, 1309–1318. [CrossRef]

30. Nowak, M.A.; Bonhoeffer, S.; Hill, A.M.; Boehme, R.; Thomas, H.C.; McDade, H. Viral dynamics in hepatitis
B virus infection. Proc. Natl. Acad. Sci. USA 1996, 93, 4398–4402. [CrossRef]

31. Tsiang, M.; Rooney, J.F.; Toole, J.J.; Gibbs, C.S. Biphasic clearance kinetics of hepatitis B virus from patients
during adefovir dipivoxil therapy. Hepatology 1999, 29, 1863–1869. [CrossRef]

32. Canini, L.; Koh, C.; Cotler, S.J.; Uprichard, S.L.; Winters, M.A.; Han, M.A.T.; Kleiner, D.E.; Idilman, R.;
Yurdaydin, C.; Glenn, J.S.; et al. Pharmacokinetics and pharmacodynamics modeling of lonafarnib in
patients with chronic hepatitis delta virus infection. Hepatol. Commun. 2017, 1, 288–292. [CrossRef] [PubMed]

33. Koh, C.; Canini, L.; Dahari, H.; Zhao, X.; Uprichard, S.L.; Haynes-Williams, V.; Winters, M.A.; Subramanya,
G.; Cooper, S.L.; Pinto, P.; et al. Oral prenylation inhibition with lonafarnib in chronic hepatitis D infection:
A proof-of-concept randomised, double-blind, placebo-controlled phase 2A trial. Lancet Infect. Dis. 2015,
15, 1167–1174. [CrossRef]

34. Guedj, J.; Rotman, Y.; Cotler, S.J.; Koh, C.; Schmid, P.; Albrecht, J.; Haynes-Williams, V.; Liang, T.J.;
Hoofnagle, J.H.; Heller, T.; et al. Understanding early serum hepatitis D virus and hepatitis B surface
antigen kinetics during pegylated interferon-alpha therapy via mathematical modeling. Hepatology 2014,
60, 1902–1910. [CrossRef] [PubMed]

35. Shekhtman, L.; Cotler, S.J.; Hershkovich, L.; Uprichard, S.L.; Bazinet, M.; Pantea, V.; Cebotarescu, V.;
Cojuhari, L.; Jimbei, P.; Krawczyk, A.; et al. Modelling hepatitis D virus RNA and HBsAg dynamics during
nucleic acid polymer monotherapy suggest rapid turnover of HBsAg. Sci. Rep. 2020, 10, 1–7. [CrossRef]

36. Etzion, O.; Dahari, H.; Yardeni, D.; Issachar, A.; Nevo-Shor, A.; Naftaly-Cohen, M.; Uprichard, S.L.;
Arbib, O.S.; Munteanu, D.; Braun, M.; et al. Response-Guided Therapy with Direct-Acting Antivirals
Shortens Treatment Duration in 50% of HCV Treated Patients. Hepatology 2018, 68, 1469A–1470A.

37. Dahari, H.; Canini, L.; Graw, F.; Uprichard, S.L.; Araújo, E.S.; Penaranda, G.; Coquet, E.; Chiche, L.; Riso, A.;
Renou, C.; et al. HCV kinetic and modeling analyses indicate similar time to cure among sofosbuvir
combination regimens with daclatasvir, simeprevir or ledipasvir. J. Hepatol. 2016, 64, 1232–1239. [CrossRef]

38. Canini, L.; Imamura, M.; Kawakami, Y.; Uprichard, S.L.; Cotler, S.J.; Dahari, H.; Chayama, K. HCV kinetic
and modeling analyses project shorter durations to cure under combined therapy with daclatasvir and
asunaprevir in chronic HCV-infected patients. PLoS ONE 2017, 12, e0187409. [CrossRef]

39. Gambato, M.; Canini, L.; Lens, S.; Graw, F.; Perpiñan, E.; Londoño, M.C.; Uprichard, S.L.; Mariño, Z.;
Reverter, E.; Bartres, C.; et al. Early HCV viral kinetics under DAAs may optimize duration of therapy in
patients with compensated cirrhosis. Liver Int. 2019, 39, 826–834. [CrossRef]

40. Sandmann, L.; Manns, M.P.; Maasoumy, B. Utility of viral kinetics in HCV therapy—It is not over until it is
over? Liver Int. 2019, 39, 815–817. [CrossRef]

41. Deng, B.; Lou, S.; Dubey, P.; Etzion, O.; Chayam, K.; Uprichard, S.; Sulkowski, M.; Cotler, S.; Dahari, H.
Modeling time to cure after short-duration treatment for chronic HCV with daclatasvir, asunaprevir,
beclabuvir and sofosbuvir: the FOURward study. J. Viral Hepat. 2018, 25, 58.

42. Dahari, H.; Sainz, B.; Perelson, A.S.; Uprichard, S.L. Modeling subgenomic hepatitis C virus RNA kinetics
during treatment with alpha interferon. J. Virol. 2009, 83, 6383–6390. [CrossRef] [PubMed]

43. Dahari, H.; Ribeiro, R.M.; Rice, C.M.; Perelson, A.S. Mathematical modeling of subgenomic hepatitis C virus
replication in Huh-7 cells. J. Virol. 2007, 81, 750–760. [CrossRef] [PubMed]

44. Murray, J.M.; Goyal, A. In silico single cell dynamics of hepatitis B virus infection and clearance. J. Theor. Biol.
2015, 366, 91–102. [CrossRef] [PubMed]

45. Murray, J.M.; Wieland, S.F.; Purcell, R.H.; Chisari, F.V. Dynamics of hepatitis B virus clearance in chimpanzees.
Proc. Natl. Acad. Sci. USA 2005, 102, 17780–17785. [CrossRef]

46. Packer, A.; Forde, J.; Hews, S.; Kuang, Y. Mathematical models of the interrelated dynamics of hepatitis D
and B. Math. Biosci. 2014, 247, 38–46. [CrossRef]

47. Guedj, J.; Dahari, H.; Rong, L.; Sansone, N.D.; Nettles, R.E.; Cotler, S.J.; Layden, T.J.; Uprichard, S.L.;
Perelson, A.S. Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a
shorter estimate of the hepatitis C virus half-life. Proc. Natl. Acad. Sci. USA 2013, 110, 3991–3996. [CrossRef]

http://dx.doi.org/10.1086/656528
http://dx.doi.org/10.1073/pnas.93.9.4398
http://dx.doi.org/10.1002/hep.510290626
http://dx.doi.org/10.1002/hep4.1043
http://www.ncbi.nlm.nih.gov/pubmed/29404459
http://dx.doi.org/10.1016/S1473-3099(15)00074-2
http://dx.doi.org/10.1002/hep.27357
http://www.ncbi.nlm.nih.gov/pubmed/25098971
http://dx.doi.org/10.1038/s41598-020-64122-0
http://dx.doi.org/10.1016/j.jhep.2016.02.022
http://dx.doi.org/10.1371/journal.pone.0187409
http://dx.doi.org/10.1111/liv.14014
http://dx.doi.org/10.1111/liv.14047
http://dx.doi.org/10.1128/JVI.02612-08
http://www.ncbi.nlm.nih.gov/pubmed/19369346
http://dx.doi.org/10.1128/JVI.01304-06
http://www.ncbi.nlm.nih.gov/pubmed/17035310
http://dx.doi.org/10.1016/j.jtbi.2014.11.020
http://www.ncbi.nlm.nih.gov/pubmed/25476731
http://dx.doi.org/10.1073/pnas.0508913102
http://dx.doi.org/10.1016/j.mbs.2013.10.004
http://dx.doi.org/10.1073/pnas.1203110110

Mathematics 2020, 8, 1483 30 of 31

48. Rong, L.; Guedj, J.; Dahari, H.; Coffield, D.J.J.; Levi, M.; Smith, P.; Perelson, A.S. Analysis of hepatitis C virus
decline during treatment with the protease inhibitor danoprevir using a multiscale model. PLoS Comput. Biol.
2013, 9, e1002959. [CrossRef]

49. Rong, L.; Perelson, A.S. Mathematical analysis of multiscale models for hepatitis C virus dynamics under
therapy with direct-acting antiviral agents. Math. Biosci. 2013, 245, 22–30. [CrossRef]

50. Quintela, B.M.; Conway, J.M.; Hyman, J.M.; Guedj, J.; dos Santos, R.W.; Lobosco, M.; Perelson, A.S. A New
Age-Structured Multiscale Model of the Hepatitis C Virus Life-Cycle During Infection and Therapy with
Direct-Acting Antiviral Agents. Front. Microbiol. 2018, 9, 601. [CrossRef]

51. Guedj, J.; Neumann, A.U. Understanding hepatitis C viral dynamics with direct-acting antiviral agents
due to the interplay between intracellular replication and cellular infection dynamics. J. Theor. Biol. 2010,
267, 330–340. [CrossRef]

52. Weickert, J.; ter Haar Romeny, B.; Viergever, M. Efficient and reliable schemes for nonlinear diffusion filtering.
IEEE Trans. Imag. Proc. 1998, 7, 398–410. [CrossRef]

53. Barash, D.; Israeli, M.; Kimmel, R. An Accurate Operator Splitting Scheme for Nonlinear Diffusion Filtering.
In Proceedings of the 3rd International Conference on ScaleSpace and Morphology, Vancouver, BC, Canada,
7–8 July 2001; pp. 281–289.

54. Barash, D. Nonlinear Diffusion Filtering on Extended Neighborhood. Appl. Num. Math. 2005, 52, 1–11.
[CrossRef]

55. Reinharz, V.; Churkin, A.; Dahari, H.; Barash, D. A Robust and Efficient Numerical Method for
RNA-mediated Viral Dynamics. Front. Appl. Math. Stat. 2017, 3, 20. [CrossRef] [PubMed]

56. Reinharz, V.; Dahari, H.; Barash, D. Numerical schemes for solving and optimizing multiscale models with
age of hepatitis C virus dynamics. Math. Biosci. 2018, 300, 1–13. [CrossRef]

57. Reinharz, V.; Churkin, A.; Lewkiewicz, S.; Dahari, H.; Barash, D. A Parameter Estimation Method for
Multiscale Models of hepatitis C Virus Dynamics. Bull. Math. Biol. 2019, 81, 3675–3721. [CrossRef] [PubMed]

58. Levenberg, K. A method for the solution of certain nonlinear problems in least squares. Q. Appl. Math. 1944,
2, 164–168. [CrossRef]

59. Marquardt, D.W. An algorithm for least-squares estimation of nonlinear parameters. J. Soc. Ind. Appl. Math.
1963, 11, 431–441. [CrossRef]

60. Kitagawa, K.; Nakaoka, S.; Asai, Y.; Watashi, K.; Iwami, S. A PDE Multiscale Model of hepatitis C virus
infection can be transformed to a system of ODEs. J. Theor. Biol. 2018, 448, 80–85. [CrossRef]

61. Powell, M.J.D. A View of Algorithms for Optimization Without Derivatives. Math. Today 2007, 43, 170–174.
62. Rohatgi, A. WebPlotDigitizer: Web Based Tool to Extract Data from Plots, Images, and Maps. V 4.1. 2018.

Available online: https://automeris.io/WebPlotDigitizer (accessed on 22 August 2020).
63. Quarteroni, A.; Valli, A. Springer Series in Computational Mathematics, 1994; Springer: Berlin/Heidelberg,

Germany, 1994.
64. Knabner, P.; Angermann, L. Numerical Methods for Elliptic and Parabolic Partial Differential Equations:

An Applications-Oriented Introduction; Springer: Berlin/Heidelberg, Germany, 2004.
65. Powell, M.J.D. A Direct Search Optimization Method That Models Objective and Constraint Functions by

Linear Interpolation. In Advances in Optimization and Numerical Analysis. Mathematics and its Applications;
Gomez, S., Hennart, J., Eds.; Springer: Dordrecht, The Netherlands, 1994; Volume 275.

66. Bastian, P.; Heimann, F.; Marnach, S. Generic implementation of finite element methods in the distributed
and unified numerics environment (DUNE). Kybernetika 2010, 46, 294–315.

67. Flemisch, B.; Darcis, M.; Erbertseder, K.; Faigle, B.; Lauser, A.; Mosthaf, K.; Müthing, S.; Nuske, P.; Tatomir, A.;
Wolff, M.; et al. DuMux: DUNE for multi-{phase, component, scale, physics,. . . } flow and transport in
porous media. Adv. Water Resour. 2011, 34, 1102–1112. [CrossRef]

68. Vogel, A.; Reiter, S.; Rupp, M.; Nägel, A.; Wittum, G. UG 4: A novel flexible software system for simulating
PDE based models on high performance computers. Comput. Vis. Sci. 2013, 16, 165–179. [CrossRef]

69. Spendley, W.; Hext, G.R.; Himsworth, F.R. Sequential Application of Simplex Designs in Optimisation and
Evolutionary Operation. Technometrics 1962, 4, 441–461. [CrossRef]

70. Nelder, J.; Mead, R. A Simplex Method for Function Minimization. Comput. J. 1965, 7, 308–313. [CrossRef]

http://dx.doi.org/10.1371/journal.pcbi.1002959
http://dx.doi.org/10.1016/j.mbs.2013.04.012
http://dx.doi.org/10.3389/fmicb.2018.00601
http://dx.doi.org/10.1016/j.jtbi.2010.08.036
http://dx.doi.org/10.1109/83.661190
http://dx.doi.org/10.1016/j.apnum.2004.07.002
http://dx.doi.org/10.3389/fams.2017.00020
http://www.ncbi.nlm.nih.gov/pubmed/30854378
http://dx.doi.org/10.1016/j.mbs.2018.03.011
http://dx.doi.org/10.1007/s11538-019-00644-7
http://www.ncbi.nlm.nih.gov/pubmed/31338739
http://dx.doi.org/10.1090/qam/10666
http://dx.doi.org/10.1137/0111030
http://dx.doi.org/10.1016/j.jtbi.2018.04.006
https://automeris.io/WebPlotDigitizer
http://dx.doi.org/10.1016/j.advwatres.2011.03.007
http://dx.doi.org/10.1007/s00791-014-0232-9
http://dx.doi.org/10.1080/00401706.1962.10490033
http://dx.doi.org/10.1093/comjnl/7.4.308

Mathematics 2020, 8, 1483 31 of 31

71. Dasgupta, S.; Imamura, M.; Gorstein, E.; Nakahara, T.; Tsuge, M.; Churkin, A.; Yardeni, D.; Etzion, O.;
Uprichard, S.L.; Barash, D.; et al. Modeling-Based Response-Guided Glecaprevir-Pibrentasvir Therapy for
Chronic Hepatitis C to Identify Patients for Ultrashort Treatment Duration. J. Infect. Dis. 2020, jiaa219.
[CrossRef] [PubMed]

72. Gorstein, E.; Martinello, M.; Churkin, A.; Dasgupta, S.; Walsh, K.; Applegate, T.; Yardeni, D.; Etzion, O.;
Uprichard, S.L.; Barash, D.; et al. Modeling based response guided therapy in subjects with recent hepatitis
C infection. Antivir. Res. 2020. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1093/infdis/jiaa219
http://www.ncbi.nlm.nih.gov/pubmed/32363394
http://dx.doi.org/10.1016/j.antiviral.2020.104862
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Methods
	Development of Mathematical Models
	The Standard Biphasic Model
	The Multiscale HCV Model

	Data Description
	Solving the Model Equations
	Parameter Estimation
	Preliminaries
	Optimization by a Constrained Version of Nonlinear Least Squares (Gauss–Newton Method)
	Optimization by Derivative-Free Methods (COBYLA Method)

	Method Scope and Other Approaches
	Parameters Change When Transforming a PDE Multiscale Model to a System of ODEs
	Problematic Issues in Strategies Relying on Canned Methods

	Results
	Discussion
	Conclusions and Future Work
	Details of the COBYLA Method
	Parameter Estimation in the Biphasic Model
	Parameter Estimation in the Multiscale Model
	References

