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Abstract: From the basic geometry of submanifolds will be recalled what are the extrinsic principal
tangential directions, (first studied by Camille Jordan in the 18seventies), and what are the principal
first normal directions, (first studied by Kostadin Trenc̆evski in the 19nineties), and what are their
corresponding Casorati curvatures. For reasons of simplicity of exposition only, hereafter this will merely
be done explicitly in the case of arbitrary submanifolds in Euclidean spaces. Then, for the special case of
Lagrangian submanifolds in complex Euclidean spaces, the natural relationships between these distinguished
tangential and normal directions and their corresponding curvatures will be established.

Keywords: extrinsic principal tangential directions; principal first normal directions; Lagrangian
submanifolds

1. The Extrinsic Tangential Principal Directions of Submanifolds

For general submanifolds Mn of dimension n (≥ 2) and of co-dimension m (≥ 1) in Euclidean
spaces En+m, Jordan [1] studied the extrinsic curvatures cT

u (p) at arbitrary points p ∈ M in arbitrary
tangential directions determined by vectors u ∈ Tp M, ‖u‖ = 1. These are the curvatures cT

u (p) =

(dϕu/ds)2(0), whereby ϕu(s) ∈ [0, Π/2] denotes the angle in En+m between the tangent spaces Tp M at p
and Tq M at a nearby point q ∈ M in the direction u of M at p, s being an arclength parameter of a curve γ

on M from p = γ(0) in the direction u = γ′(0) to q = γ(s). He defined the tangential principal curvatures
cT

1 (p) ≥ cT
2 (p) ≥ . . . ≥ cT

n (p) ≥ 0 of a submanifold Mn in En+m at p as the critical values of the tangential
Casorati curvature function at p, that is of the function cT(p) : Sn−1

p (1) = {u ∈ Tp M|‖u‖ = 1} → R+ :
u 7→ cT

u (p), and, he defined the tangential principal directions of a submanifold Mn in En+m at p as the
directions in which these critical values of the curvatures cT

u (p) are attained and proved these directions
to be mutually orthogonal, say to be determined by orthonormal vectors f1, f2, . . . , fn ∈ Tp M.

In the first step of his original fundamental studies of the geometry of submanifolds,
Trenc̆evski [2–5] re-considered this work of Jordan, and, later, Stefan Haesen and Daniel Kowalczyk
and one of the authors [6] basically re-did this. In the latter paper were followed the 1890
Casorati’s views on the intuitively most natural scalar valued curvatures “as such” of surfaces M2 in E3

(and in [6,7], some tangential and normal kinds of curvature of Riemannian submanifolds were
named after Casorati). Accordingly, in [6], the above tangential Casorati curvatures rather came
up as cT

u (p) = (dψu/ds)2(0), whereby ψu(s) denotes the angle in En+m between the normal spaces
T⊥p M at p and T⊥q M at a nearby point q in the direction of u (as was already known by Jordan,
ψu = ϕu). As shown by Trenc̆evski, the extrinsic principal unit tangential vector fields F1, F2, . . . , Fn

of a submanifold Mn in En+m, and their corresponding tangential Casorati principal curvature functions
cT

1 , cT
2 , . . . , cT

n : M → R+ : p 7→ cT
1 (p), cT

2 (p), . . . , cT
n (p) are essentially the orthonormal eigen vector fields,
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and the corresponding eigen functions of the symmetric linear Casorati operator AC = ∑
α

A2
α, whereby Aα = Aξα

are the shape operators of Mn in En+m for arbitrary orthonormal normal frame fields ξ1, ξ2, . . . , ξm on Mn

in En+m, such that ACFi = cT
i Fi, i ∈ {1, 2, . . . , n}, α ∈ {1, 2 . . . , m}; (the intrinsic principal tangential

directions and their corresponding curvatures of a submanifold Mn in En+m, of course, being its Ricci
principal directions and curvatures).

From the above, in particular, one may notice that for hypersurfaces Mn in En+1, the extrinsic principal
tangential directions are “the classical” principal directions of these hypersurfaces, whereas {cT

1 , cT
2 , . . . , cT

n} =
{k2

1, k2
2, . . . , k2

n}, k1, k2, . . . , kn, being the classical principal curvatures of these hypersurfaces, correspond to
Kronecker’s extension of Euler’s theory of the curvature of surfaces M2 in E3 to hypersurfaces Mn in
En+1 for all dimensions n ≥ 2.

2. Felice Casorati’s Study of Surfaces M2 in E3

Casorati [8] defined his extrinsic scalar-valued curvature C(p) of a surface M2 in E3 at one of its points
p as follows. On M2, consider a small geodesic circle γ∆ρ

centered at p with radius ∆ρ. Let q be any
point on γ∆ρ

, and consider the geodesic δ from p to q parametrised by arclength, such that p = δ(0)
and q = δ(∆ρ); at p, this geodesic points in the tangential direction δ′(0) = u to M2 at p. Let η(p) and
η(q) be the unit normal vectors on the surfaces M2 in E3 at p and at q, respectively, corresponding to a
choice of unit normal vector field η around p on M2 in E3. Then, in Casorati’s words, and according to our
common sense, the angle ∆ψu between η(p) and η(q) measures well how much the surface M2 at p curves in
the direction u; the more the surface curves in the direction u, the larger this angle. Then, joining all the points
δ(∆ψu) that thus correspond to all the points q on the geodesic circle γ∆ρ

around p, associated with
γ∆ρ

, one obtains on M2 a closed curve Γ∆ρ
(which actually passes through p whenever, at p, the surface

is not curved at all in some tangential directions u). Hence, according to our common sense, the bigger
or the smaller the area’s A(Γ∆ρ

) enclosed on M2 by the curves Γ∆ρ
as compared to the area’s A(γ∆ρ

)

of the geodesic discs on M2 bounded by the geodesics γ∆ρ
, the more or the less the surface M2 “as

such” in E3 is curved at p. It was along this line of thought that Casorati defined his curvature of a surface
M in E3 at p as C(p) = lim

∆ρ→0
(A(Γ∆ρ

)/A(γ∆ρ
)), and he proved that C(p) = 1

2 trA2(p) = 1
2 (k

2
1 + k2

2)(p)

= 1
2‖h‖2(p), whereby k1 and k2 are Euler’s principal curvatures, A is the shape operator of M2 corresponding

to η and h is the second fundamental form of M2 in E3.
At this stage, it might be not amiss to add the following comment. In the definition of his curvature

C, Casorati followed the common basic, i.e., from the original geometrical definitions of the curvature K of
Gauss and the mean curvature H of Germain via ratios of well-chosen areas related to the surfaces M2 in E3.
For K(p), these ratios concern regions on M2 around p and their corresponding spherical images, and,
for H(p), these ratios are for discs centered at p in Tp M and for the portions of the corresponding
circular cylinders perpendicular to Tp M in between Tp M and the surface M2 in E3 itself. While
for the curvatures of Germain and Gauss, this lead to the first two elementary symmetric functions of
k1 and k2, H = 1

2 trA = 1
2 (k1 + k2) and K = detA = k1k2, Casorati’s geometrical definition of his

curvature yielding that C = 1
2 trA2 = 1

2 (k
2
1 + k2

2) lead to the third elementary symmetric function of Euler’s
principal curvatures.

3. The First Normal Principal Directions of Submanifolds

Trenc̆evski determined the maximal possible dimensions of the osculating spaces of all orders for
submanifolds Mn in En+m and, moreover, in the related succesive normal spaces, of all orders, and determined
appropriate orthonormal frames of principal normal vector fields and corresponding principal normal curvatures.
For our present purpose, it may suffice here to restrict within this grand theory to what is stated in
Theorem 1 of [7]: “The first principal normal directions of a submanifold Mn in En+m are the normal directions
of Mn in En+m in which the normal Casorati curvatures of Mn attain their m1 (=dimension of the first normal
space N1) non-zero critical values.” The first normal space N1 of Mn in En+m is the subspace of the total
normal space T⊥M of Mn in En+m given by N1 = Im h = {h(X, Y)|X, Y ∈ TM}, whereby h is the
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second fundamental form of the submanifold M, or, N1 is the orthogonal complement in T⊥M of the
subspace consisting of all normals ξ with vanishing shape operators Aξ , or, equivalently, with vanishing
normal Casorati curvature c⊥ξ ; N1 = {ξ ∈ T⊥M|Aξ = 0}⊥ = {ξ ∈ T⊥M|c⊥ξ = 0}⊥, such that the first
osculating space of Mn in En+m is given by TM⊕ N1.

The considerations of Casorati on surfaces M2 in E3 that were recalled above can straightforwardly
be taken over to general submanifolds Mn in En+m (and to general submanifolds Mn in ambient
general Riemannian spaces M̃n+m, for that matter) cfr. [6]. In [6], a.o. one may find that the Casorati
curvature (as such) of a submanifold Mn in En+m equals the arithmetic mean of its tangential principal
Casorati curvatures: C = 1

n‖h‖2 = 1
n trAC = 1

n ∑
α

trA2
α = 1

n ∑
i

cT
i . Moreover, it seems not without

interest to observe that Cξ(p) = 1
n trA2

ξ(p) is the Casorati curvature (as such) at p of the projection Mn
ξ p

of the submanifold Mn in En+m onto the (n+ 1)D subspace En+1 of En+m, which is spanned by Tp M =

Rn together with the normal line [ξ(p)], ξ being any unit normal vector field on Mn in En+m, and,
hence, that Cξ(p) = 1

n ∑
i

cT
ξi(p), i.e., Cξ(p) is the arithmetic mean of the tangential Casorati curvatures

cT
ξi of this projected hypersurface Mn

ξ at p (for some general considerations relating the contemplation
and the theory of submanifolds, see [9]). The functions c⊥ξ : Sm−1(1) = {ξ ∈ T⊥M | ‖ξ‖ = 1} → R+ :

ξ 7→ c⊥ξ = 1
n trA2

ξ are called the normal Casorati curvatures of Mn in En+m; more precisely, the normal
Casorati curvature of Mn in En+m in the direction determined by a unit normal vector field ξ is defined as
c⊥ξ = 1

n trA2
ξ .

In the total, mD normal space T⊥M of Mn in En+m, consider the following symmetric linear
operator a : T⊥M → T⊥M : ξ 7→ a(ζ) = 1

n‖ζ‖∑
α
(trAζ Aα)ξα; (in [10], Bang-Yen Chen basically

introduced this operator in the study of the submanifolds for which a(~H) = ~0, ~H being the mean
curvature vector field of Mn in En+m, submanifolds which later were called Chen submanifolds; in this
respect, see also [11,12]). And, by the principal axes theorem, there exists an orthonormal frame
η1, η2, . . . , ηm1 , ηm1+1, . . . , ηm of eigen vector fields for this operator a : T⊥M → T⊥M (m1 = dimN1),
with corresponding eigen functions c⊥1 = 1

n trA2
η1
≥ c⊥2 = 1

n trA2
η2
≥ . . . ≥ c⊥m1

= 1
n trA2

ηm1
> c⊥m1+1 =

trA2
ηm1+1

= . . . = c⊥m = trA2
ηm = 0. The normal vector fields η1, η2, . . . , ηm1 span the first normal

space N1 of Mn in En+m and, following Trenc̆evski, are called the first principal normal vector fields of the
submanifold Mn in En+m with corresponding first-principal normal curvatures c⊥1 ≥ c⊥2 ≥ . . . ≥ c⊥m1

> 0.
So, with indices α1 ∈ {1, 2, . . . , m1}, {ηα1} is an orthonormal frame field of the first normal space N1 for which
a(ηα1) = c⊥α1

ηα1 , whereby c⊥α1
= 1

n trA2
α1
(> 0) are the principal normal Casorati curvatures of Mn in En+m.

4. The Principal Tangent and the First Principal Normal Directions of Lagrangian Submanifolds

From Section 16: Totally real and Lagrangian submanifolds of Kähler manifolds of Chen’s contribution
on Riemannian submanifolds in [11], is taken the following: “The study of totally real submanifolds
of a Kähler manifold from differential geometric points of views was initiated in the early 1970’s
(by Bang-Yen Chen and Koichi Ogiue [13]—the authors). A totally real submanifold M of a Kähler
manifold M̃ is a submanifold such that the almost complex structure J of the ambient manifold M̃
carries each tangent space of M into the corresponding normal space of M, that is, J(Tp M) ⊂ T⊥p M
for any point p ∈ M. (. . .) A totally real submanifold M of a Kähler manifold M̃ is called Lagrangian if
dimRM = dimCM̃. 1-dimensional submanifolds, that is, real curves in a Kähler manifold are always
totally real. For this reason, we only consider totally real submanifolds of dimension ≥2.(. . .) For a
Lagrangian submanifold M of a Kähler manifold (M̃, g, J) the tangent bundle TM and the normal bundle T⊥M
are isomorphic via the almost complex structure J of the ambient manifold. In particular, this implies that the
Lagrangian submanifold has flat normal connection if and only if the submanifold is a flat Riemannian manifold”.

To continue in our aim to aim for simplicity and concreteness of presentation, (although, clearly,
the following matters do hold more generally), we next restrict our attention to the real n dimensional
totally real submanifolds Mn of the complex n dimensional complex Euclidean spaces M̃n = Cn = (E2n, J̃),
that is, to the Lagrangian submanifolds Mn in Cn, thus having J̃(TM) = T⊥M and J̃(T⊥M) = TM,
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J̃ being the complex structure of the Kaehler manifold M̃n. On M in M̃, tangential vector fields will be
denoted by X, Y, Z, . . . and normal vector fields by ξ, η, ζ, . . . . Further, let g̃ and ∇̃, respectively, g and∇,
be the metrics and the corresponding Riemannian connections on M̃ and M, respectively. The equations of
Gauss and of Weingarten are given by

∇̃XY = ∇XY + h(X, Y), (1)

∇̃Xξ = −Aξ(X) +∇⊥X ξ, (2)

whereby ∇⊥ is the normal connection and h the second fundamental form and Aξ the shape operator with
respect to ξ of the submanifold M in M̃, so that

g̃(h(X, Y), ξ) = g(Aξ(X), Y). (3)

Applying the complex structure J̃ to (1), it follows that

J̃(∇̃XY) = J̃(∇XY) + J̃(h(X, Y)), (4)

while writing (2) out for ξ = J̃Y, it follows that

∇̃X( J̃Y) = −A J̃Y(X) +∇⊥X ( J̃Y). (5)

By the parallelity of J̃, ∇̃ J̃ = 0, or, still, J̃(∇̃XY) = ∇̃X( J̃Y), the left-hand sides in (4) and (5) are equal,
and, hence, in particular, the tangential components of the right-hand sides in (4) and (5) are also equal:

J̃(h(X, Y)) = −A J̃Y(X). (6)

Writing out (3) for ξ = J̃Z, it follows that

g̃(h(X, Y), J̃Z) = g(A J̃Z(X), Y), (7)

which, by (6), leads to
g̃(h(X, Y), J̃Z) = g(− J̃(h(X, Z)), Y). (8)

Since J̃ is almost complex, J̃2 = −I, and since g̃ is Hermitian, so that g̃( J̃Ṽ, J̃W̃) = g̃(Ṽ, W̃) for all vector
fields Ṽ and W̃, and, hence, in particular, for Ṽ = − J̃(h(X, Z)) and W̃ = Y, (8) becomes

g̃(h(X, Y), J̃Z) =g(− J̃2(h(X, Z)), J̃Y)

=g(h(X, Z), J̃Y).
(9)

In view of its crucial importance in what comes next, we have worked out in detail this property
from [13], as obtained in (9), which may be stated as follows. For all tangential vector fields X, Y, Z on a
Lagrangian submanifold Mn ⊂ Cn (M̃n):

g̃(h(X, Y), J̃Z) = g̃(h(X, Z), J̃Y) = g̃(h(Y, Z), J̃X). (10)

For any tangential orthonormal frame field F = {E1, E2, . . . , En} on a Lagrangian submanifold Mn, F̃ =

{E1, E2, . . . , En, ξ1 = J̃E1, ξ2 = J̃E2, . . . , ξn = J̃En} = {Ei, ξi = J̃Ei}, (i, j, k, α, β ∈ {1, 2, . . . , n}) is a
corresponding adapted orthonormal frame field of Cn(M̃n) along Mn. The local coordinates of the operator
AC : TM → TM of Casorati and of the operator a : T⊥M → T⊥M of Trenc̆evski with respect to such frame
fields F̃ are given by



Mathematics 2020, 8, 1533 5 of 6

AC
ik =(∑

α

A2
α)ik = ∑

α

(A2
α)ik

=∑
α

∑
j

hα
ijh

α
jk

(11)

and

aαβ =tr(Aα Aβ)

=∑
i

∑
j

hα
ijh

β
ji,

(12)

whereby hβ
ij are the local coordinates of the symmetric second fundamental form h : TM× TM→ T⊥M.

Therefore, Ei determines a Casorati principal tangential vector field on Mn in Cn with corresponding principal
tangential Casorati curvature cT

i if and only if

∀k 6= i : AC
ik = ∑

α
∑

j
hα

ijh
α
jk = 0, (13)

whereby
cT

i = AC
ii = ∑

α
∑

j
(hα

ij)
2, (14)

and, ξα = J̃Eα determines a first principal normal vector field, or, first Casorati principal normal vector
field (as these vector fields later on also might be termed), on Mn in Cn with corresponding principal
normal Casorati curvature cT

α if and only if

∀β 6= α : aαβ = ∑
i

∑
j

hα
ijh

β
ji = 0, (15)

whereby then
c⊥α = aαα = ∑

i
∑

j
(hα

ij)
2. (16)

Written in local coordinates, the above property (10) amounts to

∀i, j, k : hk
ij = hj

ik = hi
jk, (17)

so that, from (13) and (15), and, from (14) and (16), in particular, we may conclude the following.

Theorem 1. Let Mn be a Lagrangian submanifold of the complex Euclidean space Cn (or of any Kaehler
manifold M̃n). Then, a tangential vector field T is a tangential principal Casorati vector field with corresponding
tangential Casorati principal curvature cT(> 0) if and only if N = J̃T is a normal principal Casorati vector
field—whereby J̃ is the complex structure of Cn (or, of the ambient Kaehler space, M̃n)—with corresponding
normal Casorati principal curvature c⊥ = cT(> 0).

Theorem 2. Let Mn be a Lagrangian submanifold of the complex Euclidean space Cn (or, of any ambient
Kaehler manifold M̃n) with first normal space of maximal dimension (m1 = dimN1 = n = co − dimM).
Then, Mn admits an adapted orthonormal frame field F̃ = {F1, F2, . . . , Fn, η1 = J̃F1, η2 = J̃F2, . . . , ηn = J̃Fn}
in Cn (M̃n), of which the n tangential vector fields are the principal Casorati tangential vector fields and of
which the n normal vector fields are the principal Casorati normal vector fields of Mn in Cn (M̃n), and the
corresponding tangential and normal principal curvatures are equal, (∀i : cT

i = c⊥i ).
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