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Abstract: We consider a coupled model surface-deep ocean effect, where an Energy Balance Model
(EBM) is used for modelling the surface temperature and a two-dimensional heat equation represents
the evolution of the temperature of the deep ocean. Although the model under study is based on that
proposed by Watts & Morantine (1990), here we consider a modified model that incorporates other
processes, such as the nonlinear diffusion and the action of coalbedo, depending on the temperature.
The stationary states of the model under study, taking the solar constant as the parameter, are
numerically attained. The results of the simulation are depicted in a {(Q, u)} plot where u is the
temperature in the surface and Q is the solar constant. The numerical solution is achieved by means
of a finite volume scheme with Weighted Essentially Non-Oscillatory (WENO) reconstruction in space
and third order Runge-Kutta scheme, which verifies the Total Variation Diminishing (TVD) property,
for time integration. The equilibrium states are accomplished by evolving in time the numerical
solution until the stationary solutions are reached. The main novel results of this work concern the
numerical obtention of the stationary solutions of both the EBM and the coupled model EBM-deep
ocean and the agreement of these results with the theoretically obtained in previous works, where an
interval of values of the solar constant Q was obtained with the existence of at least three stationary
solutions. In this work, we have numerically obtained more than three stationary solutions for such
interval of Q.

Keywords: equilibrium solutions; bifurcation; climate model; energy balance models; finite volume
method; WENO; Runge-Kutta TVD

1. Introduction

Climate system is very complex and it involves many components and complicate mechanisms.
The full behaviour of the climate is something still far to be understood. The pioneering climate
Energy Balance Models (EBMs) were introduced by Budyko and Sellers separately (1969) in [1,2],
respectively. EBMs are diagnostic models that describe the evolution of the climate for relatively
long scales. Several aspects of the mathematical treatment of different versions of climate EBMs
have been studied by many authors, such as [3–7], just to name a few of them. In this work, we are
concerned with a two-dimensional climate model (latitude-depth), which represents the coupling:
mean surface temperature with ocean temperature. It is based on a climate model proposed by Watts
and Morantine [8], which is composed of a parabolic equation in a global ocean with a dynamic
and diffusive boundary condition, but incorporating additional terms, such as nonlinear diffusion
and the coalbedo, depending on the temperature (see [9,10]). Regarding the numerical simulation
of this type of climate models, several references can be mentioned, such as [11,12] using finite
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element methods or [13,14] based on finite volume methods (FVMs). Finite volume methods are
very efficient techniques for the numerical approach of the solution of problems governed by balance
laws, as those considered in this work. In FVMs, the REA (Reconstruction-Evolution-Averaging)
algorithm, see [15], is applied. Thus, this numerical technique involves the computation of integral
averages of the solution for each grid cell (also denominated as cell averages) at each time step. Certain
reconstruction process is required in order to compute values and gradients from the cell averages
where needed. This reconstruction function is usually piecewise polynomial of certain degree, and
must be conservative in each one of the control volumes that conform the stencil, so as to keep the
conservation properties of the finite volume method. We note that, with the purpose of developing
numerical schemes of order greater than one, it is necessary to implement a nonlinear numerical
approach, which allows to overcome Godunov’s theorem [16], which states that monotone behavior of
a numerical solution cannot be assured for linear finite-difference methods with more than first-order
accuracy. As a first approach, second-order accurate schemes can be obtained based on nonlinear
piecewise linear reconstruction, such as the minmod method, the Nessyahu-Tadmor scheme, WAF
(Weighted Average Flux) scheme, or the MUSCL-Hancock approach (which is second order in space
and time), just to mention some possibilities. Complete and detailed descriptions on finite volume
techniques can be consulted in [15,17,18]. The first successful attempt to obtain high order monotone
numerical schemes are the Essentially Non-Oscillatory (ENO) methods, which were put forward in
the pioneering work of Harten, Engquist, Osher, and Chakravarthy in 1987 [19], where the stencil
of the reconstruction polynomial is chosen in such a way that it avoids non-physical oscillations
in the numerical solution. It is a nonlinear scheme in the sense that it uses known values of the
solution in order to select the stencil. Another alternative, widely used nowadays, are the so called
Weighted Essentially Non-Oscillatory (WENO) schemes introduced in [20] which, instead of choosing
the "smoothest" stencil, as in the ENO approach, a convex combination of all candidate stencils is
performed, considering the values taken by certain smoothness indicators, in order to achieve the
essentially non-oscillatory property. This WENO procedure is the one implemented in this work to
accomplish the high-order nonlinear reconstruction (see, e.g., [21–25] for a detailed description on
this technique). Once the reconstruction function is obtained, values of the solution and gradients are
attained where needed. In a general case, if we wish to achieve an order of accuracy (2r− 1), then we
must consider r candidate stencils, each one of them with r cells. A variant of classical WENO approach
is the so-called Central WENO (CWENO) scheme [26–30], which makes use of polynomials of different
degrees. Other relevant references with different ways to implement WENO methodology can be
found in [31–33]. With regard to the evolution stage, we remark that we are producing a semi-discrete
approach, in which the spatial discretization, performed by means of the FVM, converts the original
partial differential equation (PDE) into an ordinary differential equation (ODE). The numerical solution
of the ODE requires to implement an ODEs solver. In this work, we have resorted to the third order
Runge-Kutta Total Variation Diminishing (RK3-TVD) scheme. Pioneering works on Runge-Kutta
TVD methods with different orders of accuracy can be found in [34,35]. The RK3-TVD is a one-step
method developed in three stages verifying the remarkable TVD property, which allows for avoiding
non-physical oscillations in the numerical solution and it was introduced in the context of second
order finite difference schemes by Ami Harten [36]. This property means that being un

i the averaged
numerical solution for cell i and time tn, it is verified that TV(un

i ) ≤ TV(un+1
i ), where TV(·) represents

the so-called Total Variation, which is given by TV(u) = ∑
i
(ui+1 − ui). The aim of this work is to

obtain numerically, by means of the finite volume method with WENO reconstruction and RK3-TVD
scheme for time integration, the equilibrium states and an approximation of a subset of the bifurcation
diagram in a global climate model taking the solar constant as the parameter. We are interested in
computing the stationary states of the EBM, without influence of the deep ocean, and also of the
coupling EBM-deep ocean. The reason behind the consideration of these two situations is that both
cases are relevant in climatic modelling. In the case of EBMs, without ocean effect, they are frequently
used in many studies of global climate, see, for instance [3,4,7,37,38] and references therein, as they
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allow to predict the average surface temperature of the Earth due to incoming solar radiation, emission
of radiation, energy absorption, and greenhouse effects, among other phenomena. On the other hand,
the inclusion of the ocean effect has an important influence on the temperatures distribution due to the
well-known thermostatic effect of the ocean, absorbing solar radiation and releasing it. Motivated by
the importance of both models, in this work we start by dealing with Energy Balance Models (EBMs),
in which the evolution of the temperature is governed by a nonlinear diffusive PDE, with the purpose
of accomplishing the stationary solutions by evolving in time the numerical solution of the evolution
model. Next, we will obtain an approximation of the stationary solutions and part of the bifurcation
diagram of a coupled model surface/deep ocean, where an EBM is used to model the surface, and a
2D heat equation is used for the deep ocean. A comparison of the approximated bifurcation diagrams
in both cases is also performed. Previous relevant works in which the number of stationary solutions
was studied are [39–43]. In the work [44], it is studied the sensitivity of a climatology model with
respect to variations in the solar constant and showed the existence of a continuous and unbounded
S-shaped set {(Q, u)} where Q is the solar constant and u is the temperature. In the present work the
effect of the ocean is also considered, which is a novel approach with respect to the aforementioned
works. We show numerical results in {(Q, u)} plots of the bifurcation diagrams obtained and some of
the stationary solutions achieved. The theoretical results stated and proved on multiplicity of steady
states in the aforementioned references are numerically verified and completed in the present work
and we obtain new information about an approximation of a subset of the bifurcation diagram. The
rest of the document is organized, as follows. In the next section, we give a detailed description of
the Energy Balance Model considered, and we then introduce the coupled model EBM-deep ocean.
The following section is devoted to a brief description of the numerical approach applied, based on the
finite volume method with third order Runge-Kutta TVD with WENO reconstruction. The next part
deals with the numerical results. Finally, some conclusions and discussion are given.

2. The Energy Balance Model (EBM)

From the mathematical point of view, the 2D EBM (latitude-longitude) has a spatial domain given
by a Riemannian manifold M without boundary, simulating the Earth surface, see for instance [9]{

C(x)ut − div(k(x)|∇u|p−2∇u) + Re(x, u) = Ra(x, u) in M× (0, T),
u(x, 0) = u0(x) in M,

(1)

where C(x) is the heat capacity, k(x) is the thermal conductivity, Re is the emitted energy, Ra represents
the absorbed energy, and the exponent p is a real number that is usually taken as p ≥ 2 (the case p = 2
is the linear one), ∇u is the gradient of the temperature u. Usually it is taken p = 3 ([45]). In this
equation the subscript t denotes partial time derivative. We shall use this notation, very often, hereafter
throughout the text. In one-dimensional models the temperature is assumed to be constant over each
latitude, getting the problem

C(x)ut − (k(x)(1− x2)p/2|ux|p−2ux)x + Re(x, u) = Ra(x, u) in (−1, 1)× (0, T),
(1− x2)p/2|ux|p−2ux = 0, x ∈ {−1, 1} ,
u(x, 0) = u0(x), x ∈ (−1, 1),

(2)

where x is the sine of the latitude and we have introduced the weight (1− x2)p/2 after changing to
spherical coordinates in (1). Concerning the absorbed energy, Ra, this can be obtained as

Ra = QS(x)β(u), (3)

where β(u) is the planetary coalbedo, representing the fraction of radiation which is absorbed.
It is dependent on the temperature. The coalbedo changes around a characteristic temperature,−10 ◦C.
It is assumed to be discontinuous in the Budyko’s model and continuous in the Sellers’ model. We note
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that, in the PDE, the nonlinearity of this type (Budyko’s type) is given by a multivalued graph
(Heaviside’s type). Concerning the solar constant (Q), it is a positive number that represents the
amount of energy received by the Earth per unit of time and unit of space. Although it is not constant,
it is considered to be approximately 1360 W/m2. Because the surface of the Earth is four times
larger than the cross sectional area, the amount of energy that is distributed throughout the surface is
340 W/m2. Finally, S(x) is an insolation function, which allows for the distribution of solar radiation
as a function of latitude. It is usually given by polynomial functions. In this work, we have used
the expression S(x) = (5− x2)/4 to represent less radiation in the Poles and higher radiation in
the Equator. As for the emitted energy, we can choose between Sellers’ model, with Re(u) = σu4,
which utilises the Stephan–Boltzmann’s law, or the Budyko’s model Re(u) = Bu + A, which makes
use of the Newton’s cooling law.

The mathematical analysis of (2) can be found in [46]. The existence of solutions of the problem (1)
under the previous hypotheses is proved in [9] by fixed point arguments. One of the model’s main
features is its high sensitivity front variation of parameters. The multiplicity of steady states depending
on the parameter Q was studied in [40]. There is a bounded interval of Q such that for every Q in
that interval, problem (1) has at least three stationary solutions. In [44], the existence of a S-shaped
bifurcation branch for the associated stationary problem was proved. The stabilization of the evolution
solution of (1) when t → +∞, to a solution of the associated stationary problem of (1) was proved
in [40]. Many works are devoted to the mathematical treatment of global climate energy balance
models (one layer), among them, we mention [3] and the references therein, and also [4,5]. In [11],
a finite element approach is given to a two-dimensional (2D) climate energy balance model without
deep ocean effect.

3. The Coupled Model: Deep Ocean-EBM

The mathematical model that we are dealing with is based on the proposed by Watts and
Morantine [8] and completed in [13]. This model represents the evolution of temperature within
an ocean of depth H. The spatial variables (x, z) are x = sin(latitude) and z = depth. The spatial
domain considered is Ω = (−1, 1)× (0,−H) with boundary Γ = ΓH ∪ Γ0 ∪ Γ1 ∪ Γ−1 where

ΓH =
{
(x, z) ∈ Ω̄ : z = −H

}
, Γ0 =

{
(x, z) ∈ Ω̄ : z = 0

}
Γ−1 =

{
(x, z) ∈ Ω̄ : x = −1

}
, Γ1 =

{
(x, z) ∈ Ω̄ : x = 1

}
.

(4)

One simplifying hypothesis of this model is that a constant temperature on each parallel is
assumed. The equation representing the evolution of the temperature in the deep ocean is

Ut − (
KH

R2 (1− x2)Ux)x − KVUzz + ωUz = 0 in Ω× (0, T), (5)

where U(x, z, t) is the temperature within the ocean, ω is the vertical velocity, KV is the vertical
diffusivity, KH is the horizontal diffusivity, and R represents the radius of the Earth. We assume,
as boundary conditions, the following expression for the ocean bottom

ωxUx + KvUz = 0, on ΓH × (0, T) (6)

and for the upper boundary (surface of the ocean), we have

Dut −
DKH0

R2

(
(1− x2)

p
2 |ux|p−2 ux

)
x
+ Bu + A + KV

∂U
∂n + ωxux = 1

ρc QS(x)β(u)

on Γ0 × (0, T),
(7)

where u(x, t) is the temperature on the upper boundary, ω is the velocity, KV is the vertical diffusivity,
KH0 is the horizontal diffusivity, R is the radius of the Earth, D is the thickness of the mixed
layer (the ocean layer right below the surface, where the relevant heat exchange processes between
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atmosphere and ocean take place), ρ is the density, c represents the specific heat coefficient, β(u) is
the temperature dependent coalbedo, Q is the solar constant, Bu + A is the cooling term according
to Newton’s law, and S(x) is the insolation. The full final system representing the coupled model:
energy balance on the surface-deep ocean reads

Ut − (KH
R2 (1− x2)Ux)x − KVUzz + ωUz = 0 in Ω× (0, T),

ωxUx + KVUz = 0 in ΓH × (0, T),

Dut −
DKH0

R2

(
(1− x2)

3
2 |ux| ux

)
x
+ KV

∂U
∂n + ωxux + Bu + A ∈ 1

ρc QS(x)β(u)

on Γ0 × (0, T),
Ux = 0, on Γ−1 × [0, T] ∪ Γ1 × [0, T] ,
U(x, z, 0) = U0(x, z), in Ω,
u(x, 0) = u0(x), in Γ0,

(8)

where we have added initial conditions and homogeneous Neumann boundary conditions at the
boundaries Γ−1 and Γ1. We note that U(x, 0, t) = u(x, t) and U|Γ0 = u. We have also introduced p = 3
as proposed by Stone [45]. In previous works, [13,14,47], the numerical approximation of the coupled
model has been carried out. Furthermore, in [13], latent heat and delay effects are also considered,
while, in [47], a land-sea distribution is incorporated to the model. The following hypotheses hold
(see [13] for details)

(H1) β is a bounded maximal monotone graph of R2, such that there exist two constants 0 < m < M
and ε > 0, such that β(r) = m if r < −10− ε, β(r) = M if r > −10 + ε.

(H2) S∈ L∞(Γ0) and S1 ≥ S(x) ≥ S0 > 0 a.e. x ∈ Γ0.
(H3) w ∈ C1(Ω).
(H4) The constants B, A, R, Q, KV , KH , and KH0 are positive.

We note here that the graph

β(r) =


m r < −10,
[m, M] r = −10,
M r > −10,

(9)

verifies the hypothesis (H1).

Stationary Model

We consider the stationary problem that is associated to (8), which reads

−(KH
R2 (1− x2)Ux)x − KVUzz + ωUz = 0 in Ω,

ωxUx + KVUz = 0 in ΓH ,

−DKH0
R2

(
(1− x2)

3
2 |ux| ux

)
x
+ KV

∂U
∂n + ωxux + Bu + A ∈ 1

ρc QS(x)β(u)

on Γ0,
Ux = 0, on Γ−1 ∪ Γ1.

(10)

Concerning the multiplicity of stationary solutions of (10) (depending on Q), see Díaz, Tello [39],
where under the hypotheses (H1)− (H4), for β defined in (9) and the technical assumption:

−10B + A > 0 with A > 0, B > 0,
M
m ≥

S1
S0

,
(11)
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this result was proved:

(i) i f 0 < Q < −10B+A
MS1

ρc, the problem (10) has a unique solution,
(ii) i f −10B+A

MS0
ρc < Q < −10B+A

mS1
ρc, the problem (10) has at least three solutions,

(iii) i f −10B+A
mS0

ρc < Q, the problem (10) has a unique solution.

The fact that the EBM is coupled with the deep ocean model as a diffusive boundary condition
and, since the existence of a S-shaped bifurcation branch for the EBM was proved in [44], we expect
that ‘a kind of’ S-shaped bifurcation could be obtained for the coupled stationary problem (10).
To our knowledge, the bifurcation diagram for the coupled model has not been studied so far.
In this paper we obtain some information about the {(Q, u)} for the different values of Q being
u = U|Γ0 with U an approximated solution of the coupled stationary problem (10). Concerning
the number of steady states, we have obtained more than three numerically approximated steady
states for a range of values of Q, where the topological methods proved the existence of at least three
(see [39]). We proceed solving the evolution problems until the stationary solution is attained in order
to numerically obtain the steady state solutions for the different values of Q. The numerical approach
followed in this work is based on a finite volume scheme with third order Runge-Kutta TVD scheme
for time integration and using a WENO technique for spatial reconstruction.

4. Numerical Resolution

It is useful to write the problem as a balance law in order to apply the finite volume method.
Thus, we rewrite the EBM Equation (7), as

ut − ( f (x, u(x, t), ux(x, t)))x = σ(x, u(x, t),
∂U
∂n

(x, 0, t)), (12)

with the flux

f (x, u(x, t), ux(x, t)) :=
KH0

R2 (1− x2)3/2 |ux(x, t)| ux(x, t)− w
D

xu(x, t) + KV
∂U
∂z

, (13)

and the source term given by

σ(x, u,
∂U
∂n

) :=
1
D
(−A +

Q
ρc

S(x)β(u) + (ω + xωx − B)u(x, t)− KV
∂U
∂n

). (14)

Concerning the deep ocean, Equation (5), we can introduce the formulation

U(x, z, t)t − (F(x, Ux(x, z, t)))x − (G(U(x, z, t), Uz(x, z, t)))z = Ξ(x, U(x, z, t)), (15)

where
F (x, Ux(x, z, t)) :=

KH

R2

(
1− x2

)
Ux(x, z, t), (16)

and
G(U(x, z, t), Uz(x, z, t)) := KVUz(x, z, t)− wU(x, z, t), (17)

are the fluxes in horizontal and vertical directions respectively. Additionally, we have the source term

Ξ(x, U(x, z, t)) := ωzU(x, z, t). (18)

We solve the problem by means of a numerical scheme that was built under the finite volume
framework, with a seventh-order dimension-by-dimension WENO approach and a third order
Runge-Kutta TVD scheme for time integration. As aforementioned, the WENO reconstruction applied
here makes use of entire polynomials, as introduced, for instance, in [24,25], instead of the more classical



Mathematics 2020, 8, 1542 7 of 22

pointwise WENO reconstruction ([20,48]). This is especially relevant when solving reaction-diffusion
problems where gradients of the solution are involved. The general procedure at each time step
consists of solving the Equation (7) getting the cell averages un+1

i and use these values as Dirichlet
boundary condition to be used in (5) in order to obtain the cell averages Un+1

i .
We integrate the Equation (7) over the space-time control volumes Ii = [xi− 1

2
, xi+ 1

2
], dividing by

the length to get
dui(t)

dt
=

1
∆xi

(
fi+ 1

2
− fi− 1

2

)
+ σi(t) ≡ li(u(t)), (19)

where
ui(t) =

1
∆xi

∫ x
i+ 1

2

x
i− 1

2

u (x, t) dx, (20)

is the cell average of u(x, t) over the control volume Ii and

fi+ 1
2
= f

(
u
(

xi− 1
2
, t
)

, ux

(
xi+ 1

2
, t
))

, (21)

is the right intercell numerical flux, while

σi(t) =
1

∆xi

∫ x
i+ 1

2

x
i− 1

2

σ(x, u,
∂U
∂n

)dx, (22)

is the integral average of the source term.
We focus now on the Deep Ocean Model (DOM), which is integrated over the control volume

Iij = [xi− 1
2
, xi+ 1

2
]× [zj− 1

2
, zj+ 1

2
] to yield

dUi,j

dt
=

1
∆xi

(
Fi+ 1

2 ,j − Fi− 1
2 ,j

)
+

1
∆zj

(
Gi,j+ 1

2
− Gi,j− 1

2

)
+ Γi,j ≡ Li,j, (23)

where
Ui,j =

1
∆xi∆zj

∫ z
j+ 1

2

z
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

U(x, z, t)dxdz, (24)

is the cell average of the temperature of the DOM, whereas

Fi+ 1
2 ,j =

1
∆zj

∫ z
j+ 1

2

z
j− 1

2

F
(

xi+ 1
2
, Ux

(
xi+ 1

2
, z, t

))
dz,

Gi,j+ 1
2
=

1
∆xi

∫ x
i+ 1

2

x
i− 1

2

G
(

U
(

x, zj+ 1
2
, t
)

, Uz

(
x, zj+ 1

2
, t
))

dx,
(25)

are the spatial integral average of intercell fluxes and

Γi,j(t) =
1

∆xi∆zj

∫ z
j+ 1

2

z
j− 1

2

∫ x
i+ 1

2

x
i− 1

2

Ξ(x, U(x, z, t))dxdz, (26)

is integral average of the source term.

4.1. Spatial WENO Reconstruction

We make use of Weighted Essentially Non Oscillatory (WENO) reconstruction from cell averages
in order to obtain values of the solution and derivatives where they are needed. In the 2D case, we apply
a dimension-by-dimension reconstruction process, as reported for instance in [23–25], just to name a
few of them. This way to proceed is computationally less costly than the fully 2D WENO reconstruction.
There are several variants of WENO approach, among them we can mention the Central WENO scheme,
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see e.g., [29,49], which considers polynomials of different degree, or the recently introduced WENO
scheme with Unconditionally Optimal Accuracy, see [32]. Below, we briefly describe the process
followed in this work, using reconstruction polynomials of a general degree M. The description refers
to the dimension-by-dimension 2D case.

For each particular cell Ii,j, a set of 1D stencils is considered, which, for each Cartesian direction,
are given by

S s,x
i,j =

i+R⋃
e=i−L

Ie,j, S s,y
i,j =

j+R⋃
e=j−L

Ii,e, (27)

where L and R represent the spatial extension of the stencil to the left and to right, respectively.
According to the methodology described in [24,25], in the case of odd order schemes, three
candidate stencils are taken into account while, for even order, four candidate stencils are considered.
Thus, in the case of odd order schemes (that is, even polynomial degrees M), we have

• One central stencil: s = 1, L = R = M/2
• One fully biased to the left stencil: s = 2, L = M, R = 0,
• One fully biased to the right stencil: s = 3, L = 0, R = M,

whereas, for even order schemes (that is, odd polynomial degrees M)

• Two central stencils: s = 0, L = f loor(M/2) + 1, R = f loor(M/2) and s = 1, L = f loor(M/2),
R = f loor(M/2) + 1

• One left-sided stencil: s = 2, L = M, R = 0,
• One right-sided stencil: s = 3, L = 0, R = M.

The following coordinates transformation is introduced [xi, xi+1]× [yj, yj+1]→ [0, 1]× [0, 1] with
the mapping x = xi− 1

2
+ ξ∆xi, y = yj− 1

2
+ η∆yj, with (ξ, η) ∈ [0, 1]. The way to perform, described in

detail in several references, see, for instance [24], is briefly explained here.
First stage: reconstruction along x-direction. For each control volume Iij, the expressions of the

reconstruction polynomials corresponding to each candidate stencil are

ws,x
h (x, tn) =

M

∑
p=0

ψp(ξ)ŵn,s
ij,p , ∀Ss,x

ij , (28)

where ψp are the basis interpolation functions, usually Lagrange or Legendre ones, while ŵn,s
ij,p are the

coefficients of each polynomial. Integral conservation on all of the control volumes conforming each
stencil yields

1
∆xe

∫ xe+1/2

xe−1/2

M

∑
p=0

ψp(ξ(x))ŵn,s
ij,p dx = ūn

ej, ∀Iej ∈ S s,x
ij . (29)

Now, we can build a data-dependent nonlinear combination of the coefficients of the polynomials
for each particular stencil to yield

wx
h(x, tn) =

M

∑
p=0

ψp(ξ)ŵn
ij,p, with ŵn

ij,p =
Ns

∑
s=1

ωsŵn,s
ij,p, (30)

where we use the nonlinear weights ωs =
ω̃s

∑k ω̃k
, with ω̃s =

λs
(σs+ε)r , where ε is introduced in order to

avoid division by zero. We take here ε = 10−20 and r = 3, for instance, although other values can be
used. The oscillation indicators are given by

σs =
M

∑
p=1

M

∑
m=1

Ωpmŵn,s
ij,pŵn,s

ij,m, (31)
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which require the computation of the oscillation matrix

Ωpm =
M

∑
α=1

1∫
0

∂αψp(ξ)

∂ξα
· ∂αψm(ξ)

∂ξα
dξ. (32)

Second stage: reconstruction along y-direction. In order to obtain the reconstruction polynomial
in y-direction we repeat the process followed in x-direction for each particular degree of freedom ŵn

ij,p.
Subsequently, we have the expression

ws,y
h (x, tn) =

M

∑
q=0

M

∑
p=0

ψp(ξ)ψq(η)ŵn,s
ij,pq. (33)

We now apply integral conservation in y-direction for each particular degree of freedom in
x-direction, for all the control volumes of the stencil in y-direction, which is S s,y

ij , to yield

1
∆ye

∫ ye+1/2

ye−1/2

M

∑
q=0

ψq(η(y))ŵn,s
ij,pq dy = ŵn

ie,p, ∀Iie ∈ S
s,y
ij , (34)

and perform the nonlinear combination

wy
h(x, y, tn) =

M

∑
q=0

M

∑
p=0

ψp(ξ)ψq(η)ŵn
ij,pqwith ŵn

ij,pq =
Ns

∑
s=1

ωsŵn,s
ij,pq. (35)

The final expression of the reconstruction polynomial will read

wij(ξ, η, tn) =
M+1

∑
k=1

M+1

∑
l=1

ŵk,l
ij (t

n)ψk(ξ)ψl(η). (36)

Concerning the source term, we approximate the integrals appearing in (23) while using
appropriate Gaussian quadrature formulas.

In the case of the WENO5 approach, three cells are used for each stencil (r = 3, M = 2) and the
developed scheme is fifth order accurate in space; whilst in the case of WENO7 we use four cells
for each stencil, third degree polynomials (r = 4, M = 3) and the scheme developed is seventh order
accurate in space.

4.2. Time Integration

As previously stated, time integration is achieved in this work by means of a third order
Runge-Kutta TVD (Total Variation Diminishing) scheme. Relevant references on this topic are [34,35,48].
We have chosen this method, since it has good accuracy properties (third order accurate), verifies the
TVD property, and is easy to implement. There are many different choices of high-order accurate
methods that could be used, prominent methods are the ADER (Arbitrary high order DErivative
Riemann problem) schemes that were introduced in the context of hyperbolic problems in [50,51] and
subsequently applied to reaction-diffusion problems in [52–54], which allows obtaining arbitrary order
accurate schemes in a single time step, but in the current work we have resorted to the RK3-TVD
approach, since the aim of this work is to evolve the numerical solution until the stationary state is
attained; hence, a fast, and still high order accurate, method is desirable. A general Runge-Kutta
method to solve the ODE

dui
dt

= L(ui), (37)
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where the L(·) is the discretized operator, is written as

u(j)
i =

j−1

∑
k=0

(
αj,ku(k)

i + ∆tβ j,kL(u(k)
i )
)

, j = 1, · · ·m

u(0)
i = un

i , un+1
i = u(m)

i ,

(38)

being m the number of stages in the Runge-Kutta method. The coefficients in (38) are clearly
non-negative αj,k ≥ 0, β j,k ≥ 0. As stated in [34,35], the Runge-Kutta method (38) is TVD under
the CFL (Courant–Friedrichs–Lewy) condition

cCFL = min
j,k

αj,k

β j,k
, (39)

where cCFL is the CFL number, provided that

αj,k ≥ 0, β j,k ≥ 0,
j−1

∑
k=0

αj,k = 1. (40)

In the optimal case cCFL = 1. Thus, the optimal third order Runge-Kutta TVD scheme (m = 3) is
given by the following expressions (see [34,35]):

• For the solution in the surface (EBM)

uk,1
i = un

i + ∆tl(tn, un
i ),

uk,2
i = 3

4 un
i +

1
4 uk,1

i + 1
4 ∆tl(tn + ∆t, uk,1

i ),
un+1

i = 1
3 un

i +
2
3 uk,2

i + 2
3 ∆tl(tn + ∆t

2 , uk,2
i ),

(41)

where l(·) is the discrete operator, whose expression is given in (19) and un
i refers to the cell

average of the solution for the 1D control volume i at time tn.
• For the deep ocean, we have

Uk,1
i,j = Un

i,j + ∆tL(tn, Un
i,j),

Uk,2
i,j = 3

4 Un
i,j +

1
4 Uk,1

i,j + 1
4 ∆tL

(
tn + ∆t, Uk,1

i,j

)
,

Un+1
i,j = 1

3 Un
i,j +

2
3 Uk,2

i,j + 2
3 ∆tL

(
tn + ∆t

2 , Uk,2
i,j

)
,

(42)

where L(·) is the discrete operator, whose expression is given in (23) and Un
i,j refers to the cell

average of the solution for the control 2D volume (i, j) at time tn.

5. Results

The aim of this section is to numerically obtain the steady state solutions of the coupled model (8)
by evolving in time the numerical scheme, according to the following Algorithm 1
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Algorithm 1 Marching in time up to stationary solution

1: while Q ≤ 500 do
2: Prescribed ui0, tol
3: for i← 1 to N do
4: while di f > tol do
5: Compute uk+1

i
6: di f f ← norm(uk+1

i − uk
i )

7: uk
i ← uk+1

i
8: k← k + 1

9: end while
10: end for
11: Increment the value of Q
12: end while

As a consequence, the {(Q, u)} diagram associated will be accomplished. With regard to the
value of the tolerance, tol, taken in the numerical simulation we have used tol = 10−8 and computing
the L2 norm: ||uk+1

i − uk
i ||2 at each iteration. The values of the physical parameters considered in this

work are given in Table 1.

Table 1. Values of the parameters used in the numerical simulation. Based on those that are given
in [8], but scaled to the rectangle [−1, 1]× [0,−1].

Parameter Value

KH 0.049
KH0 0.555× 10−3

A, B 190, 2
c, ρ 1, 1
Q 340

Concerning the advection velocity, ω, the following function has been used

ω(x, z) = W(x) =
10(x + 0.75)(x− 0.75)

(0.1 + 10 |x + 0.75|)(0.1 + 10 |x− 0.75|) , (43)

which represents water sinking in the vicinity of the Poles of the Earth due to a higher density when
compared to the surrounding water. Because this method is explicit stability restrictions must be taken
into account. The size of the time step taken is obtained according to the expression

∆t = min

(
αD∆z2 (KV)

−1 , αD∆x2
((

1− x2
)3/2

KH0

∣∣∣∣du
dx

∣∣∣∣)−1
)

, (αD = 0.3). (44)

We now focus on getting the stationary solutions both for the EBM model in the absence of ocean
and for the coupled model (EBM+ocean). Before accomplishing this task it is determined the number
of stationary solutions that can be obtained depending on the value taken by the solar constant Q.
Therefore, we must consider the conditions previously stated. We choose the values: S0 = 1; S1 = 5

4 ;
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m = 2 and M = 0.69, A = 190.0, and B = 2.0, which verify the hypotheses (11) of the theorem, as can
be straightforward verified

M
m ≥

S1
S0
⇒ 1.725 ≥ 1.25

1 ≤ 5−x2

4 ≤ 5
4 , ∀x ∈ M

0.4 ≤ β(u) ≤ 0.69
−10B + A = 170 > 0 with A > 0, B > 0.

(45)

Therefore, we obtain the following results

Q1 =
−10B + A

MS1
ρc = 197.10; Q2 =

−10B + A
MS0

ρc = 246.37,

Q3 =
−10B + A

mS1
ρc = 340.00; Q4 =

−10B + A
mS0

ρc = 425.00.
(46)

Hence, if Q ∈ (0, Q1), there is a unique stationary solution; if Q ∈ (Q2, Q3) there are at least three
stationary solutions and if Q ∈ (Q4,+∞) there is a unique stationary solution. In the following
subsections, these intervals are numerically verified and the stationary solutions for different
values of the solar constant Q are achieved for different initial conditions. As explained before,
the numerical scheme applied is based on FVM with RK3-TVD for time integration and WENO7
spatial reconstruction.

5.1. Non-Coupled Model

We are dealing with the equation of the EBM (7) neglecting the coupling term KV
∂U
∂n . The model

is solved for 1000 different values of the solar constant Q in the interval [0, 500] while using eight
different initial conditions.

Figure 1 depicts the {Q, u} plot attained using the following initial conditions:

Q

||
u

­u
*|
| 2

0 100 200 300 400 500
0

50

100

150

200

250

Case 1

Case 2

Case 3

Case 4

Case 5

Case 6

Case 7

Case 8

Figure 1. Approximated {(Q, ||u− u∗||2)} diagram for the non-coupled model. u∗ is the constant
stationary solution for the value Q = 0.
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• Case 1: u(x, 0) = −10.0004
• Case 2: u(x, 0) = −9.9996
• Cases 3–6: u(x, 0) = −10 + cos(2jπx), (j = 0, · · · , 3)
• Case 7: u(x, 0) = −10− 20cos(8πx)
• Case 8: u(x, 0) = −10− sin(8πx)

The figure shows, for different values of the solar constant Q, the L2 norm of the difference between
the vectors u and u∗ which represents, respectively, the stationary solution (that is, temperature) and
the constant stationary solution for the value Q = 0.

The evolution problem is solved while taking 1000 different values of the solar constant Q and the
initial conditions given in Cases 1–8 until the stationary solutions are accomplished. The results are
displayed in Figure 1, where those intervals of Q for which there is a unique stationary solution or a
multiplicity of them are clearly identified. These regions are coherent with those theoretically predicted.

In Figures 2–4, several stationary solutions for three different values of the solar constant,
namely Q = 100, 250, 400, are displayed. We note that both Q = 100 and Q = 400 belong to
regions where the stationary solution is unique. When the value of the solar constant is Q = 250,
a multiplicity of stationary solutions appears. It can be noted that eight different solutions have been
obtained, although more could be achieved while using other initial states.

x

T
e

m
p

e
ra

tu
re

(º
C

)

­1 ­0.5 0 0.5

­86

­85

­84

­83

­82

­81

Figure 2. Stationary solution of the Energy Balance Model (EBM) model, without coupling with the
deep ocean, for Q = 100.

In addition, it can be checked, in Figure 2, that the temperature is below zero for all of the latitudes
(since the x coordinate represents the sine of the latitude). The reason behind is that, for those small
values of the solar constant, the Earth receives little radiation and, as a consequence, a complete
glaciation process takes place. This could have happened during the glacial periods of the Earth,
which took place between 110,000 and about 15,000 years ago.
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Figure 3. Several stationary solutions of the EBM model, without coupling with the deep ocean,
for Q = 250. This is the region of multiple stationary solutions.

On the other hand, as displayed in Figure 4, when the solar constant take values Q > Q4 = 425,
the unique stationary solution is positive for all latitudes and, hence, there is absence of ice throughout
the Earth’s surface. This is due to the high values of the incoming solar radiation .
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50

55

60

65

70

75

Figure 4. Stationary solution of the EBM model, without coupling with the deep ocean, for Q = 400.

As expressed before, the current value of the solar constant is Q ≈ 340, which corresponds to a
multiplicity of equilibrium states.

In Figure 5, it is displayed, in a x− t plot, the evolution of the solutions of the EBM model towards
the stationary solution for a value of the solar constant Q = 197. It can be verified that, for this
particular value of the solar constant, the stationary solution is negative for all latitudes.
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Figure 5. Evolution towards the stationary solution taking as solar constant Q = 197. The stationary
temperatures are negative for all latitudes.

In Figure 6, it is shown the evolution towards the stationary solution taking Q = 300,
which corresponds to the region of multiple stationary solutions, taking two constant different initial
conditions u(x, 0) < −10 ◦C and u(x, 0) > −10 ◦C. We observe that, when the initial condition is a
constant below −10 ◦C, the stationary temperatures attained are negative for all latitudes, while when
taking an initial condition constant over −10 ◦C, the equilibrium state achieved takes values (that is,
temperatures), ranging from positive to negative, depending on the latitude.

(a)

(b)

Figure 6. Evolution towards the stationary solution taking as solar constant Q = 300 taking an initial
condition u(x, 0) < −10 ◦C (a) and u(x, 0) > −10 ◦C (b).
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5.2. Coupled Model

The stationary solutions of the coupled model, as given in (8), are achieved by the same procedure
as in the non-coupled case that is, evolving in time the evolution problem until the steady state solution
is achieved, taking 1000 values of the solar constant and using the same initial conditions (Cases 1 to
8), as before. Figure 7 shows the approximation to the bifurcation diagram accomplished in this case.

Figure 7. Approximated {(Q, ||u− u∗||2)} diagram for the coupled model.

We zoom in the previous figure and achieve the plot shown in Figure 8 in order to clearly identify
the regions with unique or multiple solutions.

Figure 8. Detail of the Approximated {(Q, ||u− u∗||2)} diagram for the coupled model.
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Similar regions, as in the non-coupled situation, of unique and multiple stationary solutions
show up. In order to visualize some of these solutions, the results for the values of the solar constant
Q = 100, 250, 400 are depicted in Figures 9–11.

Figure 9. Unique stationary solution. Coupled model. Q = 100.

Figure 10. Multiple stationary solutions. Coupled model. Q = 250.
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Figure 11. Unique stationary solution. Coupled model. Q = 400.

In Figure 12, a comparison of the diagrams that were obtained for both the coupled and
non-coupled model is displayed. We observe that the thermal oscillation between highest and lowest
values of the temperature is larger in the coupled model than in the non-coupled one, which agrees
with the thermostatic effect of the ocean.

Figure 12. Approximated {(Q, ||u− u∗||2)} diagrams for the coupled and the non-coupled model.

The thermostatic effect is also patent in the results shown in Figure 13, where several stationary
solutions for Q = 250 are displayed.
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Figure 13. Several stationary solutions for Q = 250 obtained for the EBM (a) and Coupled model (b).

6. Conclusions and Discussion

In this work, we have obtained, by numerical simulation, the equilibrium states and a subset
of a {(Q, u)} bifurcation diagram, where Q is the solar constant and u is the surface temperature.
The climate model considered is composed of an Energy Balance Model and a deep ocean model.
In order to obtain the stationary solutions, we have evolved in time the numerical solution computed
by means of a finite volume method with a third order TVD Runge-Kutta approach for time integration,
and a WENO method for spatial reconstruction.

We have achieved the stationary states of the EBM, without influence of the deep ocean, and
also of the coupling EBM-deep ocean. The reason to consider these situations is that they are both
relevant in climatic modelling. In the case of EBMs, without an ocean effect, they are frequently used
in many studies of global climate, as they allow to predict the average surface temperature of the
Earth due to incoming solar radiation, emission of radiation, energy absorption or greenhouse effects.
The inclusion of the ocean effect has an important influence on the temperatures distribution due to
the well-known thermostatic effect of the ocean, absorbing solar radiation and releasing it. Hence, we
have dealt first with the non-coupled model, which is, solving just the Energy Balance Model without
influence of the deep-ocean and then with the coupled model (surface-deep ocean), obtaining the
approximation of the subset of the {(Q, u)} diagram, which has been achieved solving the problem
taking 1000 values of the solar constant Q and using several different initial conditions for every
value of Q. Three different regions have been obtained in the diagram, two of them where there is a
unique equilibrium solution for each value of Q and the other one where there exists a multiplicity of
equilibrium states for each particular value of Q. This result agrees with a theorem put forward by
Diaz, Tello [39], where the authors prove that, in the multiplicity of equilibrium states region, there are
at least three stationary solutions (that is, more than three). In the present work, we have obtained eight
of those solutions, which are non-constant and stable. The results of both situations (EBM without and
with the effect of the deep ocean) have been similar, although with different stationary solutions in
the plot {(Q, u)}. Actually, a comparison have been performed between both situations, observing
that, when the ocean effect is considered, the thermal oscillation, which is difference between higher
and lower temperatures, is lower than when its effect is not taken into account. This agrees with the
well-known thermostatic effect of the ocean. It has also been pointed out that the current situation in
the Earth corresponds to the value Q ≈ 340, which is within the multiplicity region which gives rise to
temperatures that oscillate from negative to positive values in the different latitudes. Additionally, it
has been indicated in this work that the region with a unique negative stationary solution for each
value of Q may correspond to glaciation periods.
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Abbreviations

The following abbreviations are used in this manuscript:

EBM Energy Balance Model
DOM Deep Ocean Model
TVD Total Variation Diminishing
WENO Weighted Essentially Non Oscillatory
RK Runge-Kutta
RK3-TVD Third order Runge-Kutta TVD
FV Finite Volume
FTCS Forward in Time Centred in Space
ODE Ordinary Differential Equation
PDE Partial Differential Equation
ADER Arbitrary high order DErivative Riemann problem
CFL Courant-Friedrichs-Lewy
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