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1. Introduction

In the framework of the current discussions regarding the “right” fractional derivatives [1-12],
the main suggested approach was to define the fractional derivatives via the Fundamental Theorem of
Fractional Calculus (FC), i.e., as the left-inverse operators to the corresponding fractional integrals that
satisfy the index low, interpolate the definite integral, and build a family of the operators continuous
in a certain sense with respect to the order of integration.

According to a result that was derived in [13], under the conditions mentioned above,
the only family of the fractional integrals defined on a finite interval are the Riemann-Liouville
fractional integrals [14]. Until recently, three families of the fractional derivatives that are the
left-inverse operators to the Riemann-Liouville fractional integrals were discussed in the literature:
the Riemann-Liouville fractional derivatives [14], the Caputo fractional derivatives [15], and the Hilfer
fractional derivatives [16]. However, in [7], infinitely many other families of the fractional derivatives
that are the left-inverse operators to the Riemann-Liouville fractional integrals, were introduced and
called the nth level fractional derivatives. These derivatives satisfy the Fundamental Theorem of FC,
i.e., they are the left-inverse operators to the Riemann-Liouville fractional integrals on the appropriate
nontrivial spaces of functions that justifies calling them the fractional derivatives.

In [7], some basic properties of the nth level fractional derivatives were studied, including a
description of their kernels. However, the question of their applicability to some real world problems
remained open. In this paper, we provide a first evidence of their usefulness for applications on
an example from the linear viscoelasticity. More precisely, we show that the solution to the Cauchy
problem for the fractional relaxation equation with the nth level fractional derivative is a completely
monotone function that can be represented in form of a linear combination of the Mittag—Leffler
functions with some power law weights. As discussed in [17], the property of complete monotonicity
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is characteristic for any relaxation process. Only in this case, it can be interpreted as a superposition
of (infinitely many) elementary, i.e., exponential, relaxation processes. In linear viscoelasticity,
the assumption of complete monotonicity of the solutions to the relaxation equations that model
the relaxation processes is usually supposed to be fulfilled, see, e.g., [17] and references therein.

The rest of this paper is organized as follows: in Section 2, we discuss some new properties of
the nth level fractional derivative, including the explicit formulas for the projector of the nth level
fractional derivative and for its Laplace transform. Section 3 addresses the Cauchy problem for the
relaxation equation with the nth level fractional derivative and properties of its solution, including
complete monotonicity. In particular, we focus on an important particular case of the Cauchy problem
for the relaxation equation with the second level fractional derivative.

2. The nth Level Fractional Derivative and Its Properties

2.1. Basic Definitions and Properties

In [7], the nth level fractional derivative on a finite interval (without loss of generality we proceed
with the interval [0, 1]) was introduced as follows: let 0 < « < 1 and the parameters y1, 72,...,7n € R
satisfy the conditions

k
0<yranda+sp <k sg:=) v, k=12,...,n 1)
i=1
The operator
- e A e
(D™ ) (x) = (Hmk dx)) (1"~ ) (x) @
k=1

is called the nth level fractional derivative of order a and type v = (y1, Y2,...,Vn)-
In (2), I* stands for the Riemann-Liouville fractional integral (x € [0, 1]):

1 x a—1

= —t t) dt, >0,
(1) () = { T@ Jo (¥ =TS0t ©

f(x), a=0.

The nth level fractional derivative is well defined, say, on the function space
n
X =A{f: [[J(I™ i) " f e AC([0,1]), i=2,...n+1} 4)
n i dx ’ ’ 7 7

where the notation AC([0, 1]) stands for the space of the absolutely continuous functions (an empty
product is interpreted as the identity operator). The absolutely continuous functions allow for the
following representation:

FeAC(0,1]) & 3¢ € Li(0,1) : +/ fdt, x € [0, 1]. 5)

In what follows, a (weak) derivative of a function f € AC([0,1]) will be understood in the
following sense:

—i—/ t)ydt, x € [0,1] = %:z(])ELl(O,l). (6)

The nth level fractional derivative is a linear operator that maps X,,; into L1(0,1) (see [7]).
The notation “nth level fractional derivative” is justified by the Fundamental Theorem of FC.
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Theorem 1 ([7]). Let Xpr be the following space of functions:
Xpr = {f: If € AC([0, 1]) and (If)(0) = 0} . )

The nth level fractional derivative is a left-inverse operator to the Riemann—Liouville fractional integral on
the space Xpr , i.e., the relation

(D" 1 )(x) = f(x), x € [0, 1] ®
holds true for any f from the space Xpr.

Remark 1. In calculus, the formula of type (8) (% fOx f(t)ydt = f(x)) is usually called the first fundamental

theorem of calculus. The second fundamental theorem of calculus states that [y f'(t)dt = f(x) — f(0).
We address the second fundamental theorem of FC for the nth level fractional derivative in the next subsection.
Remark 2. In [18], the differential operators similar to the nth level fractional derivative sz) (in other
notations and with other restrictions on the parameters) have been addressed.

However, the motivation behind the nth level fractional derivative is essentially different when compared to
the one behind the Djrbashian-Nersesian differential operator introduced in [18]. The main feature of the nth
level fractional derivative is its connection to the Riemann-Liouville fractional integral of order o (Theorem 1).
The parameter « in its definition plays the role of the order of this fractional derivative. Moreover, the restriction
0 < a < 11is very important in this context, because only in this case the nth level fractional derivative in its
present form is a left inverse operator to the Riemann-Liouville fractional integral (see the proof of Theorem 1
in[7]).

In [18], this connection was not discussed at all. The parameters of the operators from [18] do not have an
explicit connection to the Riemann—Liouville integral, because there is no selected parameter that stands for the
order of this operator. Another difference is the restrictions on the parameters for the nth level fractional derivative
and for the operators introduced in [18]. They are essentially different, because the nth level fractional derivative
is a fractional derivative in the sense of the Fundamental Theorem of FC, whereas the operators from [18] are just
some general “differential operations”. Finally, the Djrbashian—Nersesian operator was introduced and employed
only in the case of a finite interval, whereas, in this paper, the nth level fractional derivative is also addressed on
the positive real semi-axis.

Because of the fundamental theorem of calculus and the index law for the Riemann-Liouville
fractional integrals (I*"F = I*IF, a,B > 0), the nth level fractional derivatives are reduced to the
fractional derivatives of the level less than 7 if some of the parameters ¥, k = 2,...,n are equal to or
grater than one or if the inequality « + s, < n — 1 holds valid. That is why, in the following discussions,
we only address the truly nth level fractional derivatives and suppose that the conditions

n—l<a+spandy <1, k=2,...,n 9)
hold valid.
Under these conditions, the kernel of the nth level fractional derivative is n-dimensional [7]:
n
Ker(Dz'l@) = {Z cx%, o = a+sp —k, o € R} . (10)
k=1

Because of the conditions (1) and (9), the exponents oy, of the basis functions of the kernel fulfill
the inequalities
—1<0.<0,k=1,2,...,n. (11)
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In the case, one or several of the conditions from (9) do not hold true, the nth level fractional
derivatives degenerate to the derivatives of the level less than n and, thus, their kernels have
dimensions less than 7.

2.2. Projector of the nth Level Fractional Derivative

One of the most important and widely used methods for analysis of the fractional differential
equations is by means of their reduction to certain integral equations of Volterra type. To perform
this transformation, one acts on the fractional differential equations with the corresponding fractional
integrals. Thus, for this method, the explicit formulas for the compositions of the fractional integrals
and the fractional derivatives (second Fundamental Theorem of FC) are required. In this subsection,
we derive a formula of this kind for the nth level fractional derivative.

Theorem 2. Under the conditions (9), the projector

(P f)(x) = (1d — "D £)(x) (12)

of the nth level fractional derivative (2) on the function space X, defined by (4) takes the form

n
(P f)(x) =Y prx, op = a+s,—k, (13)
k=1

(M (1) e f) (0) )
Pk = I(a+s—k+1) ’ 14)

We start the proof of the theorem by introducing an auxiliary function

g(x) == (I"D%" £)(x). (15)

For f € X1, the derivative Dz’Lm f is well defined and belongs to L1 (0,1). Thus, the function

g is from the space I*(L1(0,1)). Therefore, we can act on g with the operator DZ"L(AY) and apply the

Fundamental Theorem of FC for the nth level fractional derivative:
(D" 9)(x) = (D D™ £)(x) = (D37 ) ().

This formula means that the function g — f belongs to the kernel of the nth level fractional
derivative given by the Formula (10). Thus, we obtain the representation

g(x) = f(x)+ i e x%, 0 = o+ s — k. (16)
k=1

Now, we determine the coefficients c;, k = 1,...,n. To do this, we apply a sequence of some
Riemann-Liouville fractional integrals to the auxiliary function g defined by (15) and employ the first
fundamental theorem of calculus and the well-known formula

(14 19)(x) = XD

et prD) X a >0, p> —1. (17)

First, we apply the Riemann-Liouville fractional integral I' =%~ 71:
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(Il a—yq ) (Il =YD lX(’Y (x

(Il a—71 ( ! I’yk ) In a—sy >
k=1
<11 71171 <H I7k— ) I” a—sy )

(ﬂ : (ﬁ(m j)) (1 f)) (x) =

2

((kﬁmk j)) (e f)) (x) - ((kﬁmk j)) (e f>) ().
=2 =2

Then we apply the Riemann-Liouville fractional integral I'~72:

(7 g (x) = (11 g ((ﬁ(ﬂk ji)) (1w f))) (x)-

k=3
(et ) (o= ) g N
27 = ((ﬂ(” dx)> a ”f>> ()=
- G d Jh—a—su 0) — <(HZ:2(IW %)) (e f)) (0) 1-72
[0 ) (=) ) © g )

Now, we continue by applying the Riemann-Liouville fractional integrals I' =%, k = 3, . ..

arrive at the following formula:

((ﬁ 11_7") (e g)) (x) = (I""*71g) (x) =

k=2

n—k—(sn—sk) ,

(I}’l*lx Sn X

o (T kmmi)) (1" £)) (0)
L TR (e s ey

50f 14

,nand

where the empty product is understood as the identity operator. On the other hand, we can apply the

operator ([Tf_, I'™7) I'=#=7 = ["=#=Sn to the identity (16) and arrive to the relation

n—x—sy _ (n—a— sn D‘+Sk —k+ 1)) n—k—(sp—sr)
(I g)(x)_(l +Z kl-v k+1—(5n—5k>)x .

The coefficients ¢, k = 1,...,n are obtained by comparison of the coefficients by the same powers

of x in the last two formulas:

(MM (177 ) 125 £) (0)

- k=1,...,n
k T(a+sc—k+1) KT et

The statement of the theorem follows from this formula and the representation (16).
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Remark 3. Theorem 2 can be rewritten in form of the second Fundamental Theorem of FC for the nth level
fractional derivative:
n
(D" () = F(x) = ) pex™, e =a+ sk, 18)
k=1
where the coefficients py, k =1,...,n depend on the function f and are given by the Formula (14).

If some of the conditions (9) do not hold true, the nth level fractional derivatives are reduced to the fractional
derivatives with the level less than n and their kernels have the dimensions less than n. In this case, some of the
coefficients cy in the representation (16) and, thus, the corresponding coefficients py. in the Formula (13) for the
projector Py, are equal to zero.

As an example, let us discuss the projector of the second level fractional derivative deduced in [7].
In the general case, it has the following form:

(P3, f)(x) = pr 214 pyxtt1t12-2) (19)
P= (nz 4 - f) (0), 20
P2 = tarmrey (77 ) (0)
If one of the conditions
T2<lL,1<a+7+7 (21)

does not hold true, the second level fractional derivative is reduced to the Hilfer fractional derivative

defined by

d

(D" f)(x) = (1" 72

1= f) (x). (22)

Indeed, for 1 < ,, we obtain the following chain of equalities:

d d d »
D“/('Y]r'YZ) —m 2 im-12 2-a—m-1 — mt+r-12 Il—oc—(’yl-i-’yz—l) _ D“/YIJF'YZ .
2L dx dx dx H

In the case « + y1 + 72 < 1, we proceed as before:

d

d d d [rl-e-r-r — m =

prnm) _m L L an-n —m 4 ['—*m = p¥mn,
2L dx  dx H
In both cases, the kernels of the second level fractional derivatives (the Hilfer fractional derivatives)
are one-dimensional and one of the coefficients c; or ¢, in the representation (16) and thus one of the
coefficients p; or p; in the Formula (13) for the projector Py; is equal to zero. As a result, the projector
Py, of the Hilfer fractional derivative takes the following known form [19]:

(PUA) = gy (1777 ) @, @3)

Substituting y; = 0 into the Formula (23), we obtain the projector of the Riemann-Liouville

fractional derivative 1

(Pl f) () = gy (174 F) @ 4)

The value ;1 = 1 — & corresponds to the projector of the Caputo fractional derivative:

(PE f)(x) = £(0). (25)
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The Riemann-Liouville and the Caputo fractional derivatives are both particular cases of the
Hilfer fractional derivative:

d

(D £)(x) = (D} F)(x) = - (") (x), 26)
(D& F)(x) = (D NI p)). @)

2.3. Laplace Transform of the nth Level Fractional Derivative

In this subsection, we introduce the nth level fractional derivative on the positive real semi-axis
and derive a formula for its Laplace transform.

The Riemann-Liouville fractional integral on the positive real semi-axis is given by the Formula (3)
extended to the case x € Ry:

1 x a—1
« _ mfo(xft) f(t)dt, x>0, a>0,
(Io+ f)(x) o), x>0, -

(28)

The operator If, is well defined, say, for the functions from the space Lj,.(R+ ). Evidently, it can
be interpreted as the Laplace convolution of the functions f = f(x) and h,(x) = x*~1/T(«), x > 0.
The convolution theorem for the Laplace transform immediately leads to the well-known formula for
the Laplace transform of the Riemann-Liouville fractional integral Iy, [14]

(LIoy f)(s) = s~ (L f)(s), R(s) > max{sy, 0} (29)

that is valid under the condition that the Laplace transform of the function f given by the integral

+oo
(LHE= [ fwea (30)

does exist for R(s) > sy.
Now, we rewrite the definition (2) of the nth level fractional derivative of order «, 0 < & < 1 and
type ¥ = (71, - .., 7n) for the case of the positive real semi-axis:

(D52 £)(x) = <ﬁ<13i j,)) (T2 (), x> 0. 61

k=1

For the appropriate spaces of functions that take into consideration the behavior of the functions
at 4-co (see [14] for more details regarding the case of the Riemann-Liouville fractional integral and
derivative on the positive real semi-axis), both the Fundamental Theorem of FC and the projector
formula that were derived for the case of a finite interval remain to be true for the operators Ij, and

D%Z) defined on the positive real semi-axis. The reason is that these formulas are valid point-wise.

Thus, for an arbitrary point x € R, we can choose an interval [0, X]| with the property x € [0, X].
Because the Fundamental Theorem of FC and the projector formula hold true on the whole interval
[0, X], they are particularly valid at the point x.

As already mentioned, for some values of the parameters, the nth level fractional derivatives are
reduced to the fractional derivatives of the level less than 7. In the following discussions, we restrict
ourselves to the truly nth level fractional derivatives and suppose that the conditions (9) are satisfied.
According to the second Fundamental Theorem of FC (Remark 3), we then have the representation

(13, Dy f)(x) = fx) = Y peat s,
k=1
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where the coefficients py, k = 1,...,n are given by (14).

Under the conditions (9), the exponents 0y = a + s, —k, k = 1,...,n satisfy the inequalities
—1 < 03 < 0. Thus we can apply the Laplace transform to the last formula and get the following
equation using the Formula (29):

ktxskl

LDy )(s) = (£f)(s Zpkr(mk_kﬂ)

Now, we solve this equation for the Laplace transform of the nth level fractional derivative:
Sk_sk_l

F(a+s—k+1)

(£ D% f)(s) = Z

Taking into consideration the Formula (14) for the coefficients py, k =1,...,n, we arrive at the
final formula

(£D%P f)(s) = 2 kst 32)

where the coefficients a;, k = 1,...,n are determined by the function f:

n
a = ( [T (I&; ddx) I " s"f) (0). (33)
i=k+1

If some of the conditions (9) does not hold true, then the kernel of the nth level fractional derivative
has a dimension less than  and the corresponding coefficients aj in the Laplace transform Formula (32)
are equal to zero.

As an example, let us consider the Laplace transform formula for the second level fractional
derivative that was derived in [7]:

(£ DglL(;YMZ) F)(s) =s*(Lf)(s) —aps™ M —aps~ M7 72H1 (34)

with ;
ap = (183_ di 12 a—Y1—72 f) (0)’ ap = (Ig-;txf'y]—f}zz f) (0) (35)
For the Hilfer fractional derivative D'}fﬁ” defined on the real positive semi-axis (7, = 1 or

&+ v1 + 72 < 1in (31)), one of the coefficients a1 (if 7o = 1) or ap (if &« + ¥ + 72 < 1) is zero and we
arrive at the known formula

(LDET f)(s) =" (L)) = (" " f) (0)s7 ™. (36)

The case y; = 0in (36) corresponds to the Laplace transform formula for the Riemann-Liouville
fractional derivative

(LDF, f)(s) = s* (L F)(s) = (187 f) (0), 37)

whereas the case y; = 1 — « leads to the Laplace transform of the Caputo fractional derivative:
(LDE, f)(s) =s"(Lf)(s) = f(0)s" . (38)

3. Fractional Relaxation Equation with the nth Level Fractional Derivative

We start this section with a short discussion of the simplest fractional differential equation with
the nth level fractional derivative of order &, 0 < & < 1, namely, the one in the form

(D y)(x) =0, x > 0. (39)

nL+
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In fact, we already considered this equation in the previous section because its solution is the

kernel of Dz’éz). Depending on the parameters v, k = 1,...,n, the kernel dimension ranges from 7 to
1, because the nth level fractional derivative can degenerate to the fractional derivatives with the level
n — 1 to 1. In the case, the conditions (9) are satisfied, the kernel of Dz’L(Z)
general solution to the Equation (39) is as follows:

is n-dimensional and the

n
y(x) = Z cpx%k, o =a+sp—k x>0, (40)
k=1

¢t € R, k=1,...,nbeing arbitrary constants. To guarantee uniqueness of solution to the Equation (39),
n initial conditions
n o d Cae
( l_.[ (I(’)yjrdx> I(})qua Sn:‘/) (0) = ]/krk:ll"'rn (41)
i=k+1
are required. The initial-value problem for the Equation (39) with the initial conditions (41) then has

the unique solution
n

_ Yk O
y(x)—k;mx , x> 0. (42)

This situation is rather unusual for the fractional differential equations with a fractional derivative
of the order a € (0,1] and has consequences for their possible applications, as we will see in the
further discussions.

Now, we consider the fractional relaxation equation with the nth level fractional derivative and
prove the following result:

Theorem 3. The fractional relaxation equation

(D y)(x) = —Ay(x), A >0, x > 0 (43)

nLy
with the initial conditions given by (41) has a unique solution given by the formula
& k
y(x) = Y v x* T By ok (—A7). (44)
k=1

In the case, the initial conditions are non-negative (y, > 0, k =1,...,n in (41)) and the conditions
k—1<s;, k=1,...,n. (45)
hold true, the solution (44) is completely monotone.

In the formulation of the theorem, E, g stands for the two-parameters Mittag—Leffler function that
is defined by the following convergent series:

00 k

4
Eyp(z) = kgo FakTB)’ x>0, BzeC. (46)

We apply the Laplace transform method to prove the theorem. First, we do this formally,
but then verify that the Laplace transform of the obtained solution does exist. Using the Formula (32),
the initial-value problem (41) and (43) can be transformed to the Laplace domain:

S (LY)(s) = ) yes 1 = —A(Ly)(s). @)
k=1
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The solution in the Laplace domain is as follows:

n Sk—Sk—l
(Ly)(s) = kz Yk A (48)
=1
Now, we employ the well-known formula
_ s P
(LxP T Ep(=Ax")(s) = S B>0, (49)

and immediately arrive at the Formula (44) for the solution to the fractional relaxation Equation (43)
with the initial conditions (41).

As already mentioned in the previous section, under the conditions (9), the exponents o}, =
a+sg—k, k=1,...,n fulfill the inequalities —1 < 0} < 0. For a € (0, 1], the Mittag-Leffler function
has the following asymptotics as x — —oo:

x—1

Eyp(x) = TE—w +0(x72), x = —co. (50)

These both facts ensure that the Laplace transform of the function at the right-hand side of (44)
does exists and, thus, it is indeed the unique solution to the initial-value problem (41) and (43).

Now, let us prove that the solution (44) is a completely monotone function provided the
conditions (45) hold true and the initial conditions are all non-negative.

For the reader’s convenience, we recall that a non-negative function ¢ : R — R is called
completely monotone if it is from C*®(R ) and (—1)"¢(") (x) > 0 foralln € Nand x € R;.

The Mittag-Leffler function f(x) = E, g(—x) is completely monotone if and only if 0 < & < 1and
a < B [20]. The power law function g(x) = Ax%, 0 < a <1, 0 < A is a Bernstein function, because
its derivative ¢’(x) = Aax*~! is completely monotone. A composition of a completely monotone
function and a Bernstein function is completely monotone [21]. Therefore, the function E, g(—Ax")
is completely monotone for 0 < « <1, & < 8, and 0 < A. The product of two completely monotone
functions is again a completely monotone function [21] that leads to the complete monotonicity of the
function

]’la,ﬁ’%)\(x) = X'y_l Ea,ﬁ(—/\x"‘) (51)

under the conditions
0<a<1,a<B 0<y<1 0<A. (52)

The functions y(x) = x**sk Egatsi—k+1(—Ax%), k =1,...,n from the solution Formula (44)
have the form (51). Moreover, their parameters « = «, f = a+sy—k+1,and y = a+s, —k+1
fulfill the conditions (52), because of the conditions (1), (9), and (45) we posed on the order a and
the type v = (71,...,7n) of the nth level fractional derivative. Thus, the functions y(x) are all
completely monotone as well as their linear combination with non-negative coefficients that builds the
solution (44). The proof of the theorem is completed.

Remark 4. Taking into account the Formula (50) for the asymptotics of the Mittag—Leffler function, the behavior
of the solution (44) as x — oo has the following form:

n
y(x) ~ Z dp x™, oy = s — k, x = +o0, (53)
k=1

where the coefficients dy depend on both the initial values yy, the order , and the type v = (y1,...,Yn)-
Thus, the fractional relaxation Equation (43) can be employed to model the relaxation processes with the
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asymptotic behavior of type (53). Moreover, the free parameters 7y1, . .., yn can be used for optimal fitting of the
measurements data for a concrete relaxation process with a power law asymptotics.

Remark 5. In [18], uniqueness and existence of solutions to the Cauchy problems for the linear and non-linear
fractional differential equations with the Djrbashian—Nersesian operators that are similar to the nth level
fractional derivatives Dz’Lm (see Remark 2) were addressed. In particular, an analogy of the Formula (44) on
a finite interval was deduced while using the method of power series. However, no analysis of the solution
properties, including their complete monotonicity was presented there.

It is worth mentioning that, in [22], the eigenfunctions and the associated functions for some boundary
value problems for the special equations containing the Djrbashian—Nersesian operators were constructed in
explicit form. Moreover, these functions were interpreted as the bi-orthogonal systems of vector functions and

used for the interpolation expansions for some Hilbert spaces of entire functions.

In the rest of this section, we illustrate Theorem 3 on the case of the fractional relaxation equation
with the truly second level derivative (the conditions (9) with # = 2 hold true)

(D;"L(zl’”) y)(x) = —Ay(x), A >0, x>0 (54)
and with the initial conditions
d o g—ny— Dy —
(Igidxlof " 72f> 0) = w1, (10+"‘ e f) 0) = y2. (55)
According to Theorem 3, its solution

y(x) =W xvrm-l EIX,DCJr’Yl (*Axa) + 2 X2 Etx,oc+'yl+'yz—1 (*)‘xa) (56)

is completely monotone if the initial conditions y1, ¥, are non-negative and the following restrictions
on the order « and type (71, 72) of the second level fractional derivative hold true:

0<m<1-a,0<1<LI<n+7n<2-a (57)

The points of the (1, 72)-plane that satisfy the conditions (57) are graphically represented in the
plot of Figure 1.

They build a triangle and, in what follows, we shortly discuss the particular cases of the fractional
relaxation Equation (43) that correspond to the vertexes and edges of this triangle. As already
mentioned in the previous section, the second level fractional derivatives with v, = 1 (upper edge
of the triangle) are reduced to the first level derivatives (the Riemann-Liouville, the Caputo, and the
Hilfer fractional derivatives). Still, it is instructive to include them into considerations.

We start with the vertexes and write down the types of the corresponding fractional derivatives,
their form, and the solutions to the fractional relaxation Equation (43) with these derivatives:

e The Riemann-Liouville fractional derivative:
- Y1 = 0/ T2 = 1/

D;"m’”) — 4 [«

L+ dx "0+ 7

- y(x) = y1 x* P Egu(—Ax%).
e  The Caputo fractional derivative:

- Mm=1l—-a =1,
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a,(v1,72) _ jl—a d
D2L+ - IO+ dx’

- y(x) =y1 Eg1(—Ax").

e A truly second level fractional derivative:
- m=1—-a 1n=ug,

&(rr2) _ ql—a d ¢ d jl-a
Dor, " = 1o " 35 oy ax loy

= y(x) = y1 Eq1(—Ax%) + 12 x¥ L Eg o (—Ax%).

A
72
2 —«
R-L FD Hilfer FD,
D e
R-L+Hilfer FD
a R-L+Caputo FD

»
>

0 11—« 1 2—« oGt
Figure 1. Second level fractional derivatives of order « € [0,1] and type (71, 72)-
Whereas, the first two cases (the fractional relaxation equations with the Riemann-Liouville and
the Caputo fractional derivatives) are well-known, the third case seems to be new. The solution to the
corresponding relaxation equation is a linear combination of the solutions to the fractional relaxation

equations with the Riemann-Liouville and with the Caputo fractional derivatives.
Now, let us inspect the edges of the triangle from Figure 1.

o  The Hilfer fractional derivative:
- OS'Ylgl—lxr’YZ:l/

4

a(y1,72) _ gm d pl—a—m
Do % =Ty ax oy

= y(x) =y XN Eg g (—AXY).



Mathematics 2020, 8, 1561 13 of 14

e A truly second level fractional derivative:

- m=l-aa<<],

D'X/(%ﬁz) l-ad [ d

11 T2
2L 0+ dx "0+ dx

7

= Y(x) = y1 Eaa(=Ax") +y2 X771 By (—Ax®).

The solution to the relaxation equation with the second level fractional derivative DZL(l a12)

is a linear combination of the solutions to the fractional relaxation equations with the Caputo
fractional derivative and with the Hilfer fractional derivative with the type y; = 72 — a.
e A truly second level fractional derivative:

- 0<7m<l—a 12=1-7,

a(v72) _ g1 d l-m 1-a
Dy = I e Lo " A I

- y(x) =11 xtr—1 sz,tx+'h (—)\x”‘) + 12 o1 sz,tx(_/\x“)-

The solution to the relaxation equation with the second level fractional derivative D5; (71 =)

is a linear combination of the solutions to the fractional relaxation equations Wlth the
Riemann-Liouville fractional derivative and with the Hilfer fractional derivative with the type ;.

In all other cases, the solution to the fractional relaxation Equation (54) is given by the Formula (56).
It is worth mentioning that (56) can be interpreted as a linear combination of solutions to the fractional
relaxation equations with the Hilfer fractional derivatives of order a and with the types 77 and
Y1 + 72 — 1, respectively.

Finally, let us mention that the second Fundamental Theorem of FC for the nth order fractional
derivative (Remark 3) can be used for the analysis of more complicated and even nonlinear fractional
differential equations. Say, the fractional differential equation

(D) y)(x) = F(x,y(x)), x>0, F: Ry xR — R (58)

nL+

subject to the initial conditions in form (41) can be transformed to the following Volterra-type integral
equation of the second kind by applying the Riemann-Liouville fractional integral to the Equation (58)
and by using the Formula (18):

n
= & Ok — _
y(x) = (I, F(x,y ; ‘Tk + o, > k= + s — k. (59)

The integral Equation (59) can be analyzed by the standard method of the fix point iterations.
This problem will be considered elsewhere.
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