
mathematics

Article

Graph-Based Problem Explorer: A Software Tool to
Support Algorithm Design Learning While Solving
the Salesperson Problem

Aura Hernández-Sabaté 1,2,* , Lluís Albarracín 3 and F. Javier Sánchez 1,2

1 Departament de Ciències de la Computació, Universitat Autònoma de Barcelona,
08193 Bellaterra (Barcelona), Spain; javier.sanchez.pujadas@uab.cat

2 Computer Vision Center, 08193 Bellaterra (Barcelona), Spain
3 Serra Húnter Fellow in Departament de Didàctica de les Ciències Experimentals i la Matemàtica,

Universitat Autònoma de Barcelona, 08193 Bellaterra (Barcelona), Spain; lluis.albarracin@uab.cat
* Correspondence: aura.hernandez@uab.cat

Received: 3 August 2020; Accepted: 11 September 2020; Published: 16 September 2020
����������
�������

Abstract: In this article, we present a sequence of activities in the form of a project in order to promote
learning on design and analysis of algorithms. The project is based on the resolution of a real problem,
the salesperson problem, and it is theoretically grounded on the fundamentals of mathematical
modelling. In order to support the students’ work, a multimedia tool, called Graph-based Problem
Explorer (GbPExplorer), has been designed and refined to promote the development of computer
literacy in engineering and science university students. This tool incorporates several modules to
allow coding different algorithmic techniques solving the salesman problem. Based on an educational
design research along five years, we observe that working with GbPExplorer during the project
provides students with the possibility of representing the situation to be studied in the form of graphs
and analyze them from a computational point of view.

Keywords: STEM education; project-based learning; coding; software tool

1. Introduction

The idea of STEM Education (Science, Technology, Engineering, and Mathematics disciplines) has
been contemplated since the 1990s in the USA. Americans realized that their country predominant
position may fall behind in the global economy and began to focus on promoting STEM education
and careers [1]. The emergence of STEM Education and the efforts made to promote it are not
transforming into an increase in the number of students choosing STEM careers. On the contrary,
students’ interest and motivation toward STEM learning has declined, especially in western countries
and more prosperous Asian nations [2].

In recent decades, STEM Education has evolved from a set of disciplines that were considered
to be useful from a productive point of view to a new discipline that integrates the knowledge that
makes them up. STEM learning is defined as the integration of a number of conceptual, procedural
and attitudinal contents via a group of interdisciplinary skills for the application of ideas or the solving
of problems in real contexts [3]. While it is widely acknowledged that mathematics underpins all
other STEM disciplines, there is clear evidence that it plays an understated role in integrated STEM
education [4]. We agree with the author in [5] that the most relevant role mathematics should have in
STEM integration is through mathematical modelling as a vehicle to connect the contents and methods
of STEM disciplines with real-world problem solving.

One of the STEM cross-cutting topics that has received the most interest is computer science,
because of its relevance in solving real-world problems. Computer programming is an aspect of

Mathematics 2020, 8, 1595; doi:10.3390/math8091595 www.mdpi.com/journal/mathematics

http://www.mdpi.com/journal/mathematics
http://www.mdpi.com
https://orcid.org/0000-0003-1563-9934
https://orcid.org/0000-0002-1387-5573
https://orcid.org/0000-0002-9364-3122
http://www.mdpi.com/2227-7390/8/9/1595?type=check_update&version=1
http://dx.doi.org/10.3390/math8091595
http://www.mdpi.com/journal/mathematics


Mathematics 2020, 8, 1595 2 of 20

computational thinking and it has globally become a focus of many school curricula over the last
10 years, with the intent that students develop and demonstrate computational skills [6], higher-order
thinking skills, and algorithmic problem-solving skills [7]. Educational research has shown great
interest in studies on early learning programming, but efforts still need to be directed toward the full
development of programming skills for the various STEM careers. The difficulties faced by students in
higher levels of engineering or scientific careers when dealing with computer problems in their own
disciplines can provide future students with a demotivating image that influences the low choice of
these studies. It is necessary to connect computer learning with real problems that can be solved and
find methodologies that adequately accompany the work of students.

College students in engineering or science, and especially those that are enrolled in computer
science-related degrees, need to learn how to analyze and design algorithmic solutions to computable
problems beyond the mere construction of programs. Generally, the way to teach the different
algorithmic techniques was based on the presentation of basic problem-solving techniques applied
to some classical examples. From here, students were left with a collection of problems to solve
without having room to do an in-depth analysis of these techniques once they have been programmed.
This way of approaching the teaching of these techniques did not usually include elements of reflection
on the consequences of the design made. Consequently, rather than training programmers, coders were
trained without the ability to understand a problem to plan and design an algorithmic solution that
was then coded [8]. To overcome these drawbacks, in recent decades, efforts have been made with
approaches, such as Problem-Based Learning (PBL) [9] or Inquiry-Based Learning [10].

In this article, we present the design of a sequence of activities that aimed to promote learning
on analysis and design of algorithms in Engineering Studies. This sequence of activities is oriented
to students in the third/fourth year of Computer Engineering degree, and second year of Data
Engineering and Computational Mathematics degrees. The didactic design is based on the principles
of mathematical modelling as a PBL approach. The Salesperson problem is chosen as a real problem
to work with, because of the range of existing algorithmic approaches to solving it. We develop a
didactic software tool, named Graph-based Problem Explorer (GbPExplorer), which allows graphal
visualization and algorithm techniques coding in order to support students learning. In this way,
students can develop their skills not only as programmers, but also as analyzers and problem solvers.

The remainder of the paper is structured, as follows. Section 2 presents the theoretical foundations
of the proposal. In Section 3, the educational context is detailed. Section 4 is devoted to explain the
process of designing and refining of the project. Sections 5 and 6 detail the elements of GbPExplorer
and the project sequence development. Finally, Section 7 discusses the identified didactic potentialities
and concludes the paper.

2. Theoretical Framework: Modelling in Education as Problem Based Learning Approach

In recent years, there has been increasing interest in introducing new activities that include
modelling processes in the curricula of different educational levels due to their didactic potential for
connecting reality with mathematical content [11]. This interest is due to the evidence of the usefulness
of modelling in all scientific disciplines, as modelling has been shown to be one of the most powerful
tools for scientific purposes. If we focus on modelling in educational settings, Lesh and Harel [12]
define mathematical models as “conceptual systems that generally tend to be expressed using a variety
of interacting representational media”. Their purposes are to construct, describe, or explain other
systems while using concepts and accompanying procedures.

The way that students create mathematical models to solve problems is currently under study,
with different points of view [13]. It is generally accepted in the literature that modelling processes are
cyclic in nature [14], as shown in Figure 1. During the resolution process, students try to solve problems
by going through different stages and then going back to reassess the studied situation. Therefore,
the process is repeated in different cycles, in which students improve the models and solutions found
for the problem they are working on, adapting them to the requirements of the problem statement [15].



Mathematics 2020, 8, 1595 3 of 20

Figure 1. The modelling cycle according [14].

However, the didactic uses of modelling go beyond the modelling process itself and can be used
as a vehicle for teaching other content in educational environments [16–18]. An alternative way of
using modelling is to propose a real problem in its context and provide a concrete mathematization
of that problem. In this way, students work in the abstract domain and can learn new knowledge
from experimenting in this simulated situation, taking advantage of the information provided by their
knowledge of the real phenomenon.

If we focus on computer-based learning, in recent years there has been a great deal of interest
in changing engineering teaching methodologies [19,20], due to changes, both in the skills that
are required for future engineers [21] and in the entry profile of students [19,22]. Among these
methodological innovations, those that seek to actively involve the student in his/her learning process,
achieving positive results, particularly in the understanding of concepts and in the ability to solve
problems, have been highlighted [23,24]. In these proposals, we find the Problem Based Learning
(PBL), as a recurrent strategy for engineering education [25]. There is an extensive literature on the
basis and pedagogical foundations of PBL [26,27] and, given its popularity in recent years, it has
generated a large amount of research on teaching in several areas of knowledge [28] and has been
refined with further contributions from research and practice [29]. PBL was first used in 1980 in
medical education [30] and, since then, it has not only spread to all areas of knowledge, but some
universities, such as Aalborg University [31], even use it in all of their degrees.

In the fields of engineering and science, knowledge requires study and learning according to
hierarchical dependencies that follow strict regulation [32], both at the micro level, i.e., thematic units
within courses, and at the macro level, in relation to the units that exist between courses and the
curriculum. The teaching of computer programming and algorithm design has become very relevant in
the current context of engineering education, given the massive availability of computer resources and
tools that can be used in practically all sub-disciplines, and the great potential of computer tools to help
engineers to solve the problems of increasing complexity and sophistication. In computation courses,
engineering students must develop a set of cognitive and meta-cognitive skills aimed at solving
problems through computer thinking and programming [33]. Learning computer programming
and algorithm design is similar to learning knowledge of other areas of engineering and sciences,
because programming must be learned according to the hierarchical order of knowledge and skills
needed. The learning process involves the continuous exercise of factual knowledge, such as lexemes,
keywords, and the valid grammatical constructions of the programming structures, as well as also
conceptual knowledge needed to build in-depth representations [34]. This includes the representation
of data while using variables, the construction of decision, iteration and recursion structures, the use
of structured data, and the definition of functions. In addition, problem-solving through computer
programming involves the development of superior thinking skills, mostly analytical and creative,
including the breakdown of complex problems in sub-problems, the design of algorithms to solve them,
and the ability to effectively translate the internal representations of algorithms into valid syntactic and
semantic code in a programming language. The students become more adept at programming, as they



Mathematics 2020, 8, 1595 4 of 20

acquire and effectively articulate all of this knowledge, and build their own reusable schematizations
to more efficiently address new problems [32].

Problem-based learning (PBL) is a student-centred pedagogical approach in which students
learn about a topic through the experience of solving open problems [35]. The problem-based
learning process does not focus on problem-solving from a single solution, but it allows for the
development of skills and attributes that are desirable in students. These include knowledge acquisition,
communication, and collaboration within a group and interaction between students. PBL proposes an
open and poorly structured problem to the students and provides them with concrete questions and
materials that allow them to adequately develop the activity in order to promote these learnings.

When introducing PBL in different engineering subjects, it has been shown that it is necessary to
introduce specific supports to promote certain types of activities or interactions between students [36].
In the case presented in this article, and to facilitate the interaction of the students in the key aspects
of the project while allowing the proposed learning, the work is done through the use of a specific
software tool. The tool that we present provides students with a concrete representation of the
problem studied and a programming environment, so that they can experiment with it. If we focus on
programming learning, modelling provides a context in which to test and validate the solutions that
were developed by students going through the different solving stages. In this way, an environment in
which students can experiment with a given model of a complex reality allows them to analyse the
relevant aspects of the different programming techniques that can be used in the resolution.

3. Educational Context

As we explained above, we propose a project for coding and analyzing several algorithms in
accordance with the objectives of the subject “Analysis and Design of Algorithms”. The aim of
this subject is to provide students with advanced programming knowledge and introduce them
different styles and paradigms of algorithm design. The main objective is that students develop skills
in algorithm design and analysis in order to be able to solve real-world problems effectively and
efficiently according to the requirements established by a potential client. Topics in this subject include
the formal specification and verification of problems and programs, computational complexity, and
algorithmic techniques, such as greedy, backtracking, branch and bound, dynamic programming
and probabilistic methods. Examples of real problems that can be addressed by these techniques
are: tasks/stocks/schedule/costs/paths planning optimization, automatic text correction, signature
authentication, financial decision maker, error recovering in information transmission, and natural
language recognition.

The project presented here proposes the resolution of a classic problem, the travelling salesperson
problem, by three of the algorithm techniques, as well as some variants, and a computational
complexity analysis in order to extract the essence of the main objective of the course, which also
involves an analysis of the algorithms. The original travelling salesperson problem [37] is a very
classic optimization problem that has been studied along decades. Its relevance is recorded as early as
the 19th century and its first mathematical approach dates back to the 1930s and it responds to the
following question:

Given a set of cities and the distances between them, which is the shortest path that visits each city
(or a subset) and only once?

Although the problem is computationally complex (it is an NP-hard problem), a large number of
heuristics and exact methods are known, so that some instances from hundreds to thousands of cities
can be solved. Additionally, it has several applications in different fields, such as planning, logistics,
electronic circuits, or as a subproblem in DNA sequencing. In those cases, cities are replaced by the
object of interest (clients, DNA extracts, etc). Notice that the problem can be represented by a graph.
Each vertex corresponds to a location joint by an edge with a known length.



Mathematics 2020, 8, 1595 5 of 20

Regarding the specific algorithmic techniques to be developed in the project, we consider the
following ones and some variants:

• Greedy. These kind of algorithms build a solution to the problem in successive stages, always
trying to make the optimal decision for each stage, without taking further consequences into
account. It is a very simple method that can be applied to numerous problems, especially for
optimization ones. The drawback is that they not always produce optimal solutions.

• Backtracking. These kind of algorithms compute an exhaustive search among solution space.
That is, it builds the solution in successive stages, choosing an option among all the remaining
possibilities each time and maintaining the chance of undoing the last decision taken. It is an
exhaustive and, thus, tedious and time-consuming algorithm, but it takes the advantage that can
compute all the solutions and, depending on the problem, can be posed to speed its computation.

• Branch and bound. This method is a variation of the design of backtracking and it is usually used
to solve optimization problems. Both of the techniques build an incremental solution by checking
the constraints of the problem at each partial solution but, while backtracking works with a
unique solution at a time, branch, and bound works with several partial solutions at once. Besides,
backtracking leads a priority depth search, while branch and bound decide the best solution to
follow up by means of a heuristic.

From the perspective of students, it is difficult to connect the specific characteristics and needs
of real-world problems with the algorithmic techniques that are designed to solve them. The classic
teaching strategy usually presents the techniques accurately in the classroom using typical examples
and leaves time for students to make the necessary connections autonomously. This does not ensure
that students develop the necessary skills to be able to deal with all the processes of solving a problem.
It is from this perspective that PBL is taken as a way of articulating activities.

To this end, a practice module that is based on project work is introduced to promote this
development of problem-solving skills based on a real problem. The project is accompanied by a
specific software tool that allows for work on the key aspects of the problem approach and its resolution.
The tool makes possible to visualize the data structures used, to develop code modules that implement
different types of solutions and compare them in order to assess their suitability and to develop studies
of algorithmic complexity. This provides students with a space to explore and self-validate their own
coding of solutions.

4. Project Design Methodology

In this section, we explain the design process that is based on an educational design research [38]
for the refinement of the project through several iterations until the construction of a tool and a didactic
proposal with the didactic objectives explained above.

As we explained above, after taking the subject “Analysis and Design of Algorithms” students
are expected to be able to deal with real-world problems from an effectiveness and efficient codable
point of view. In particular, they will develop skills to analyze algorithms, compare between them,
and determine which ones solve a given problem in an optimal way, while taking into account the
intrinsic efficiency and/or accuracy requirements of each environment. Besides, during the first
academic years (2015–2016, 2016–2017, and 2017–2018), we gave the subject in Computer Engineering
Degree, it was structured as sessions of theory (one session of 2 h per week), problem-solving (one
session of 1 h per week), and lab work (one session of 2 h twice a month).

Keeping that in mind, in the 2015–2016 academic course, we designed a practical project to be
developed during the lab work sessions, with the support of the teacher, and also autonomously
by the students. During that course, the structure was, as follows: in the first lab work session,
we presented the project as the aim to be developed during the following five sessions in parallel
with the explanations of the algorithmic techniques that were performed in the theoretical sessions.
That is, we presented the aim of the project, the planned development, a very naive software tool



Mathematics 2020, 8, 1595 6 of 20

(i.e., a preliminary version of the current tool GbPExplorer), to be used as a crutch, and the evaluation
process of the project. Regarding the tool, we simply provided the students with a graphical interface
together with its corresponding code. The students had to code from scratch the scripts related to each
algorithmic technique and call the interface by their own in a command line. An example of such a
graphical interface, which was coded in Java, is shown in Figure 2. Subsequently, the students became
familiar with the code and data structures to be used and we let on their own to develop the project
during the following sessions.

Figure 2. Original Graphical Interface.

During the first year, we detected several shortcomings that can be summarized in two main
points: (1) students needed closer and more continuous support from teachers and (2) students needed
more feedback on the results that were obtained by their codes. Consequently, in the next two academic
years (2016–2017 and 2017–2018), we iteratively refined the sequence of project activities along with
the sessions. For example, we introduced a specific follow up of students in the middle of the project
to give and get feedback on the evolution of the project. We also realised that an automatic corrector
was needed for providing immediate feedback. However, we still identified other weakness, such as a
good basis for problem comprehension, proactivity in creating their own test datasets to find algorithm
failures, or programming gaps carried over from previous courses. This observation of the students’
needs to develop the project successfully led us to introduce changes from two different perspectives,
in the concreteness of the activities, and in the form of the software tool that supports the work.

We resort to mathematical modelling framework [14,15] as a PBL approach [26,27] and planned
our global project following the modelling cycle that is described in Figure 1. At the same time,
an innovation group proposed introducing a structural change in the methodologies to promote active
learning in Engineering Studies [39], so we proposed an organizational change in some subjects. From
the academic year 2018–2019 in Computer Engineering and directly from the creation of Degrees in
Computational Mathematics and Data Engineering, this subject is structured in 25 sessions of 2 h in
14 weeks. We combine several active methodologies to work on different algorithmic techniques as
well as other topics, such as formalisation of problems and scripts and computational and algorithms
complexity. Six of these sessions are exclusively devoted to the project development in the classroom.



Mathematics 2020, 8, 1595 7 of 20

From the perspective of the software tool that supports the work of the students, we redesigned it
to integrate all of the elements necessary to deal with the handling of the graphs structure, visualization,
algorithmic techniques coding, and problem-solving evaluation. This new tool allows for students not
only to work directly on the relevant aspects of problem-solving, but also to avoid collateral difficulties
that are caused by the fragmentation of the different programming modules to be used. In Section 5,
we present the current interactive tool, while, in Section 6, we detail the way that we combine the
agents involved in the tool in the learning sequence.

5. The Graph-Based Problem Explorer

In this section, we present the GbPExplorer, which is the software that acts as the main vehicle to
experiment with the problem-solving in this project. GbPExplorer is hosted in the following open access
repository: http://www.cvc.uab.es/people/javier/GraphApplication/GraphApplication.html. It can
be mainly split in three different components, as we show in Figure 3: (1) a solution in C++ partially
coded where students have to code the solving algorithms by different paradigms; (2) a graphical
interface that allows to pose different situations of the problem (that is different graphs), and check the
correctness of their solutions; and, (3) testing executable files that serve to analyse and compare the
performances of their solutions.

Figure 3. GbPExplorer Diagram.

5.1. C++ Project

The students are provided with a partially coded C++ solution. This solution contains the code
of the graphical interface, the shell of the solution to the travelling salesman problem (i.e., the main
structures needed to solve the problem and all the callbacks to the scripts of algorithmic techniques)
and a log with the computation errors. In addition, the students are provided with a report with the
technical documentation of the solution. We sketch the idea of the solution in Figure 4.

Grey boxes are already coded but are visible for better understanding. Listing 1 shows an example
of part of the code.

Listing 1: Code of class CVertex.

1 class CVertex {
2 public:
3 CGPoint m_Point;
4 list <CVertex*> m_Neighbords;
5 bool m_Saved;
6 // Campos para el algoritmo de Dijkstra
7 double m_DijkstraDistance;
8 bool m_DijkstraVisit;
9 CVertex *m_pDijkstraPrevious;

10 // Campos para el algoritmo de backtracking
11 bool m_VertexToVisit; // Vertice a visitar (en lista visits)
12 public:
13 CVertex(double x, double y);
14 CVertex ();
15 bool NeighbordP(CVertex *pVertex);
16 };

http://www.cvc.uab.es/people/javier/GraphApplication/GraphApplication.html


Mathematics 2020, 8, 1595 8 of 20

In the technical documentation, the code is also shown together with an explanation of each code
cell, like the following:

CVertex class represents a vertex in the graph. This class contains the point on the
Euclidean plane where the vertex is and a list of its neighbors. Additionally, it contains
the fields m_DijkstraDistance and m_DijkstraVisit, which are necessary for coding
Dijkstra algorithm.

The white boxes in Figure 4 correspond to files that need to be coded by students. In Listing 2, we
show an example of the code given before implementing the solution.

Listing 2: Code of two algorithms to implement.

1 #include ‘‘stdafx.h’’
2 #include ‘‘../ GraphLib/CGraph.h’’
3

4 // SalesmanTrackBacktracking ===================================================
5

6 CTrack CGraph :: SalesmanTrackBacktracking(CVisits &visits)
7 {
8 // TO IMPLEMENT
9 return CTrack(this);

10 }
11

12 // SalesmanTrackBacktrackingGreedy =============================================
13

14 CTrack CGraph :: SalesmanTrackBacktrackingGreedy(CVisits &visits)
15 {
16 // TO IMPLEMENT
17 return CTrack(this);
18 }

This C++ solution serves to standardize the constraints that are necessary to adapt the activities to
the particular aims of the subject. This means that students receive clear milestones during the project,
while being given the freedom to code the algorithms (which are the objectives of the subject).

Figure 4. Main script workflow.

5.2. Graphical Interface

The interactive graphical interface contains several modules that serve to pose different problem
situations (i.e., different graphs) and check the correctness of their solutions. That is, it allows for



Mathematics 2020, 8, 1595 9 of 20

the generation of random graphs and also specifically designed ones, both with different number
of vertices, edges, and vertices to visit. This allows for creating realistic representations of graphs,
inducing students to retain the knowledge and skills about graphs that will later be applied in cases
where this representation is useless.

Besides, once students code each algorithm, they can visually check the correctness of their
solutions in two different ways. On the one hand, they can display the output of their algorithm and
manually reconstruct the track to check whether the algorithm builds the solution in the expected
order. On the other hand, they can test their algorithms with a dataset of 10 different graphs that
were already prepared and given by the teaching staff. This dataset contains a set of graphs with their
corresponding visits, distances between points, and optimal tracks. The students can load a particular
graph from this dataset and compare the output that they obtained with the tracks. Both ways of
testing serve to provide students with their own immediate feedback.

Figure 5 shows a view of the interface. On the left side, there is the visualization of a particular
graph, while, on the right side, there are several modules that provide a set of utilities to explore the
different necessary aspects to work in each phase of the project. These utilities can be split in five
different categories: graph handling, visits handling, solution handling, algorithmic techniques, and
intermediate utilities.

1. Graph handling (red box): this module allows for creating a graph, either reading it from a
file, or creating a random graph with a fixed number of edges and vertices decided by the user,
and save the last created graph.

2. Visits handling (blue box): this module allows for defining the locations to visit, either reading
them from a file or creating them randomly, and to save the last ones.

3. Solution handling (black box): buttons in this module are the ones that students have to code to
solve the problem in the different paradigms.

4. Algorithmic techniques (purple box): buttons in this module are codable utilities for visualizing
their intermediate results.

5. Intermediate utilities (green box): this module allows for reading a solution from a file and save a
new solution concerning neither techniques (track) or intermediate utilities (distances).

Figure 5. Current Graphical Interface.



Mathematics 2020, 8, 1595 10 of 20

5.3. Testers

Finally, the GbPExplorer offers students another type of support, which is aimed at checking their
outputs on the given dataset from an analytical point of view, with two aims: (1) to check exactly at
what point their algorithm fails and (2) to check their execution times and obtain feedback on the
efficiency of their code. This computation times will later serve students to set up the experiments for
algorithm comparison analysis.

The outputs of these testers are presented in several text files, all of which are automatically
generated and saved in a new folder by a corrector. On the one hand, for each graph and algorithm,
students obtain a file with the student and parameters data and runtime and another file with the track
obtained by the student’s algorithm. Figure 6 shows an example of the text files that were obtained for
the graph number 4 and the algorithm Backtracking + Greedy. On the right side, we can observe the
track obtained by a student.

Figure 6. Example of the text files obtained for a particular graph and particular algorithm.

On the other hand, the students also obtain a summary of the results for the whole graph dataset
and all the algorithms. With this file they can compare their output with the expected results. In case
they obtain an error, there is a message with an explanation as we will show in the next section.
Figure 7 shows a brief extract of the file that was obtained by a student.

Figure 7. Part of the summary of results that were obtained for the test dataset.

6. Project Sequence Development

In this section, we present the didactic sequencing of the project. Given that the purpose is to
promote learning of the various processes associated with salesperson problem solving, this project is
split in several activities throughout the course covering the modelling cycle [14] presented in Figure 1.



Mathematics 2020, 8, 1595 11 of 20

In a real modelling process, the solvers work through the different phases until they generate a solution
that they validate in the real world and, if it does not fit the needs of the problem, they restart a new
modelling cycle. In the project, this behaviour is adapted and adjusted by proposing concrete activities
that allow students to advance between stages through the modelling phases. Figure 8 summarizes
the activities that were introduced in each one of the modelling stages.

Figure 8. Adapted modelling cycle.

Specifically, the sequence of activities begins with: (a) a presentation of the problem statement,
and a discussion promoted to determine (b) the situation model of each of the students and agree (c) the
real model to work on. This initial modelling process allows for the transition to mathematical and
computer work using the GbPExplorer. In (d), the mathematical model is implemented to work on the
software tool. Each of the possible resolution techniques is implemented to generate (e) mathematical
results that are (f) validated and checked for each of the techniques, allowing a comparison of methods
from the point of view of computational complexity. All of the steps are detailed below.

6.1. Modelling the Problem

We first present to the students a statement of a salesperson type problem in a context based on a
realistic situation that is located in a well-known environment, the university campus. The statement
includes the following paragraph:

Every day, the postwoman of the university needs to go through all the faculties and other points that
have mail. The points that have mail changes from one day to the other. Figure 9 shows an example:
All possible points to deliver mail are marked in red check point, while points which has mail to deliver
today are as well circled in red. The postwoman wants to deliver the mail to the target locations in the
shortest possible time, and since she rides a bicycle we can consider that paths between locations are
straight ones.

The problem statement also contains a caption of google maps with the target possible locations,
like the one that is shown in Figure 9.

The students are then asked to generate a way of problem representation that later will enable
them to solve the problem using computational techniques. To this end, a discussion is promoted in
the classroom, so that the mental models with which the students internally represent the situation are



Mathematics 2020, 8, 1595 12 of 20

shared and it is possible to articulate a real model that aimed at mobilizing knowledge about the real
world articulated with mathematical and computer knowledge.

Figure 9. Example of the points to deliver the mail today.

The students conclude that the best abstract representation of the problem is by means of a
graph, which they already well-know. They have been studied graphs from a theoretical point of view
and have explored their coding in previous courses of the degree. During the session, students give
meaning to each of the elements of the graph in order to adjust it to the needs of the problem.
This process is guided by the teacher in order to have a common frame of reference that fits the features
of GbPExplorer. They identify vertices, edges, and differences between locations and visits: to simplify,
vertices are two-dimensional (2D) points in the plane and edges correspond to the Euclidean distance
between two vertices. Figure 10 shows the real model developed.

Figure 10. Example of the graph created by a student from the statement.

6.2. Moving to the Mathematical Model: GbPExplorer

At this point, the teacher introduces the GbPExplorer to the students and explains its aim,
the different modules that compose it and the way that it can help them during the project. In
particular, the students can try to generate random situations and load the ones from the given dataset
to check their optimal tracks. The first task to deliver is to design a particular graph and load it in
the interface, in order to let students to familiarize with the use of GbPExplorer. Figure 11 shows the



Mathematics 2020, 8, 1595 13 of 20

visualization of the graph introduced on the map in Figure 10 in the GbPExplorer, with the optimal
solution marked as a directed subgraph in green.

Figure 11. Mathematical model of the graph created in the graphical interface.

Later, the teacher introduces the code behind the graphical interface in order to show data
structures and explain the rest of the project. From here, the students will have to work on coding the
different algorithmic techniques, as we explain them in the next sessions. An example of the code done
by a student is shown in Listing 3.

Listing 3: Backtracking Code from a Student.

1 CTrack CGraph :: SalesmanTrackBacktracking(CVisits &visits)
2 {
3 CTrack* cami = new CTrack(this);
4

5 list <CVertex >:: iterator vertexs = visits.m_pGraph ->m_Vertices.begin();
6 while (vertexs != visits.m_pGraph ->m_Vertices.end())
7 {
8 vertexs ->tram.clear();
9 vertexs ++;

10 }
11

12 // vertices a visitar
13 list <CVertex*> *candidats = &visits.m_Vertices;
14

15 //lista de visitas vacio
16 if (candidats ->empty())
17 return *cami;
18

19 CVertex* origen = visits.m_Vertices.front();
20

21 //solo tenemos un vertice en la lista de visitas
22 if (candidats ->size() == 1)
23 {
24 cami ->AddFirst(origen);
25 return *cami;
26 }
27

28 double* dist_min = new double(numeric_limits <double >::max());
29 int* total_visitar = new int(0);
30 double dist_ac = 0;



Mathematics 2020, 8, 1595 14 of 20

31

32 // m_VertexToVisit llega inicializaco a true para todos los vertices del grafo
33 // ponemos a false los vertices que tenemos que visitar
34 for (CVertex *pV : *candidats)
35 {
36 pV->m_VertexToVisit = false;
37 pV->tram.clear();
38 }
39

40 CVertex* destino = visits.m_Vertices.back();
41

42 // primer nodo no se visita a no ser que sea destino tambien
43 if (origen != destino)
44 origen ->m_VertexToVisit = true;
45

46 // tamanyo de visitas menos nodo origen
47 *total_visitar = candidats ->size() - 1;
48

49 //lista donde guardamos todos los vertices del camino , como si fuera una pila
50 list <CVertex*> *pila = new list <CVertex*>;
51

52 //tramo hasta llegar a un vertice a visitar y no visitado antes
53 map <CVertex*, char > tram;
54 tram.insert(pair <CVertex*, char >(origen , ’a’));
55

56 int n_tram = 1;
57 origen ->tram.insert(pair <int , char >(n_tram , ’a’));
58

59 SalesmanTrackBacktrackingRec (*cami , *dist_min , dist_ac , origen , destino , tram , *pila ,
60 *total_visitar , n_tram);
61

62 // volvemos a poner a true los vertices que debiamos visitar para dejarlo como estaba
63 for (CVertex *pV : visits.m_Vertices)
64 {
65 pV->m_VertexToVisit = true;
66 }
67

68 return *cami;
69 }

6.3. Creating Solutions and Comparing Methods

Returning to the adjusted cycle, as shown in Figure 8, each coloured arrow means a different
algorithmic technique to be coded. In this way, the students work on the implementation of different
techniques for the same problem, which provides them with a background to compare them based on
the obtained results. Later, they will work specifically on methods to make these comparisons in an
objective way.

As we explained in Section 5, once students code a particular technique, they can self-evaluate
their performance by two different ways:

1. Visual graphical representation: once an algorithm is executed by the GbPExplorer, the solution
track is printed in green. If the graph is small students can check if the algorithm builds the
solution in the expected order. Additionally, if this solution contains any non existing vertex or
edge, then it is marked in red and the student can rapidly realize.

2. Log information: for the graphs dataset, students obtain several text files with the track obtained
by the algorithms together with the optimal solutions, the execution times, and the errors detected.

Here, are some examples of error checking. Figure 12 shows non-existing vertices, which are
printed at point (0,0). Since these vertices connect to other ones by non existing edges, the last are
printed in red.



Mathematics 2020, 8, 1595 15 of 20

Figure 12. Error example: non existing vertices with their non existing connections (edges) in red.

Figure 13 shows two different errors. On the one hand, the track obtained joins several vertices by
non-existent edges, which can visually be observed in red. Additionally, the log points out these errors
by a message, which can be observed in the bottom of the figure (boxed in red). On the other hand,
there remain some unvisited vertices to visit, which can also be observed in orange, but, also, text log
warns about it to reinforce the message (boxed in orange in the figure).

Figure 13. Error example: non existing edges and unvisited vertices to visit.



Mathematics 2020, 8, 1595 16 of 20

Figure 14 shows another type of error, which cannot be appreciated visually only. The track
accomplishes all of the restrictions of the problem, but it is suboptimal. In the log, we can observe that
the solution that is given by the student is longer than the optimal one as well as a warning message
(boxed in red).

Figure 14. Error example: Track too long.

Finally, once the students have developed all the techniques, they have to analyse and compare
them from the point of view of their computational complexity. This part of the project allows for
them to connect the knowledge acquired during the project on the algorithmic techniques with the
needs of real world and, at the same time, act as a validation process of their methods and results.
Additionally, they need to have some clear concepts concerning to basic properties of graphs and
computational complexity.

For the analysis, students have to pose different graphs, varying edges, vertices, and visits, and
explore algorithms behaviour according to the execution time results. However, these times can be
different in different executions on graphs with the same input parameters. For example, Figure 15
shows an example of two different graphs with the same initial constrains (10 vertices, 20 edges, and
five visits) with different runtimes and the GbPExplorer allows for them to realize it.

One class session is dedicated to discuss how to assess the computational performance of
an algorithm and compare among several ones and, at the end, they deliver a report with their
analysis results.

To study the performance of the algorithmic techniques, the students can use the GbPExplorer in
two main ways: they can run the graphical interface as many times as they need and write down, in a
spreadsheet, the execution times that the program outputs or they can modify the base code to obtain
several solutions with different constrains (number of vertices, edges, and visits) at the same time.



Mathematics 2020, 8, 1595 17 of 20

Figure 15. Example of two situations with the same graph parameters and different runtimes.

Figure 16 shows two plots from a student’s report used for justifying his/her answer to the
following question:

“How does the runtime of algorithms increases as the number of vertices increase?
Which computational complexity have each algorithmic technique?”

On the left hand, we can observe a line for each algorithmic technique while on the right hand,
there is one less. The student has observed that the grey line on the left might hinder the real
visualization of the behaviour of the other plots, so that on the right hand (s)he has been suppressed.

Figure 16. Example of two plots for answering how the execution time increases as vertices increase.

In this way, teachers can focus on proposing different types of questions to students. For example,
they can discuss what happens with execution times on backtracking algorithms when the initial
constrains are changed, or which heuristic in branch and bound could be better, the ones that prioritize
branching or the ones that prioritize optimizing data structures concerning vertices to visit.

7. Conclusions

Teaching computer science is a challenge for university teachers. The content of university
programmes contains a large number of complex methods that have required great ideas and/or
long development, and the students are expected to understand, master, and apply them in a short
period of time. In recent years, attention has been redirected towards promoting the development
of students’ skills, not only to learn content in a synthetic way, but to be able to use it effectively
in real environments. To this end, in the case of analysis and design of algorithms, PBL appears as
an educational framework in which to work with modelling. PBL requires that open, sometimes
ill-defined, situations be offered to students to promote the development of skills, the interconnection



Mathematics 2020, 8, 1595 18 of 20

of prior knowledge with new learning, and work in group. From the point of view of teachers, it is
beneficial to have proposals for specific activities that include all of the complexity of the process to be
worked on, while focusing on specific aspects at each step.

In this paper, we have presented a sequence of activities based on the theoretical framework of
mathematical modelling that allows us to identify the key processes to be proposed to students. In this
sense, we assume that university teachers know in detail the procedure to solve the problem. However,
we claim that it is also necessary for them to base their teaching proposals on how their students will
be able to understand each of the phases of the solution.

Additionally, we have shown the design of a software tool that supports the learning objectives of
the sequence of activities. We claim that it is important that the tools that support computer-based
learning contain various elements: (1) they must allow for a visualization that can refer to the real
problem to be studied; (2) they must allow different types of exploration, from simple cases that could
be solved on paper to the most complex ones; and, (3) they must integrate a set of automatic testers
that provide detailed information to the students when they generate the codification of their methods.
It is important to emphasize that those variables included in the application to evaluate methods will
be the ones that students will end up valuing as useful.

GbPExplorer and the activities shown in this article can be easily adapted to work with other
optimization problems that can be modelled using graphs. Even more, we would like to emphasize
that the theoretical framework supporting the sequence of activities and the characteristics of the
software tool can be adapted to a very wide range of work proposals in other STEM fields. In any STEM
discipline, working in a guided way on the resolution of a complex problem, comparing techniques and
methods for its resolution, is key to sustain competence in decision making. However, we understand
that the transfer of the framework should be properly adapted to each content or discipline to ensure
the achievement of didactic objectives, established in each case.

In the last five courses we have designed and refined the project activities and the layout of
the GbPExplorer and we have been able to observe two didactic benefits. On the one hand, it has
allowed us to focus on subject competences, rather than pure contents. This enables a methodological
change, not only in the classroom, but also in the evaluation. As a consequence, students focus
their efforts on developing their skills, beyond the expertise of a set of concrete techniques. In this
fashion, students develop a more sophisticated level of self-awareness and explicitness about resolution
strategies associated with mathematical modelling. On the other hand, this intervention also has
an impact on the number of students making good progress, reducing the percentage of students
who drop out of the course. With the use of GbPExplorer students now have specific tools that allow
them to establish connections between theoretical content and the way in which they are used in the
real world, as well as having support that is more in line with their learning needs. This aspect is
relevant beyond the subjects presented in this paper as it allows the establishment of a way of engaging
working for students and customizable to other subjects. Consequently, a working dynamic could be
created to address the STEM curricula, helping to overcome some of the difficulties identified [2].

Author Contributions: Conceptualization, A.H.-S., L.A. and F.J.S.; methodology, A.H.-S., L.A. and F.J.S.; software,
F.J.S.; validation, A.H., L.A. and F.J.S.; formal analysis, A.H.-S., L.A. and F.J.S.; investigation, A.H.-S., L.A. and F.J.S.;
resources, A.H.-S. and F.J.S.; data curation, A.H.-S., L.A. and F.J.S.; writing—original draft preparation, A.H.-S.
and L.A.; writing—review and editing, A.H.-S., L.A. and F.J.S.; supervision, A.H.-S. All authors have read and
agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.



Mathematics 2020, 8, 1595 19 of 20

References

1. Friedman, T.L. The World is Flat: A Brief History of the Twenty-First Century; Allen Lane: London, UK, 2005.
2. Thomas, B.; Watters, J.J. Perspectives on Australian, Indian and Malaysian approaches to STEM education.

Int. J. Educ. Dev. 2015, 45, 42–53. [CrossRef]
3. Martín-Páez, T.; Aguilera, D.; Perales-Palacios, F.J.; Vílchez-González, J.M. What are we talking about when

we talk about STEM education? A review of literature. Sci. Educ. 2019, 103, 799–822. [CrossRef]
4. Maass, K.; Geiger, V.; Ariza, M.R.; Goos, M. The role of mathematics in interdisciplinary STEM education.

ZDM 2019, 51, 869–884. [CrossRef]
5. English, L.D. Advancing mathematics education research within a STEM environment. In Research in

Mathematics Education in Australasia 2012–2015; Springer: Singapore, 2016; pp. 353–371.
6. Grover, S.; Pea, R. Computational thinking in K–12: A review of the state of the field. Educ. Res. 2013,

42, 38–43. [CrossRef]
7. Fessakis, G.; Gouli, E.; Mavroudi, E. Problem solving by 5–6 years old kindergarten children in a computer

programming environment: A case study. Comput. Educ. 2013, 63, 87–97. [CrossRef]
8. O’Grady, M.J. Practical problem-based learning in computing education. ACM Trans. Comput. Educ. 2012,

12, 10. [CrossRef]
9. Krajcik, J.S.; Blumenfeld, P.C. Project-based learning. In The Cambridge Handbook of the Learning Sciences;

Sawyer, R.K., Ed.; Cambridge University Press: Cambridge, UK, 2006.
10. Edelson, D.C.; Gordin, D.N.; Pea, R.D. Addressing the challenges of inquiry-based learning through

technology and curriculum design. J. Learn. Sci. 1999, 8, 391–450. [CrossRef]
11. Vorhölter, K.; Kaiser, G.; Borromeo Ferri, R. Modelling in mathematics classroom instruction: An innovative

approach for transforming mathematics education. In Transforming Mathematics Instruction; Springer:
Dordrecht, The Netherlands, 2014; pp. 21–36.

12. Lesh, R.; Harel, G. Problem solving, modeling, and local conceptual development. Math. Think. Learn. 1999,
5, 157–189. [CrossRef]

13. Borromeo Ferri, R. Theoretical and empirical differentiations of phases in the modelling process. ZDM 2006,
38, 86–95. [CrossRef]

14. Blum, W.; Leiss, D. How do students and teachers deal with modelling problems? In Mathematical Modelling
(ICTMA12): Education, Engineering and Economics; Haines, C., Galbraith, P., Blum, W., Khan, S., Eds.; Horwood
Publishing: Chichester, UK, 2007; pp. 222–231.

15. Blum, W.; Ferri, R.B. Mathematical modelling: Can it be taught and learnt? J. Math. Model. Appl. 2009,
1, 45–58.

16. Julie, C.; Mudaly, V. Mathematical modelling of social issues in school mathematics in South Africa.
In Modelling and Applications in Mathematics Education: The 14th ICMI Study; Blum, W., Galbraith, P.,
Henn, H.W., Niss, M., Eds.; Springer: Dordrecht, The Netherlands, 2007; pp. 503–510.

17. Gravemeijer, K.; Doorman, M. Context problems in realistic mathematics education: A calculus course as an
example. Educ. Stud. Math. 1999, 39, 111–129. [CrossRef]

18. Albarracín, L.; Gorgorió, N. On the role of inconceivable magnitude estimation problems to improve critical
thinking. In Educational Paths to Mathematics; Springer: Dordrecht, The Netherlands, 2015; pp. 263–277.

19. Borrego, M.; Bernhard, J. The emergence of engineering education research as an internationally connected
field of inquiry. J. Eng. Educ. 2011, 100, 14–47. [CrossRef]

20. Litzinger, T.; Lattuca, L.R.; Hadgraft, R.; Newstetter, W. Engineering education and the development of
expertise. J. Eng. Educ. 2011, 100, 123–150. [CrossRef]

21. Felder, R.M. Hang in there! Dealing with student resistance to learner-centered teaching. Chem. Eng. Educ.
2011, 45, 131–132.

22. Wilson, M.; Gerber, L.E. How generational theory can improve teaching: Strategies for working with the
millennials. Curr. Teach. Learn. 2008, 1, 29–44.

23. Crouch, C.H.; Mazur, E. Peer instruction: Ten years of experience and results. Am. J. Phys. 2001, 69, 970–977.
[CrossRef]

24. Deslauriers, L.; Schelew, E.; Wieman, C. Improved learning in a large-enrollment physics class. Science 2011,
332, 862–864. [CrossRef]

http://dx.doi.org/10.1016/j.ijedudev.2015.08.002
http://dx.doi.org/10.1002/sce.21522
http://dx.doi.org/10.1007/s11858-019-01100-5
http://dx.doi.org/10.3102/0013189X12463051
http://dx.doi.org/10.1016/j.compedu.2012.11.016
http://dx.doi.org/10.1145/2275597.2275599
http://dx.doi.org/
http://dx.doi.org/10.1080/10986065.2003.9679998
http://dx.doi.org/10.1007/BF02655883
http://dx.doi.org/10.1023/A:1003749919816
http://dx.doi.org/10.1002/j.2168-9830.2011.tb00003.x
http://dx.doi.org/10.1002/j.2168-9830.2011.tb00006.x
http://dx.doi.org/10.1119/1.1374249
http://dx.doi.org/10.1126/science.1201783


Mathematics 2020, 8, 1595 20 of 20

25. Freeman, S.; Eddy, S.L.; McDonough, M.; Smith, M.K.; Okoroafor, N.; Jordt, H.; Wenderoth, M.P.
Active learning increases student performance in science, engineering, and mathematics. Proc. Natl.
Acad. Sci. USA 2014, 111, 8410–8415. [CrossRef]

26. Albanese, M.A.; Mitchell, S. Problem-based learning: A review of literature on its outcomes and
implementation issues. Acad. Med. 1993, 68, 52–52. [CrossRef]

27. Barrows, H.S. A taxonomy of problem-based learning methods. Med. Educ. 1986, 20, 481–486. [CrossRef]
28. Friesen, S.; Scott, D. Inquiry-Based Learning: A Review of the Research Literature; Alberta Ministry of Education:

Edmonton, AB, Canada, 2013; pp. 1–32.
29. Boss, S.; Krauss, J. Reinventing Project-Based Learning: Your Field Guide to Real-World Projects in the Digital Age;

International Society for Technology in Education: Washington, DC, USA, 2014.
30. Barrows, H.S.; Tamblyn, R.M. Problem-Based Learning: An Approach to Medical Education; Springer: New York,

NY, USA, 1980.
31. De Graaf, E.; Kolmos, A. Characteristics of problem-based learning. Int. J. Eng. Educ. 2003, 19, 657–662.
32. Perrenet, J.; Bouhuijs, P.; Smits, J. The suitability of problem-based learning for engineering education:

Theory and practice. Teach. High. Educ. 2000, 5, 345–358. [CrossRef]
33. Robins, A.; Rountree, J.; Rountree, N. Learning and teaching programming: A review and discussion.

Comput. Sci. Educ. 2003, 13, 137–172. [CrossRef]
34. Lahtinen, E.; Ala-Mutka, K.; Järvinen, H.M. A study of the difficulties of novice programmers.

ACM Sigcse Bull. 2005, 37, 14–18. [CrossRef]
35. Barell, J.F. Problem-Based Learning: An Inquiry Approach; Corwin Press: Thousand Oaks, CA, USA, 2006.
36. Marti, E.; Gurguí, A.; Gil, D.; Hernández-Sabaté, A.; Rocarías, J.; Poveda, F. PBL On Line: A proposal for

the organization, part-time monitoring and assessment of PBL group activities. J. Technol. Sci. Educ. 2015,
5, 87–96. [CrossRef]

37. Bellmore, M.; Nemhauser, G.L. The traveling salesman problem: A survey. Oper. Res. 1968, 16, 538–558.
[CrossRef]

38. Van den Akker, J.; Gravemeijer, K.; McKenney, S.; Nieveen, N. Educational Design Research; Routledge: New
York, NY, USA, 2006.

39. Martí, E.; Gil, D.; Gurguí, A.; Hernández-Sabaté, A.; Rocarías, J.; Poveda, F. A Project Based Learning
organization in deliverables, assessment and on line tracking groups using LMS and on line tools, based
in a nine years PBL experience. In Global Research Community: Collaboration and Developments; Aalborg
Universitetsforlag: Aalborg, Denmark, 2015; pp. 94–105.

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1073/pnas.1319030111
http://dx.doi.org/10.1097/00001888-199301000-00012
http://dx.doi.org/10.1111/j.1365-2923.1986.tb01386.x
http://dx.doi.org/10.1080/713699144
http://dx.doi.org/10.1076/csed.13.2.137.14200
http://dx.doi.org/10.1145/1151954.1067453
http://dx.doi.org/10.3926/jotse.145
http://dx.doi.org/10.1287/opre.16.3.538
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Theoretical Framework: Modelling in Education as Problem Based Learning Approach
	Educational Context
	Project Design Methodology
	The Graph-Based Problem Explorer
	C++ Project
	Graphical Interface
	Testers

	Project Sequence Development
	Modelling the Problem
	Moving to the Mathematical Model: GbPExplorer
	Creating Solutions and Comparing Methods

	Conclusions
	References

