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Abstract: In investment selection problems, the existence of contingency and uncertainty may result
in the loss of attribute information. Then, how to make proper investment decision-making will be a
tricky proposition. In this work, a multiattribute group decision making (MAGDM) method based
on the generalized probabilistic hesitant fuzzy Bonferroni mean (GPHFBM) operator is constructed,
which enables decision-makers to select the proper parameters in decision-making process. Firstly,
the GPHFBM operator is proposed by combining the Bonferroni mean operator and Archimedean
norm. Secondly, five excellent properties of the GPHFBM operator are discussed in detail. In view of
applications, we further develop some special aggregation operators for GPHFBM with the various
values of parameters b, d and additive operators g(t). Finally, we propose a probabilistic hesitant fuzzy
MAGDM method based on the GPHFBM operator to analyze the aggregated information. A case
study of the investment of social insurance funds is given to depict the validity and reasonability of
the proposed method. Ultimately, the company X4 is selected as the investment company with the
best comprehensive indicator.

Keywords: probabilistic hesitant fuzzy set; Bonferroni mean operator; Archimedean t-norm and s-norm;
generalized probabilistic hesitant fuzzy Bonferroni mean operator; investment selection

1. Introduction

Ageing of the population [1] is a prominent trend in social development and a reflec-
tion of the progress of human civilization. Population ageing has a profound impact on
all areas of economic operation, social construction, social culture and even the overall
strength and international competitiveness of the country, with both challenges [2] and
opportunities [3]. Social insurance funds (SIFs) are mainly derived from social insurance
premiums and the return on their investment, as well as appropriate inputs from the
National Treasury. SIFs are established on the basis of the social security system and can
be invested to obtain certain returns. SIFs generally take the form of social insurance
funds, social welfare funds, social assistance funds etc., of which social insurance funds are
the most important form of capital operation, and the funds can be used for investment,
stocks and bonds [4]. Social insurance funds involve pensions, unemployment, medical
insurance and so on. The investment of social insurance funds has a certain degree of
selectivity [5]. Therefore, how to improve the return on investment is worthy of attention
for social insurance fund managers.

Fund investment involves important financial decision-making that directly affects
the development of the fund, and can be seen as a MAGDM problem. The development
of decision-making theory has driven social and economic progress while facing some
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irreversible problems, such as the increasingly complex decision-making environment,
the fuzzy uncertainty of human cognition and so on [6–8]. With the complexity and uncer-
tainty of the real-world, it is challenging to describe practical decision-making problems
with precise and clear numbers. It is worth noting that the environment of investment is
full of uncertainty which is an important factor in MAGDM.

To overcome the issues in describing practical decision-making problems, Zadeh [9]
proposed the theory of fuzzy sets (FSs). It has effectively solved some decision-making
problems with fuzzy information and attracted many scholars’ attention and extended
research on the problem of fuzzy decision-making. As an extension of FSs, Atanassov
in [10] presented intuitionistic fuzzy sets (IFSs). Furthermore, Torra in [11,12] proposed
hesitant fuzzy sets (HFSs), which described membership degree with several real values to
express decision information. Some researchers also applied automatic techniques to the
construction of fuzzy systems [13–15]. Although HFSs has some advantages in expressing
decision-making, they cannot be accurate in depicting the original decision information
and avoiding the loss of information.

In this regard, several researchers have taken the idea of probability into consideration
in the hesitant fuzzy environment, some of them focused on information aggregation.
For instance, some aggregation operators were presented by Zhang et al. [16], in which
the average and geometric operators of probabilistic hesitant fuzzy sets (PHFSs) were
shown. They deserve to be recognized but contain two flaws. One is that its operator
does not satisfy idempotency, the other is that its integration algorithm process is more
complicated. To solve this problem, Wu et al. [17] added the idea of an Archimedean
norm in the probabilistic hesitant fuzzy environment and further defined new operational
rules for probabilistic hesitant fuzzy elements. The Archimedean norm is an effective
aggregation tool, which makes the aggregation method simpler and more flexible. Two ag-
gregation operators, probabilistic hesitant fuzzy prioritized weighted average (PHFPWA)
and probabilistic hesitant fuzzy prioritized weighted geometric (PHFPWG), were applied
into an MADM problem by Li et al. [18]. Hao et al. [19] gave a definition of probabilistic
dual hesitant fuzzy set (PDHFS), and further developed an approach of information fusion
and visualization with some aggregation operators. Under the PDHFSs environment,
Garg and Kaur [20] proposed several weighted ordered weighted averaging and geometric
aggregation operators based on Einstein norm operation. Li et al. [21] introduced q-rung
probabilistic dual hesitant fuzzy sets (q-RPDHFSs) to effectively depict DMs’ complicated
evaluation information. Considering the importance of the correlation coefficient in data
analysis, Song et al. [22] introduced a couple of new correlation coefficient expressions to
measure the nexus between the PHFSs. Moreover, some of the researches have applied
probability to linguistic term sets [23,24] and preference relations [25,26].

However, the indicators used for decision making do not exist independently in the
investment process. None of the probabilistic hesitant fuzzy information aggregation oper-
ators described above take into account the situation that is often present in investment
decision-making problems, namely that there is usually some interconnection between the
decision-making information provided. During the process of information aggregation,
the Bonferroni mean (BM) proposed by Bonferroni [27] considers the interrelationship
between the input arguments, then some extended forms of BM are studied. Pamucar
et al. [28] designed a new normalized interval rough numbers weighted geometric BM (IRN-
WGBM) operator. Based on the Archimedean t-norm and s-norm (ATS-), Wang et al. [29]
developed two aggregation operators, hesitant Fermatean 2-tuple linguistic weighted
Bonferroni mean (A-HF2TLWBM) operator and the hesitant Fermatean 2-tuple linguistic
weighted geometric Bonferroni mean (A-HF2TLWGBM) operator, respectively. Combing
the IFSs and the Dempster-Shafer Theory (DST), Liu and Gao [30] proposed the intuitionis-
tic fuzzy power BM (IFPBMDST) operator, the intuitionistic fuzzy geometric power BM
(IFGPBMDST) operator. Liu et al. [31] proposed a novel GSS method by combining Quality
function deployment (QFD) with the partitioned BM (PBM) operator in the context of inter-
val type-2 fuzzy sets (IT2FSs). Yin et al. [32] united the PBM operator into the interval grey
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triangular fuzzy numbers to aggregate interval grey triangular fuzzy numbers partitioned
Bonferroni mean (IGTFPBM). Liang et al. [33] introduced the EBM into the interval-valued
Pythagorean fuzzy environment, based on which, interval-valued Pythagorean fuzzy EBM
(IVPFEBM) operator and its weighted form were developed. Moreover, some studies
integrated Dombi norms and BM to better express subjective preferences of decision mak-
ers [34–36]. Compared to Dombi norms, the Archimedean norms are the generalizations
of a lot of norms, such as Algebraic norms, Einstein norms, Hamacher norms and Frank
norms. Archimedean norms also can reflect the decision-makers preference when the g(t)
and f (t) are chosen as different functional forms. Therefore, Archimedean norms are more
generalizable and more promising for a wider range of applications.

From the above analysis, there is growing recognition that probability should also
be applied in fuzzy decision-making. Currently, some researchers have discussed BM
aggregation operators under different fuzzy environments, but the results under proba-
bilistic and hesitant fuzzy environments are still scarce. Zhu and Ma [37] developed the
integration of BM operators, but they did not consider the probability of decision-making.
In contrast, although Li and Chen [38] incorporated the idea of probability, the aggregation
operators they proposed could not depict the correlation between the indicators. In this
study, a new group decision-making method is presented by aggregating BM operators
under a probabilistic hesitant fuzzy environment, which has the following advantages: (1)
to better portray decision-making information; (2) to better express the correlation between
aggregated values and (3) to be more generalizable and more promising for a wider range
of applications.

The remainder of this paper is organized as follows. In Section 2, some fundamen-
tals, including probabilistic hesitant fuzzy set, Bonferroni mean and Archimedean norm,
are briefly reviewed. Section 3 defines the generalized probabilistic hesitant fuzzy Bonfer-
roni mean (GPHFBM), and five desirable properties of the GPHFBM are discussed. Section 4
introduces several special forms of the GPHFBM, which considers the difference both pa-
rameters b, d and g(t) respectively. Then, Section 5 develops the generalized probabilistic
hesitant fuzzy weighted Bonferroni mean (GPHFWBM) operator, and a group decision-
making model is constructed. Section 6 presents one illustrative example of investment,
and comparative analyses are implemented simultaneously on the proposed approach
and other existing methods. In the last part, conclusions and contents are summarized in
Section 7.

2. Preliminaries

This section briefly reviews some fundamentals, which includes PHFSs, BMs and
Archimedean T-norm and S-norm.

2.1. Probabilistic Hesitant Fuzzy Sets

Definition 1. [16] Suppose that X = {x1, x2, . . . , xm} is a given set, and the PHFSs is expressed
as follows:

P = { 〈xi, p(xi)〉|xi ∈ X} (1)

where p(xi) =
{
(γi, cγi )|γi ∈ p(xi), cγi ∈ [0, 1], ∑γi∈p(xi)

cγi = 1
}

is the probabilistic hesitant
fuzzy element (PHFE). γi denotes the possible membership degrees of the element x ∈ X, and cγi is
the probability associated with γi.

For the convenience of application and description, PHFE will be denoted as pi = p(xi),
and P is the set of all PHFE on X.

Example 1. A network distributor invites ten experts to evaluate the comprehensive conditions of a
supplier. The satisfaction of four experts was 0.9, that of two experts was 0.7, that of three experts
was 0.5, and that of the remaining one was 0.4. The above decision information can be expressed as
a hesitant fuzzy element (HFE), that is {0.9, 0.7, 0.5, 0.4}. Obviously, the HFEs can only represent
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all possible decision information, but ignore the importance of each decision information. The PHFEs
represent the above decision information as {(0.9, 0.4), (0.7, 0.3), (0.5, 0.2), (0.4, 0.1), }, which is
a comprehensive representation of all the evaluation information given by the decision maker and
the corresponding importance level.

In many practical applications, some decision-makers are unable to make assessments
with certain and accurate information, so the following notes are shown:

Note 1 The elements in PHFE are arranged in descending order, where γ
(k)
i indicates

the element corresponding to the k-th membership degree of γi.
Note 2 Let l1 and l2 be the numbers of elements in PHFEs pi1 and pi2, respectively.

If l1 6= l2, then make the length of them be equal through adding elements and the proba-
bility of new element is 0.

Note 3 For convenience, let the number of elements in PHFEs be all equal.

Definition 2. [16] Suppose that p =
{(

γ(k), c(k)
)∣∣∣k = 1, 2, . . . , l

}
is a PHFE, and the score

function of p is defined below:

∆(p) =
l

∑
k=1

γ(k)c(k) (2)

Definition 3. [16] Suppose that p =
{(

γ(k), c(k)
)∣∣∣k = 1, 2, . . . , l

}
is a PHFE, and its deviation

degree is defined below:

d(p) =
l

∑
k=1

(γ(k) − ∆(p))
2
c(k) (3)

Definition 4. [16] Suppose that there are two PHFEs pi =
{(

γi
(k), ci

(k)
)∣∣∣k = 1, 2, . . . , l, i = 1, 2

}
and the rules are provided to compare p1 and p2:

1. If ∆(p1) > ∆(p2), then p1 > p2.
2. If ∆(p1) = ∆(p2) and d(p1) > d(p2), then p1 < p2.
3. If ∆(p1) = ∆(p2) and d(p1) < d(p2), then p1 > p2.
4. If ∆(p1) = ∆(p2) and d(p1) = d(p2), then p1 = p2.

2.2. Archimedean T-Norm and S-Norm

Archimedean norm is a simple and effective integration tool, which can make the
aggregated method more selective and flexible.

Definition 5. [39] Let T-norm T(x, y) be continuous in the domain of definition [0, 1]× [0, 1],
and that for any x ∈ [0, 1], T(x, x) < x, then T(x, y) is an Archimedean T-norm.

Definition 6. [39] Let S-norm S(x, y) be continuous in the domain of definition [0, 1]× [0, 1],
and that for any x ∈ [0, 1], S(x, x) > x, then S(x, y) is an Archimedean S-norm.

For an additive operator g : [0, 1]→ [0,+∞] in strictly monotone decrease, the strict
Archimedean T-norm can be denoted as T(x, y) = g−1(g(x)+ g(y)), where g(1) = 0. In the
light of the principle of duality, we can obtain S(x, y) = f−1( f (x) + f (y)) which called
the strict Archimedean S-norm, where f (t) = g(1− t). Hence, f (t) is a strictly monotonic
increasing function, and f (1) = 1.

Generally, T(x, y) is a T-norm function, S(x, y) is a T-conorm function, g(t) and
f (t) are two functions, satisfying f (t) = g(1− t). For example, if g(t) = − log(t), then
f (t) = − log(1− t), g−1(t) = e−t, f−1(t) = 1− e−t.
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2.3. Generalized Probabilistic Hesitant Fuzzy Operation Rules

Definition 7. [17] Let p =
{(

γ(k), c(k)
)∣∣∣k = 1, 2, . . . , l

}
and

pi =
{(

γi
(k), ci

(k)
)∣∣∣k = 1, 2, . . . , l, i = 1, 2

}
be three PHFEs, then:

1. pc =
{(

1− γ(k), c(k)
)∣∣∣k = 1, 2, . . . , l

}
,

2. p1 ⊕ p2 =

{(
S
(

γ
(k)
1 , γ

(k)
2

)
, c(k)1 + c(k)2

)∣∣∣∣k = 1, 2, . . . , l
}

=

{(
f−1
(

f (γ(k)
1 ) + f (γ(k)

2 )
)

, c(k)1 + c(k)2

)∣∣∣∣k = 1, 2, . . . , l
}

,

3. p1 ⊗ p2 =

{(
T
(

γ
(k)
1 , γ

(k)
2

)
, c(k)1 + c(k)2

)∣∣∣∣k = 1, 2, . . . , l
}

=

{(
g−1

(
g(γ(k)

1 ) + g(γ(k)
2 )
)

, c(k)1 + c(k)2

)∣∣∣∣k = 1, 2, . . . , l
}

,

4. λp =
{(

f−1
(

λ f (γ(k))
)

, c(k)
)∣∣∣k = 1, 2, . . . , l

}
, λ > 0,

5. pλ =
{(

g−1
(

λg(γ(k))
)

, c(k)
)∣∣∣k = 1, 2, . . . , l

}
, λ > 0.

where the standardized probability is c(k)1 + c(k)2 =
c(k)1 +c(k)2

∑l
k=1 (c

(k)
1 +c(k)2 )

, k = 1, 2, · · · , l, and it satisfies

∑l
k=1

(
c(k)1 + c(k)2

)
= 1.

It’s not hard to prove that the above-mentioned operational rules for PHFEs satisfy
the following theorem.

Theorem 1. [17] Let p, p1andp2 be three PHFEs, then:

1. p1 ⊕ p2 = p2 ⊕ p1,
2. p1 ⊗ p2 = p2 ⊗ p1,
3. λ(p1 ⊕ p2) = λp1 ⊕ λp2, λ > 0,
4. (p1 ⊗ p2)

λ = p1
λ ⊗ p2

λ, λ > 0,
5. λ1 p⊕ λ2 p = (λ1 + λ2)p, λ1, λ2 > 0,
6. pλ1 ⊗ pλ2 = pλ1+λ2 , λ1, λ2 > 0.

Proof. Based on Definition 7, the above theorems can be proved by the law of exchange,
distribution, union and exponentiation. �

2.4. Bonferroni Mean Operator

In MAGDM, DMs should not only consider the importance of various attributes but
also take the interrelationship into account. As a useful aggregation operation, the Bonfer-
roni mean operator considers the interrelationship among arguments.

Definition 8. [27] Let b, d ≥ 0, and ai(i = 1, 2, . . . , n) be a set of non-negative numbers, then the
Bonferroni mean (BM) operator is shown as:

BMb,d =


1

n(n− 1)

n

∑
i, j = 1
i 6= j

ab
i ad

j



1
b+d

. (4)

Generally, the BM has the following properties:

1. BMb,d(0, 0, . . . , 0) = 0.
2. If ai = afor all i, then BMb,d(a, a, . . . , a) = a.
3. If ai ≥ bi for all i, then BMb,d(a1, a2, . . . , an) ≥ BMb,d(b1, b2, . . . , bn).
4. min(a1, a2, . . . , an) ≤ BMb,d(a1, a2, . . . , an) ≤ max(a1, a2, . . . , an).
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where b, d ≥ 0, and ai(i = 1, 2, . . . , n) be a set of non-negative numbers.

Several special cases of the BM discussed by Dyckhoff and Pedrycz [40] are introduced
as follows:

If d = 0, then

BMb,0(a1, a2, . . . , an) =


1

n(n− 1)

n

∑
i, j = 1
i 6= j

ab
i a0

j



1
b+0

=

(
1
n

n

∑
i=1

ab
i

) 1
b

. (5)

If d = 0 and b = 1, then Equation (4) reduces to the arithmetic mean

BM1,0(a1, a2, . . . , an) =
1
n

n

∑
i=1

ai. (6)

If d = 0andb = 2, then

BM2,0(a1, a2, . . . , an) =

(
1
n

n

∑
i=1

a2
i

) 1
2

. (7)

If d = 0 and b→ ∞ , then

lim
p→∞

BMb,0(a1, a2, . . . , an) = max
i
{ai}. (8)

If d = 0 and b→ 0 , then Equation (4) reduces to the geometric mean

lim
p→0

BMb,0(a1, a2, . . . , an) =

(
n

∏
i=1

ai

) 1
n

. (9)

If b = d = 1, then

BM1,1(a1, a2, . . . , an) =


1

n(n− 1)

n

∑
i, j = 1
i 6= j

aiaj



1
2

. (10)

3. Generalized Probabilistic Hesitant Fuzzy Bonferroni Mean Operator

To aggregate decision information while considering the intrinsic linkage between
indicators, the Generalized Probabilistic Hesitant Fuzzy Bonferroni Mean operator is
proposed and its related properties are investigated.

Definition 9. Suppose that there is a set of PHFEs pi(i = 1, 2, . . . , n), for any b > 0, d > 0,
the Generalized Probabilistic Hesitant Fuzzy Bonferroni Mean (GPHFBM) operator is defined
as follows:

GPHFBb,d(p1, p2, . . . , pn) =

 1
n(n− 1)

 n
⊕

i, j = 1
i 6= j

(
pb

i ⊗ pd
j

)



1
b+d

. (11)
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Theorem 2. Suppose that there are two parameters b and d (b > 0, d > 0), and pi(i = 1, 2, . . . , n)
is a set of PHFEs, then the aggregated value by using the GPHFBM is:

GPHFBb,d(p1, p2, . . . , pn) =
{(

g−1
(

1
b+d g

(
f−1
(

1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg
(

γ
(k)
i

)
+ dg

(
γ
(k)
j

))))))
,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

, (12)

where
n
∑

i=1
c(k)i =

n
∑

i=1
c(k)i /

l
∑

k=1

n
∑

i=1
c(k)i .

Proof. (1) By the Definition 3 and Theorem 1, we can get the following equations:
pb

i = g−1
(

bg
(

γ
(k)
i

))
, pd

j = g−1
(

dg
(

γ
(k)
j

))
and pb

i ⊗ pd
j = g−1

(
bg
(

γ
(k)
i

)
+ dg

(
γ
(k)
j

))

n
⊕

i, j = 1
i 6= j

(
pb

i ⊗ pd
j

)
= f−1


n

∑
i, j = 1
i 6= j

f
(

g−1
(

bg
(

γ
(k)
i

)
+ dg

(
γ
(k)
j

)))


by Definition 5, we have

1
n(n−1)

n
⊕

i, j = 1
i 6= j

(
pb

i ⊗ pd
j

)
= f−1

 1
n(n−1)


n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg
(

γ
(k)
i

)
+ dg

(
γ
(k)
j

)))



then 1
n(n−1)

 n
⊕

i, j = 1
i 6= j

(
pb

i ⊗ pd
j

)



1
b+d

= g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg
(

γ
(k)
i

)
+ dg

(
γ
(k)
j

)))




which completes the proof. �

(2) To prove the value aggregated by the GPHFBM is a PHFE, we have the following
discussions:

Since γ
(k)
i ∈ [0, 1], γ

(k)
j ∈ [0, 1], g(t) and g−1(t) are all strictly monotone decreasing

function. For all i, j = 1, 2, . . . , n, k = 1, 2, . . . , l, we have

g(1) ≤ g(γ(k)
i ) ≤ g(0)⇒ (b + d)g(1) ≤ bg(γ(k)

i ) + dg(γ(k)
j ) ≤ (b + d)g(0)

⇒ g−1((b + d)g(0)) ≤ g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
)
≤ g−1((b + d)g(1))

⇒
n
∑

i, j = 1
i 6= j

f
(

g−1((b + d)g(0))
)
≤

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))
≤

n
∑

i, j = 1
i 6= j

f
(

g−1((b + d)g(1))
)

⇒ n(n− 1) · f
(

g−1((b + d)g(0))
)
≤

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))
≤ n(n− 1) · f

(
g−1((b + d)g(1))

)

⇒ f
(

g−1((b + d)g(0))
)
≤ 1

n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))
≤ f

(
g−1((b + d)g(1))

)

Simultaneous action of function f−1(t) on both sides of the above inequalities, we know
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f−1( f
(

g−1((b + d)g(0))
))
≤ f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))
 ≤ f−1( f

(
g−1((b + d)g(1))

))

g−1((b + d)g(0)) ≤ f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))
 ≤ g−1((b + d)g(1))

1
b+d g

(
g−1((b + d)g(1))

)
≤ 1

b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))

 ≤ 1

b+d g
(

g−1((b + d)g(0))
)

g(1) ≤ 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))

 ≤ g(0)

g−1(g(0)) ≤ g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))


 ≤ g−1(g(1))

0 ≤ g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))


 ≤ 1

then, according to the expression of
n
∑

i=1
c(k)i , we know

n
∑

i=1
c(k)i ∈ [0, 1],

l
∑

k=1

n
∑

i=1
c(k)i = 1.

To sum up, the aggregated value with the GPHFBM is a PHFE, which completes
the proof.

In the follow-up part, let us discuss five properties of GPHFBM, i.e., monotonicity,
idempotency, boundness, commutativity and symmetry.

Property 1. (Monotonicity) Let pαi =
{(

γαi
(k), cαi

(k)
)∣∣∣k = 1, 2, . . . , l, i = 1, 2

}
and

pβi =
{(

γβi
(k), cβi

(k)
) ∣∣∣k = 1, l, i = 1, 2} be two sets of PHFEs. If γ

(k)
αi ≤ γ

(k)
βi , i = 1, 2, . . . , n

for any γ
(k)
αi ∈ pαi, γ

(k)
βi ∈ pβi and b > 0, d > 0, then we have

GPHFBb,d(pα1, pα2, . . . , pαn) ≤ GPHFBb,d(pβ1, pβ2, . . . , pβn
)
. (13)

Proof. By the proof of Theorem 2, we can know the GPHFBM is monotonically increasing.
When γ

(k)
αi ≤ γ

(k)
βi for all i = 1, 2, . . . , n and b > 0, d > 0, it follows that
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g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
αi ) + dg(γ(k)

αj )
))


 ≤ g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
βi ) + dg(γ(k)

βj )
))




i.e., GPHFBb,d(pα1, pα2, . . . , pαn) ≤ GPHFBb,d(pβ1, pβ2, . . . , pβn
)
., which completes

the proof. �

Property 2. (Idempotency) Let pi(i = 1, 2, . . . , n) be a set of PHFEs. If pi = p and b > 0, d > 0,
for any i = 1, 2, . . . , n, then we have

GPHFBb,d(p1, p2, . . . , pn) = p. (14)

Proof. Since p1 = p2 = . . . = pn = p =
{(

γ(k), c(k)
)∣∣∣k = 1, 2, . . . , l

}
, we have

g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)
i ) + dg(γ(k)

j )
))




= g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg(γ(k)) + dg(γ(k))
))




= g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(
(b + d)g(γ(k))

))




= g−1
(

1
b+d g

(
f−1
(

1
n(n−1) · n(n− 1) f

(
g−1

(
(b + d)g(γ(k))

)))))
= g−1

(
g(γ(k))

)
= γ(k).

Since
l

∑
k=1

c(k) = 1, l = 1, 2, . . . , n, we have

n

∑
j=1

c(k)j =
n

∑
j=1

c(k)j /
l

∑
k=1

n

∑
j=1

c(k)j =
n

∑
j=1

c(k)/
n

∑
j=1

l

∑
k=1

c(k) = nc(k)/
n

∑
j=1

1 =
nc(k)

n
= c(k). (15)

We complete the proof of Property 2. �

Property 3. (Boundedness) Let pi(i = 1, 2, . . . , n) be a set of PHFEs, and b > 0, d > 0. If

p− =

{(
min

i
γ
(k)
i , min

i
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

and p+ =

{(
max

i
γ
(k)
i , max

i
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

,

then we have
p− ≤ GPHFBb,d(h1, h2, . . . , hn) ≤ p+ (16)

Proof. According to Property 1, we get p− ≤ GPHFBb,d(h1, h2, . . . , hn) ≤ p+, which
finishes the proof of the property. �

Property 4. (Commutativity) Let pi(i = 1, 2, . . . , n) be a set of PHFEs, b > 0, d > 0 and( .
p1,

.
p2, . . . ,

.
pn
)

be any permutation (p1, p2, . . . , pn), then

GPHFBb,d(p1, p2, . . . , pn) = GPHFBb,d( .
p1,

.
p2, . . . ,

.
pn
)
. (17)
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Property 5. (Symmetry) Let pi(i = 1, 2, . . . , n) be a set of PHFEs and b > 0, d > 0, then

GPHFBb,d(p1, p2, . . . , pn) = GPHFBd,b(p1, p2, . . . , pn). (18)

4. Some Special GPHFBM Operators

Considering the difference between parameters and additive operators, and several
special forms will be studied in this part.

4.1. Different Combinations of Parameter Values b, d

Case 1. If d→ 0 , the GPHFBM operator is the generalized probabilistic hesitant fuzzy
mean (GPHFM) operator:

GPHFBb,d(p1, p2, . . . , pn)

= lim
d→0

 1
n(n−1)

 n
⊕

i, j = 1
i 6= j

(
pb

i ⊗ pd
j

)



1
b+d

=

 1
n

n
⊕

i, j = 1
i 6= j

pb
i


1
b

=



g−1

 1
b g

 f−1

 1
n

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg
(

γ
(k)
i

)))


 ,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

.

(19)

Case 2. If b = 1 and d→ 0 , the GPHFBM operator degenerates to the probabilistic
hesitant fuzzy mean (PHFM) operator:

GPHFB1,0(p1, p2, . . . , pn) =
1
n

n
⊕

i=1
pi =

{(
f−1
(

1
n

n
∑

i=1
f
((

γ
(k)
i

)))
,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

. (20)

Case 3. If b = 2 and d→ 0 , we get the generalized probabilistic hesitant fuzzy square
mean (GPHFSM) operator:

GPHFB2,0(p1, p2, . . . , pn) =

(
1
n

n
⊕

i=1
p2

i

) 1
2
=



g−1

 1
2 g

 f−1

 1
n

n
∑

i, j = 1
i 6= j

f
(

g−1
(

2g
(

γ
(k)
i

)))


,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

. (21)

Case 4. If b→ ∞ and d→ 0 , the probabilistic hesitant fuzzy maximum mean
(PHFMM) operator is:

GPHFBb,d(p1, p2, . . . , pn) = lim
b→∞,d→0

 1
n(n− 1)

 n
⊕

i, j = 1
i 6= j

(
pb

i ⊗ pd
j

)



1
b+d

= Max
i

(p1, p2, . . . , pn). (22)

Case 5. If b = d = 1, the generalized probabilistic hesitant fuzzy interactive square
mean (GPHFISM) operator is:
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GPHFBb,d(p1, p2, . . . , pn) =

 1
n(n−1)

 n
⊕

i, j = 1
i 6= j

(
pi ⊗ pj

)



1
2

=



g−1

 1
2 g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

g
(

γ
(k)
i

)
+ g
(

γ
(k)
j

)))


 ,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

.

(23)

4.2. Additive Operators g(t) with Different Functions
(1) When g(t) = − ln(t), the GPHFBM operator degenerates to the probabilistic hesitant fuzzy Bonferroni mean

(PHFBM) operator:

PHFBb,d(p1, p2, . . . , pn) =




1−

n
∏

i, j = 1
i 6= j

(
1−

(
γ
(k)
i

)b(
γ
(k)
j

)d
) 1

n(n−1)


1

b+d

,
n
∑

i=1
c(k)i



∣∣∣∣∣∣∣∣∣∣∣
k = 1, 2, . . . , l


. (24)

(2) When g(t) = ln(2− t/t), the GPHFBM operator is the probabilistic hesitant fuzzy Einstein Bonferroni mean
(PHFEBM) operator:

PHFEBb,d(p1, p2, . . . , pn) =


 2

(
P(γ(k)

i ,γ(k)
j )−Q(γ

(k)
i ,γ(k)

j )
) 1

b+d(
P(γ(k)

i ,γ(k)
j )+3Q(γ

(k)
i ,γ(k)

j )
) 1

b+d −
(

P(γ(k)
i ,γ(k)

j )−Q(γ
(k)
i ,γ(k)

j )
) 1

b+q
,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

. (25)

where

P(γ(k)
i , γ

(k)
j ) =

n
∏

i, j = 1
i 6= j

((
2− γ

(k)
i

)b(
2− γ

(k)
j

)d
+ 3
(

γ
(k)
i

)b(
γ
(k)
j

)d
) 1

n(n−1)
,

Q(γ
(k)
i , γ

(k)
j ) =

n
∏

i, j = 1
i 6= j

((
2− γ

(k)
i

)b(
2− γ

(k)
j

)d
−
(

γ
(k)
i

)b(
γ
(k)
j

)d
) 1

n(n−1)

Example 2. Suppose p1 = {(0.1, 0.2)},p2 = {(0.2, 0.3), (0.4, 0.2)}, p3 = {(0.3, 0.3)} and
g(t) = − ln(t) are three PHFEs. We have:

p1 ⊗ p2 = {(0.02, 0.25), (0.04, 0.1)} = p2 ⊗ p1,
p1 ⊗ p3 = {(0.03, 0.25), (0.03, 0)} = p3 ⊗ p1,
p2 ⊗ p3 = {(0.06, 0.3), (0.12, 0.1)} = p2 ⊗ p3.

Based on Equations (11) and (12), we get

PHFB1,1(p1, p2, p3) = {(0.1918, 0.2667), (0.2534, 0.0667)},
PHFB2,2(p1, p2, p3) = {(0.2, 0.2667), (0.2748, 0.0667)},

PHFB1,0(p1, p2, p3) = {(0.2042, 0.2667), (0.2770, 0.0667)} = PHFB0,1(p1, p2, p3),
PHFB1,6(p1, p2, p3) = {(0.2360, 0.2667), (0.3187, 0.0667)} = PHFB6,1(p1, p2, p3),
PHFB2,5(p1, p2, p3) = {(0.2478, 0.2667), (0.2763, 0.0667)} = PHFB5,2(p1, p2, p3).
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Then, the corresponding score values can be obtained by the score function in Equation (2).

∆(PHFB1,1) = 0.0681, ∆(PHFB2,2) = 0.0717,
∆(PHFB1,0) = 0.0729 = ∆(PHFB0,1),
∆(PHFB1,6) = 0.0842 = ∆(PHFB6,1),
∆(PHFB2,5) = 0.0845 = ∆(PHFB5,2).

The score values changed with the variety of the parameters bandd are shown in
Figures 1–3.

Figure 1. Scores of the probabilistic hesitant fuzzy Bonferroni mean (PHFBM) varying with parame-
ters b and d (b, d ∈ [1, 10]).

Figure 2. Scores of the PHFBM (d = 0, b ∈ [1, 10]).

Figure 3. Scores of the PHFBM (b = 0, d ∈ [1, 10]).

5. The GPHFWBM and Its Approach in MAGDM
5.1. Generalized Probabilistic Hesitant Fuzzy Weighted Bonferroni Mean Operator

Considering the importance of attribute weights, we further introduce the generalized
probabilistic hesitant fuzzy weighted Bonferroni mean (GPHFWBM) operator.

Definition 10. Let pi(i = 1, 2, . . . , n) be a set of PHFEs, and w = (w1, w2, . . . , wn)
T be the

weight vector of them. For any b > 0, d > 0, the generalized probabilistic hesitant fuzzy weighted
Bonferroni mean (GPHFWBM) operator is defined as follows:

GPHFWBb,d(p1, p2, . . . , pn) =

 1
n(n− 1)

 n
⊕

i, j = 1
i 6= j

(
(wi pi)

b ⊗
(
wj pj

)d
)



1
b+d

. (26)
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where wi denotes the important degree of pi, and it satisfies that wi ≥ 0 and
n
∑

i=1
wi = 1.

Theorem 3. Let pi(i = 1, 2, . . . , n) be a set of PHFEs, and the associated weight vector be
w = (w1, w2, . . . , wn)

T , b > 0, d > 0. The value aggregated by the GPHFWBM operator is also a
PHFE, and is denoted as:

GPHFWBb,d(p1, p2, . . . , pn)

=



g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1
(

bg
(

f−1
(

wi f
(

γ
(k)
i

))
+dg

(
f−1
(

wj f
(

γ
(k)
j

))))))))
,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

. (27)

where wi denotes the important degree of pi, and it satisfies that wi ≥ 0 and
n
∑

i=1
wi = 1.

5.2. Model for Group Decision Making with the GPHFWBM Operator

Suppose that X = {x1, x2, . . . , xm} is a given set of alternatives, C = {C1, C2, . . . , Cn} is

attribute set with the weight vector w = (w1, w2, . . . , wn)
T satisfying wj ≥ 0 and

n
∑

j=1
wj = 1.

Given the purpose for a complete and accurate description of the decision-making informa-
tion provided by experts, we utilize the PHFE pij(i = 1, 2, . . . , m, j = 1, 2, . . . , n) to depict
the evaluation information under the attributes xi of the alternatives Cj, and a probabilistic
hesitant fuzzy decision matrix P = (pij)m×n is constructed.

Generally, there are cost attributes and benefit attributes in a MAGDM problem. For
the decision matrix P = (pij)m×n, we have

p̃ij =

{
pij, Cjisbenefittype

pc
ij, Cjiscos ttype , i = 1, 2, . . . , m, j = 1, 2, . . . , n.

Next, we further present an approach for MAGDM, which comprises the steps
listed below.

Step 1. According to the decision-making evaluation information given by the experts,
we construct the probabilistic hesitant fuzzy Bonferroni mean decision matrix P = (pij)m×n

Step 2. Standardize decision matrix P = (pij)m×n into matrix P̃ = ( p̃ij)m×n.

Step 3. Based on the standardized decision matrix P̃ = ( p̃ij)m×n, we aggregate the
comprehensive attribute information p̃i(i = 1, 2, . . . , m) of each alternative xi(i = 1, 2, . . . , m)
by using the GPHFWBM operator.

Step 4. By the Equation (2) calculate the score function values ∆( p̃i).
Step 5. Rank all the alternatives by ∆( p̃i), and the optimal comprehensive performance

alternative is selected.

6. Application of Social Insurance Fund Investment

In this section, the proposed DM method is applied to solve the investment of SIFs
and compared and analyzed with existing methods.

6.1. Illstrative Example

At present, with the continuous improvement of the social security system covering
urban and rural areas in China, the accumulation of social insurance funds is increasing
rapidly and the methods of bank deposits and the purchase of government bonds provided
for in the current policy can no longer meet the need to preserve and increase the value of
the funds. As China’s economic development enters a new normal, the population base is
large, and the pace of ageing is rapid. The social insurance fund is an important tool for
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safeguarding the basic life of the aging population, maintaining social stability and promot-
ing economic development, but is also an important issue related to national livelihood.
China’s social insurance funds have such problems as small total volume, slow growth and
large costs, and optimizing investment in basic pensions is of great importance.

It is assumed that the Fund Investment Department of the National Council of Social
Security Funds needs to invest part of its capital in the market to increase its earnings in
order to maintain the sustainable growth of the fund. Through the preliminary market
research and technical screening conducted by relevant institutions, the following five
companies which can be invested are initially identified as Xi(i = 1, 2, 3, 4, 5). The following
five aspects Ci(i = 1, 2, 3, 4, 5) should be considered in investment, with the weight vector
w = (0.25, 0.3, 0.1, 0.15, 0.2)T .

1. Financial status. Finances are an effective guarantee for the normal operation of an en-
terprise. They consist mainly of the inventory turnover status, financial management
rationality, asset-liability ratio, current asset-liability ratio and so on.

2. Production status. The capacity of production and supplying raw materials de-
termines an enterprise’s construction and operation ability, and also determine its
sustainable development ability.

3. Management capacity. An enterprise’s management mechanism and corporate culture
determines its social influence, which affects the development of the enterprise in
the future. Management capacity mainly includes enterprise mechanism system,
organizational system rationality, advancement, corporate culture, and restraint and
incentive mechanisms and so on.

4. Technology. Advanced technology not only can enhance the development potential
of an enterprise, but also can safeguard the sustainable development of it. Technical
factors include enterprise research and development conditions, follow-up research
and development capabilities, emphasis on research and development personnel, etc.

5. Market. Market is a very important factor to consider in investment, which directly
determines the efficiency of the investment return and the solution of the exit problem
of the social security fund. Market factors include the evaluation of a company’s
reputation, product competitiveness, market channels, market strategy, etc.

Through a series of preliminary work, the five investment companies finally selected
met the above five criteria. Therefore, three experts from finance, insurance, and social
security were invited to make the final score and decision on the five companies initially
screened. The weight vector of experts was η = (0.4, 0.4, 0.2)T . Based on the above three
relevant evaluation matrices (Tables 1–3), the decision-making steps were as follows.

Table 1. Evaluation values given by financial expert.

C1 C2 C3 C4 C5

X1

{(0.60, 0.25),
(0.70, 0.50),
(0.80, 0.25)}

{(0.50, 0.60),
(0.60, 0.40)}

{(0.60, 0.80),
(0.70, 0.20)}

{(0.30, 0.40),
(0.40, 0.60)}

{(0.60, 0.30),
(0.70, 0.30),
(0.80, 0.40)}

X2
{(0.50, 0.50),
(0.60, 0.50)}

{(0.40, 0.30),
(0.50, 0.30),
(0.60, 0.40)}

{(0.50, 0.20),
(0.60, 0.30),
(0.70, 0.50)}

{(0.60, 0.60),
(0.70, 0.40) }

{(0.70, 0.50),
(0.80, 0.50)}

X3
{(0.70, 0.50),
(0.80, 0.50)}

{(0.30, 0.20),
(0.40, 0.40),
(0.50, 0.40)}

{(0.50, 0.20),
(0.60, 0.80)}

{(0.50, 0.40),
(0.60, 0.60)}

{(0.60, 0.30),
(0.70, 0.70)}

X4

{(0.80, 0.50),
(0.85, 0.30),
(0.90, 0.20)}

{(0.70, 0.60),
(0.80, 0.20)}

{(0.60, 0.40),
(0.70, 0.30),
(0.80, 0.30)}

{(0.50, 0.50),
(0.60, 0.50)}

{(0.70, 0.70),
(0.80, 0.30)}

X5
{(0.65, 0.50),
(0.75, 0.50)}

{(0.50, 0.50),
(0.60, 0.50)}

{(0.70, 0.30),
(0.80, 0.70)}

{(0.50, 0.30),
(0.60, 0.30),
(0.70, 0.40)}

{(0.70, 0.30),
(0.80, 0.30),
(0.90, 0.40)}
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Table 2. Evaluation values given by insurance expert.

C1 C2 C3 C4 C5

X1
{(0.50, 0.50),
(0.70, 0.50)}

{(0.70, 0.70),
(0.80, 0.20),
(0.90, 0.10)}

{(0.40, 0.30),
(0.60, 0.70)}

{(0.50, 0.30),
(0.60, 0.40),
(0.70, 0.30)}

{(0.70, 0.40),
(0.80, 0.60)}

X2
{(0.50, 0.40),
(0.60, 0.60)}

{(0.60, 0.70),
(0.70, 0.30)}

{(0.60, 0.30),
(0.70, 0.40),
(0.80, 0.30)}

{(0.60, 0.50),
(0.70, 0.50)}

{(0.50, 0.70),
(0.60, 0.20),
(0.80, 0.10)}

X3

{(0.50, 0.20),
(0.60, 0.30),
(0.70, 0.50)}

{(0.70, 0.60),
(0.80, 0.40)}

{(0.30, 0.40),
(0.50, 0.60)}

{(0.60, 0.50),
(0.70, 0.20),
(0.80, 0.30)}

{(0.60, 0.50),
(0.70, 0.50)}

X4
{(0.70, 0.40),
(0.80, 0.60)}

{(0.60, 0.50),
(0.70, 0.10),
(0.80, 0.40)}

{(0.70, 0.50),
(0.80, 0.30),
(0.90, 0.20)}

{(0.50, 0.40),
(0.60, 0.60)}

{(0.70, 0.40),
(0.80, 0.60)}

X5

{(0.60, 0.50),
(0.70, 0.40),
(0.80, 0.10)}

{(0.60, 0.40),
(0.70, 0.60)}

{(0.40, 0.50),
(0.50, 0.50)}

{(0.70, 0.40),
(0.80, 0.60)}

{(0.60, 0.20),
(0.70, 0.40),
(0.80, 0.40)}

Table 3. Evaluation values given by social security expert.

C1 C2 C3 C4 C5

X1

{(0.60, 0.30),
(0.70, 0.50),
(0.80, 0.20)}

{(0.60, 0.40),
(0.70, 0.60) }

{(0.70, 0.60),
(0.80, 0.40) }

{(0.65, 0.40),
(0.70, 0.20),
(0.75, 0.40)}

{(0.60, 0.20),
(0.70, 0.80) }

X2
{(0.60, 0.50),
(0.70, 0.50) }

{(0.50, 0.30),
(0.60, 0.40),
(0.70, 0.30)}

{(0.50, 0.30),
(0.60, 0.70) }

{(0.60, 0.80),
(0.80, 0.20) }

{(0.55, 0.40),
(0.60, 0.30),
(0.65, 0.30)}

X3
{(0.50, 0.30),
(0.60, 0.70) }

{(0.50, 0.50),
(0.70, 0.50) }

{(0.60, 0.50),
(0.70, 0.30),
(0.80, 0.20)}

{(0.60, 0.20),
(0.70, 0.40),
(0.80, 0.40)}

{(0.70, 0.50),
(0.80, 0.50) }

X4

{(0.50, 0.30),
(0.60, 0.40),
(0.70, 0.30)}

{(0.50, 0.30),
(0.60, 0.30),
(0.70, 0.40)}

{(0.70, 0.40),
(0.80, 0.60) }

{(0.60, 0.40),
(0.70, 0.60) }

{(0.70, 0.60),
(0.80, 0.40) }

X5
{(0.70, 0.50),
(0.80, 0.50) }

{(0.60, 0.60),
(0.70, 0.40) }

{(0.50, 0.20),
(0.60, 0.40),
(0.70, 0.40)}

{(0.70, 0.80),
(0.80, 0.20) }

{(0.60, 0.30),
(0.70, 0.70) }

Step 1. Considering all the attributes are benefit type attributes and there is no
necessary for standardization.

Step 2. Based on the decision-making evaluation information given by experts from
Table 1, Table 2 andTable 3, the probabilistic hesitant fuzzy Bonferroni mean decision
matrix P = (pij)m×n is constructed by using the GPHFWBM (without losing generality, let
g(t) = − ln(t) and b = d = 1),

GPHFWB1,1(p1, p2, · · · , pn) =




1−

n
∏

i, j = 1
i 6= j

[(
1−

(
γ
(k)
i

)wi
)(

1−
(

γ
(k)
j

)wj
)] 1

n(n−1)


1
2
 ,

n
∑

i=1
c(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

(28)

which is shown in Table 4.
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Table 4. Probabilistic hesitant fuzzy Bonferroni mean decision matrix.

C1 C2 C3 C4 C5

X1

{(0.2356,
0.3500),
(0.3221,
0.5000),
(0.3737,
0.1500)}

{(0.2568,
0.5667),
(0.3239,
0.4000),
(0.3574,
0.0333)}

{(0.2325,
0.5667),
(0.3200,
0.4333),
(0.3200,
0.0000)}

{(0.1856,
0.3667),
(0.2325,
0.4000),
(0.2637,
0.2333)}

{(0.2793,
0.3000),
(0.3503,
0.5667),
(0.3806,
0.1333)}

X2

{(0.2159,
0.4667),
(0.2743,
0.5333),
(0.2743,
0.0000)}

{(0.2005,
0.4333),
(0.2568,
0.3333),
(0.2975,
0.2333)}

{(0.2205,
0.2667),
(0.2793,
0.4667),
(0.3315,
02667)}

{(0.2566,
0.6333),
(0.3450,
0.3667),
(0.3450,
0.0000)}

{(0.2487,
0.5333),
(0.3050,
0.3333),
(0.3708,
0.1333)}

X3

{(0.2411,
0.3333),
(0.3050,
0.5000),
(0.3315,
0.1667)}

{(0.1982,
0.4333),
(0.2769,
0.4333),
(0.2997,
0.1333)}

{(0.1780,
0.3667),
(0.2529,
0.5667),
(0.2742,
0.0667)}

{(0.2356,
0.3667),
(0.2975,
0.4000),
(0.3473,
0.2333)}

{(0.2743,
0.4333),
(0.3450,
0.5667),
(0.3450,
0.0000)}

X4

{(0.3154,
0.4000),
(0.3797,
0.4333),
(0.4198,
0.1667)}

{(0.2636,
0.4667),
(0.3315,
0.2000),
(0.3806,
0.2667)}

{(0.2975,
0.4333),
(0.3737,
0.4000),
(0.4437,
0.1667)}

{(0.2159,
0.4333),
(0.2743,
0.5667),
(0.2743,
0.0000)}

{(0.3221,
0.5667),
(0.4043,
0.4333),
(0.4043,
0.0000)}

X5

{(0.2856,
0.5000),
(0.3587,
0.4667),
(0.3883,
0.0333)}

{(0.2356,
0.5000),
(0.2975,
0.5000),
(0.2975,
0.0000)}

{(0.2195,
0.3333),
(0.2808,
0.5333),
(0.2997,
0.1333)}

{(0.2411,
0.5667),
(0.3473,
0.3000),
(0.3737,
0.1333)}

{(0.2793,
0.2667),
(0.3503,
0.4667),
(0.4198,
0.2667)}

Step 3. The comprehensive attribute values of five alternatives are aggregated with
the GPHFWBM operators. Without losing generality, let g(t) = − ln(t), parameters b and
d take the following four cases respectively: (1) b = d = 1, (2) b = d = 2, (3) b = 1, d→ 0
and (4) b = 2, d→ 0 , see Table 5 for details.

Table 5. Comprehensive attribute values of investment companies calculated by generalized proba-
bilistic hesitant fuzzy weighted Bonferroni mean (GPHFWBM) operator.

GPHFWBM1,1 GPHFWBM2,2 GPHFWBM1,0 GPHFWBM2,0

X1 0.0528 0.0711 0.0799 0.0565 0.0579 0.0859 0.0565 0.0372 0.0421 0.0414 0.0554 0.0629
X2 0.0490 0.0646 0.0726 0.0508 0.0668 0.0751 0.0508 0.0333 0.0375 0.0365 0.0479 0.0541
X3 0.0495 0.0671 0.0733 0.0525 0.0709 0.0770 0.0525 0.0349 0.0381 0.0379 0.0513 0.0556
X4 0.0635 0.0821 0.0910 0.0674 0.0868 0.0965 0.0674 0.0429 0.0478 0.0490 0.0630 0.0703
X5 0.0563 0.0754 0.0832 0.0597 0.0794 0.0876 0.0597 0.0392 0.0434 0.0434 0.0574 0.0633

Step 4. By the Equation (2) in Definition 2, the score values ∆(pi) are calculated,
respectively, as shown in Table 6.
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Table 6. Scores and ranking results of investment companies calculated by different operators.

GPHFWBM b,d X1 X2 X3 X4 X5 Ranking Results

b = d = 1 0.0214 0.0194 0.0204 0.0245 0.0227 X4 � X5 � X1 � X3 � X2
b = d = 2 0.0229 0.0201 0.0215 0.0260 0.0239 X4 � X5 � X1 � X3 � X2

b = 1, d→ 0 0.0112 0.0100 0.0106 0.0128 0.0118 X4 � X5 � X1 � X3 � X2
b = 2, d→ 0 0.0167 0.0145 0.0155 0.0189 0.0173 X4 � X5 � X1 � X3 � X2

b = 10, d→ 0 0.0273 0.0215 0.0236 0.0294 0.0268 X4 � X1 � X5 � X3 � X2

Step 5. Rank all the alternatives sorted by ∆(pi) in descending order. X4 is the optimal
comprehensive performance (see Table 6).

The analysis shows that the best candidate is X4 and the proposed method is rea-
sonable. For b = 10, d→ 0 , one can get X1 � X5, which is different from the other result.
When parameters b, d and g(t) are assigned different values and functional forms, various
aggregation results can be obtained from different BM operators. Namely, the change of
parameters b, d bring different decision results, and this can reflect the risk preference atti-
tude of decision makers. When b/d converges to zero, it can reflect the partial satisfaction
relationship of aggregated values. Generally, we take b = d = 1 in practice, which can
grasp the interrelationship between arguments as much as possible. Nevertheless, the
aggregated results with the proposed method are consistent, which shows the inherent
consistency of them.

In terms of the results in Table 7, the fourth company is the most competent company
for social insurance fund investment management, considering the five influencing factors
in the case. However, the different values that are assigned to b, d lead to differences in
the ranking of companies X2 and X3. It also shows that the decision maker can choose
different values of b, d according to the decision preference attitude.

Table 7. Scores and ranking results of investment companies with b = 2, d ∈ [2, 20]

GPHFWBM b, d X1 X2 X3 X4 X5 Ranking Results

b = 2, d = 5 0.0247 0.0208 0.0225 0.0272 0.0246 X4 � X1 � X5 � X3 � X2
b = 2, d = 10 0.0272 0.0218 0.0239 0.0291 0.0261 X4 � X1 � X5 � X3 � X2
b = 2, d = 12 0.0284 0.0134 0.0166 0.0296 0.0168 X4 � X1 � X5 � X3 � X2
b = 3, d = 12 0.0181 0.0036 0.0035 0.0182 0.0167 X4 � X1 � X5 � X2 � X3
b = 5, d = 10 0.0177 0.0036 0.0035 0.0181 0.0173 X4 � X1 � X5 � X2 � X3

.
To more visually represent the aggregation results with b, d = [2,20], we plot Figure 4.

Figure 4 represents the variation of the aggregated results with the value of d when b is a
fixed value. As can be seen from the Figure 4, when b = 2, all five curves show a decreasing
trend, and overall ranking is X4 � X1 � X5 � X3 � X2. Among them, the line X4 has
the highest score values and X2 has the lowest score values. However, there is a slight
difference in the ranking of X1 and X5, indicating that the different values of b, d affect the
aggregation results.
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Figure 4. Scores and ranking results of investment companies with b = 2, d ∈ [2, 20].

(1) As a whole, when b is fixed, the aggregation value decreases as the value of d increases.
(2) By numerical simulation analysis, when b + d > 16, the aggregation results approach

0 and do not have an analytical value, so it is suggested that the values of b and d
should satisfy b + d ≤ 16.

(3) For b = 2, d ∈ [2, 14], X4 is the best one. But when b = 2, d ∈ (14 , 20] the aggregated
results converge infinitely to 0. As b increases, the value of d should decrease if the
result is meaningful.

6.2. Discussions

To testify reasonability and validity, we made a further comparison with the GHFWBM
operators in [37] and the PHFWMSM in [38].

Zhu and Ma [37] developed a generalized hesitant fuzzy weighted Bonferroni mean
(GHFWBM) operator:

GHFWBMb,d(p1, p2, . . . , pn) =

g−1

 1
b+d g

 f−1

 1
n(n−1)

n
∑

i, j = 1
i 6= j

f
(

g−1(bg
(

f−1(wi f (γi))
)

+dg
(

f−1(wj f
(
γj
)))))))))∣∣γ1 ∈ p1, γ2 ∈ p2, . . . , γn ∈ pn

}
. (29)

According to the Equation (29), we aggregate attributes of the GHFWBM with condi-
tions that

(1) b = d = 1, (2) b = d = 2, (3) b = 1, d→ 0 and (4) b = 2, d→ 0 . Then, the scores
and the ranking of alternatives are shown in Table 8.

Table 8. Score function values and ranking results of different candidates calculated by different
operators.

Operators X1 X2 X3 X4 X5 Ranking Results

GHFWBM1,1 0.0679 0.0621 0.0633 0.0789 0.0716 X4 � X5 � X1 � X3 � X2
GHFWBM2,2 0.0728 0.0642 0.0668 0.0836 0.0756 X4 � X5 � X1 � X3 � X2
GHFWBM1,0 0.0356 0.0320 0.0328 0.0413 0.0373 X4 � X5 � X1 � X3 � X2
GHFWBM2,0 0.0532 0.0462 0.0483 0.0608 0.0547 X4 � X5 � X1 � X3 � X2

PHFWMSM(1) 0.0140 0.0132 0.0134 0.0152 0.0146 X4 � X5 � X1 � X3 � X2

PHFWMSM(2) 0.1047 0.1045 0.1046 0.1035 0.1048 X5 � X1 � X3 � X2 � X4

Obviously, X4 is the best candidate, which is the same as the result of the proposed
method. That is to say, the proposed method is reasonable and valid. Moreover, we took
the probability of attribute values in the MAGDM problem into account, but the authors
in [37] didn’t consider it. This further verifies that the proposed method can effectively
reduce the loss of decision information.
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Moreover, Li and Chen [38] presented a probabilistic hesitant fuzzy weighted Maclau-
rin symmetric mean operator:

PHFWMSM(r)(p1, p2, . . . , pn) =


( 1

Cr
n

(
f−1

(
∑

1≤i1<...<ir≤n
f

(
g−1

(
r
∑

j=1
wij g

(
γ
(k)
ij

)))))) 1
r

,
n
∑

i=1
p(k)i

)∣∣∣∣k = 1, 2, . . . , l
}

. (30)

Based on Equation (30), we aggregate attributes of the PHFWMSM with conditions
that (1) r = 1, (2) r = 2. Then, the scores and the ranking of candidates are obtained in
Table 8.

From the Table 8, it can be seen that the ranking result of the PHFMSM (when r = 1)
is consistent with that of the proposed method, which indicates the reasonability of this
method. When r = 2, the ranking result of the PHFMSM changes, which shows that the
proposed method is more stable than the PHFMSM operator. Otherwise, the BM, which
has two parameters b and d, can capture the interrelationship of the individual arguments
more than the MSM.

7. Conclusions

In practice, experts can not only make uncertain assessment of a given problem,
but also describe their decision-making with some probabilistic information. Attribute
information aggregation is a research hotspot. The main contributions of this paper
are as follows. First, a new MAGDM method is constructed under the probabilistic
hesitant fuzzy environment, which combines Archimedean norms and a BM operator.
Then, based on the new operational rules, we propose a GPHFBM operator and discuss
several desirable properties of the operator. In light of various values of parameters
b, d and the additive operator g(t), several special cases of the GPHFBM operator are
discussed. Finally, it is concluded that X4 is the most suitable investment company by the
application of investment of social insurance funds. Compared with the existing methods,
the reasonability and reliability of the proposed method are verified.

However, the method proposed in this paper pays more attention to the cross-
correlation between indicators in investment decision-making but ignores the overall
correlation. Therefore, in future research, investment selection should be considered more
from a holistic perspective. Besides, other norms can also be considered for aggregating the
BM operator. Furthermore, how to obtain expert weights objectively is also worth studying
in the future.
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