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Abstract: In the bidirectional loop layout problem (BLLP), we are given a set of machines, a set
of locations arranged in a loop configuration, and a flow cost matrix. The problem asks to assign
machines to locations so as to minimize the sum of the products of the flow costs and distances
between machines. The distance between two locations is calculated either in the clockwise or in the
counterclockwise direction, whichever path is shorter. We propose a hybrid approach for the BLLP
which combines the simulated annealing (SA) technique with the variable neighborhood search
(VNS) method. The VNS algorithm uses an innovative local search technique which is based on a
fast insertion neighborhood exploration procedure. The computational complexity of this procedure
is commensurate with the size of the neighborhood, that is, it performs O(1) operations per move.
Computational results are reported for BLLP instances with up to 300 machines. They show that
the SA and VNS hybrid algorithm is superior to both SA and VNS used stand-alone. Additionally,
we tested our algorithm on two sets of benchmark tool indexing problem instances. The results
demonstrate that our hybrid technique outperforms the harmony search (HS) heuristic which is
the state-of-the-art algorithm for this problem. In particular, for the 4 Anjos instances and 4 sko
instances, new best solutions were found. The proposed algorithm provided better average solutions
than HS for all 24 Anjos and sko instances. It has shown robust performance on these benchmarks.
For 20 instances, the best known solution was obtained in more than 50% of the runs. The average
time per run was below 10 s. The source code implementing our algorithm is made publicly available
as a benchmark for future comparisons.

Keywords: combinatorial optimization; facility layout; bidirectional loop layout; simulated anneal-
ing; variable neighborhood search

1. Introduction

The problem studied in this paper belongs to the family of machine layout problems
that can be successfully modeled by representing solutions as permutations of machines
to be assigned to a given set of locations. We do not make an assumption that locations
are equidistant. As it is typical in loop layout formulations, one of locations is reserved
for the Load/Unload (LUL) station. It may be considered as the starting point of the
loop. The distance between two locations is calculated either in the clockwise or in the
counterclockwise direction, whichever path is the shorter. The objective of the problem
is to determine the assignment of machines to locations which minimizes the sum of the
products of the material flow costs and distances between machines. In the remainder of
this paper, we refer to the described problem as the bidirectional loop layout problem (BLLP
for short). An example of loop layout is shown in Figure 1, where machines M3, M1, M6,
M4, M7, M2 and M5 are assigned to locations 1, 2, 3, 4, 5, 6 and 7, respectively. The numbers
on the edges of the loop indicate distances between adjacent locations. Distance is the
length of the shortest route between two locations along the loop.
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Figure 1. Example of loop layout.

The BLLP finds application in the design of flexible manufacturing systems (FMS).
According to the literature (see, for example, a recent survey by Saravanan and Kumar [1]),
the loop layout is one of the most preferred configurations in FMS because of their relatively
low investment costs and material handling flexibility. In this layout type, a closed-
loop material handling path passes through each machine exactly once. In many cases,
the machines are served by an automated guided vehicle (AGV). All materials enter and
leave the system at the LUL station. The focus of this paper is on a variation of the loop
layout problem where the AGV is allowed to transport the materials bidirectionally along
the loop, that is, it can travel either clockwise or counterclockwise, depending on which
route is shorter. A related problem, called the unidirectional loop layout problem (ULLP),
is obtained by restricting materials to be transported in only one direction around the
loop [2].

The model of the bidirectional loop layout can also be applied to other domains such as
tool indexing and broadcast scheduling. The tool indexing problem asks to allocate cutting
tools to slots (tool pockets) in a tool magazine with the objective of minimizing the tool
change time on a CNC (computer numerically controlled) machine. The turret of the CNC
machine can rotate in both directions. Frequently, in practice, the number of slots exceeds
the number of tools required to accomplish a job. Detailed information on this problem can
be found in [3–5]. Liberatore [6] considered the bidirectional loop layout problem in the
context of broadcast scheduling. In this application, a weighted graph is constructed whose
vertices represent server data units and edge weights show the strength of dependencies
between consecutive requests for data units. The problem is to arrange the vertices around
a circle so as to minimize the sum of weighted distances between all pairs of vertices. In this
BLLP instance, the distance between adjacent locations is assumed to be fixed at 1.

In general, an instance of the BLLP is given by the number of machines n, a symmetric
n× n matrix D = (dkl) with entries representing the distances between locations, and a
symmetric n× n matrix C = (cij) whose entry cij represents the cost of the flow of material
between machines i and j. We denote the set of machines as M = {0, 1, . . . , n− 1}. For con-
venience, we let 0 refer to the LUL station. In the formulation of the problem, it is assumed
the LUL station to be in location 0. Let Π(n) = {p}, p = (p(0), p(1), . . . , p(n− 1)), be the
set of all n-element permutations defined on M such that p(0) = 0. Then, mathematically,
the BLLP can be expressed as:

min
p∈Π(n)

F(p) =
n−2

∑
k=0

n−1

∑
l=k+1

dklcp(k)p(l), (1)

where p(k) and p(l) are the machines in locations k and l, respectively, and dkl is the
distance between these two locations. As mentioned above, p(0) is the LUL station.

The BLLP, as defined by Equation (1), is a special case of the quadratic assignment
problem (QAP) formulated by Koopmans and Beckmann [7]. A problem, related to the
BLLP, is the single-row equidistant facility layout problem (SREFLP), which is a special
case of the QAP, too. The feasible solutions of the SREFLP are one-to-one assignments of
n facilities to n locations equally spaced along a straight line. Its objective function is of
the form as given in Equation (1). Among other areas, the SREFLP arises in the context
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of designing flexible manufacturing systems [8,9]. In this application, the machines are
assigned to locations along a linear material handling track. For this reason, the SREFLP
differs noticeably from the BLLP we address in this paper. Yet another related problem is
that of arranging manufacturing cells both inside and outside of the loop. It is assumed
that the cells are rectangular in shape. In the literature, this type of problem is called a
closed loop layout problem [10].

Loop layout problems have attracted much research interest, as evidenced by a recent
survey by Saravanan and Kumar [1]. However, most studies in the literature on loop layout
have been devoted to developing algorithms for the unidirectional loop layout model.
Nearchou [11] proposed a differential evolution (DE) algorithm for solving the ULLP.
The experiments were conducted for a set of randomly generated problem instances with
up to 100 machines and 30 parts. The results have shown the superiority of the developed
DE heuristic to previous approaches, such as genetic and simulated annealing algorithms.
It is notable that, for most instances, the DE algorithm found a good solution in a few
CPU seconds. Zheng and Teng [12] proposed another DE implementation for the ULLP,
called relative position-coded DE. This heuristic performed slightly better than DE in [11].
However, as remarked by Zheng and Teng, DE is prone to trap into local minima when
the problem size gets larger. Kumar et al. [13] applied the particle swarm optimization
(PSO) technique to the ULLP. Their PSO implementation compared favorably with the DE
algorithm presented in [11]. However, the comparison was done only for relatively small
size problem instances. Kumar et al. [14] proposed an artificial immune system-based al-
gorithm for the ULLP in a flexible manufacturing system. The experimental results proved
that their algorithm is a robust tool for solving this layout problem. The algorithm per-
formed better than previous methods [11,13]. In order to reduce the material handling cost,
the authors proposed to use the shortcuts at suitable locations in the layout. Ozcelik and
Islier [15] formulated a generalized ULLP in which it is assumed that loading/unloading
equipment can potentially be attached to each workstation. They developed a genetic
algorithm for solving this problem. Significant improvements against the model with one
LUL station were achieved. Boysen et al. [16] addressed synchronization of shipments and
passengers in hub terminals. They studied the problem (called circular arrangement) which
is very similar to the ULLP. The authors proposed the dynamic programming-based heuris-
tic solution procedures for this problem. However, it is not clear how well these procedures
perform on large-scale problem instances. Saravanan and Kumar [17] presented a sheep
flock heredity algorithm to solve the ULLP. Computational tests have shown superior per-
formance in comparison to the existing approaches [11,13,14]. The largest ULLP instances
used in [17] had 50 machines and 10 or 20 parts. Liu et al. [18] considered a loop layout
problem with two independent tandem AGV systems. Both the AGVs run unidirectionally.
The authors applied the fuzzy invasive weed optimization technique to solve this problem.
The approach is illustrated for the design of a complex AGV system with two workshops
and 35 machines. A computational experiment has shown the efficiency of the approach.
There are several exact methods for the solution of the ULLP. Öncan and Altınel [19] devel-
oped an algorithm based on the dynamic programming (DP) scheme. The algorithm was
tested on a set of problem instances with 20 machines. It failed to solve larger instances
because of limited memory storage. Boysen et al. [16] proposed another DP-based exact
method. Likewise the algorithm in [19], this method was able to solve only small instances.
It did not finish within two hours for instances of size 24. Kouvelis and Kim [2] developed
a branch-and-bound (B&B) procedure for solving the ULLP. This procedure was used to
evaluate the results of several heuristics described in [2]. A different B&B algorithm was
proposed by Lee et al. [20]. The algorithm uses a depth first search strategy and exploits
certain network flow properties. These innovations helped to increase the efficiency of the
algorithm. It produced optimal solutions for problem instances with up to 100 machines.
Later, Öncan and Altınel [19] provided an improved B&B algorithm. They experimentally
compared their algorithm against the method of Lee et al. [20]. The new B&B implemen-
tation outperformed the algorithm of Lee et al. in terms of both number of nodes in the
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search tree and computation time. Ventura and Rieksts [21] presented an exact method for
optimal location of dwell points in an unidirectional loop system. The algorithm is based
on dynamic programming and has polynomial time complexity.

Compared to the ULLP, the bidirectional loop layout problem has received less atten-
tion in the literature. Manita et al. [22] considered a variant of the BLLP in which machines
are required to be placed on a two-dimensional grid. Additionally, proximity constraints
between machines are specified. To solve this problem, the authors proposed a heuristic
that consists of two stages: loop construction and loop optimization. In the second stage,
the algorithm iteratively improves the solution produced in the first stage. At each iteration,
it randomly selects a machine and tries to exchange it either with an adjacent machine or
with each of the remaining machines. Rezapour et al. [23] presented a simulated annealing
(SA) algorithm for a version of the BLLP in which the distances between machines in the
layout are machine dependent. The search operator in this SA implementation relies on
the pairwise interchange strategy. The authors have incorporated their SA algorithm into a
method for design of tandem AGV systems. Bozer and Rim [24] developed a branch-and-
bound algorithm for solving the BLLP. To compute a lower bound on the objective function
value, they proposed to use the generalized linear ordering problem and resorted to a fast
dynamic programming method to solve it. The algorithm was tested on BLLP instances
of size up to 12 facilities. Liberatore [6] presented an O(log n)-approximation algorithm
for a version of the BLLP in which the distance between each pair of adjacent locations
is equal to 1. A simple algorithm with better approximation ratio was provided by Naor
and Schwartz [25]. Their algorithm achieves an approximation of O(

√
log n log log n).

The studies just mentioned have focused either on some modifications of the BLLP or on
the exact or approximation methods. We are unaware of any published work that deals
with metaheuristic algorithms for the bidirectional loop layout problem in the general case
(as shown in Equation (1)).

Another thread of research on bidirectional loop layout is concerned with developing
methods for solving the tool indexing problem (TIP). This problem can be regarded as a
special case of the BLLP in which the locations (slots) are spaced evenly on a circle and their
number may be greater than the number of tools. In the literature, several metaheuristic-
based approaches have been proposed for the TIP. Dereli and Filiz [3] presented a genetic
algorithm (GA) for the minimization of total tool indexing time. Ghosh [26] suggested a
different GA for the TIP. This GA implementation was shown to achieve better performance
than the genetic algorithm of Dereli and Filiz. Ghosh [4] has also proposed a tabu search
algorithm for the problem. His algorithm uses an exchange neighborhood which is explored
by performing pairwise exchanges of tools. Recently, Atta et al. [5] presented a harmony
search (HS) algorithm for the TIP. In order to speed up convergence, their algorithm
takes advantage of a harmony refinement strategy. The algorithm was tested on problem
instances of size up to 100. The results demonstrate its superiority over previous methods
(see Tables 4 and 5 in [5]). Thus, HS can be considered as the best algorithm presented so far
in the literature for solving the TIP. There is also a variant of the TIP where duplications of
tools are allowed. Several authors, including Baykasoğlu and Dereli [27], and Baykasoğlu
and Ozsoydan [28,29], contributed to the study of this TIP model.

Various approaches have been proposed for solving facility layout problems that bear
some similarity with the BLLP. A fast simulated annealing algorithm for the SREFLP was
presented in [30]. Small to medium size instances of this problem can be solved exactly
using algorithms provided in [31,32]. Exact solution methods for multi-row facility layout
were developed in [33]. The most successful approaches for the earlier-mentioned closed
loop layout problem include [10,34,35]. It can be seen from the literature that the most
frequently used techniques for solving facility layout problems are metaheuristic-based
algorithms. The application of metaheuristics to these problems is summarized in [36] (see
Table 1 therein). For a recent classification of facility layout problems, the reader is referred
to Hosseini-Nasab et al. [37].
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In the conclusions section of the survey paper on loop layout problems, Saravanan
and Kumar [1] discuss several research directions that are worth exploring. Among them,
the need for developing algorithms for the bidirectional loop layout problem is pointed
out. The model of the BLLP is particularly apt in situations where the flow matrix is
dense [20]. However, as noted above, the existing computational methods for the general
BLLP case are either exact or approximation algorithms. There is a lack of metaheuristic-
based approaches for this problem. Several such algorithms, including HS, have been
proposed for solving the tool indexing problem, which is a special case of the BLLP.
However, the best of these algorithms, i.e. HS, is not the most efficient, especially for larger
scale TIP instances. In particular, the gaps between the best and average solution values
are a little high in many cases (see [5] or Section 5.5). Considering these observations,
our motivation is to investigate and implement new strategies to create metaheuristic-
based algorithms for the bidirectional loop layout problem. The purpose of this paper
is two-fold. First, the paper intends to fill a research gap in the literature by developing
a metaheuristic approach for the BLLP. Second, we aim that our algorithm will also be
efficient for solving the tool indexing problem. Our specific goal is to improve the results
obtained by the HS algorithm. We propose an integrated hybrid approach combining
simulated annealing technique and variable neighborhood search (VNS) method. Such a
combination has been seen to give good results for a couple of other permutation-based
optimization problems, namely, the profile minimization problem [38] and the bipartite
graph crossing minimization problem [39]. The crux of the approach is to apply SA and
VNS repeatedly. The idea is to let SA start each iteration and then proceed with the VNS
algorithm. The latter recursively explores the neighborhood of the solution delivered by SA.
Such a strategy allows reducing the execution time of VNS because the solution found by SA
is likely to be of good quality. The core of VNS is a local search (LS) procedure. We embed
two LS procedures in the VNS framework. One of them relies on performing pairwise
interchanges of machines. It is a traditional technique used in algorithms for the QAP.
Another LS procedure involves the use of machine insertion moves. In each iteration of this
procedure, the entire insertion neighborhood is explored in O(n2) time. Thus, the procedure
performs only O(1) operations per move, so it is very efficient. Both move types, pairwise
interchanges of machines and insertions, are also used in our implementation of SA for
the BLLP. We present computational results comparing the SA and VNS hybrid against
these algorithms applied individually. We tested our hybrid algorithm on two sets of BLLP
instances and, in addition, on two sets of TIP instances.

The remainder of the paper is organized as follows. In the next section, we show how
SA and VNS are integrated to solve the BLLP. Our SA and VNS algorithms are presented
in two further sections. Section 5 is devoted to an experimental analysis and comparisons
of algorithms. A discussion is conducted in Section 6 and concluding remarks are given in
Section 7.

2. Integrating SA and VNS

The basic idea of the VNS method is to systematically explore the neighborhood of
the currently best found solution (see, for example, [40]). If initially this solution is of
low quality, VNS may require a significant amount of time to get closer to the optimum.
Our idea is to speed up this process by starting VNS with a solution generated by another
heuristic. We implement this strategy by combining VNS with the SA algorithm. These two
techniques are applied in an iterative manner during the search process. A flowchart of the
SA and VNS hybrid is shown in Figure 2. Our implementation of this hybrid is equipped
with a stopping criterion, where the search is terminated when the maximum time limit,
tlim, is reached. Of course, other termination conditions can also be applied depending
on different demands. For example, the number of calls to SA and VNS can be specified.
In this case, the description of the algorithm is essentially the same as that given below
with only minor modifications.
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Figure 2. Flowchart of the simulated annealing (SA) and variable neighborhood search (VNS) hybrid.

The pseudo-code of the main procedure of the SA and VNS hybrid, denoted as SA-
VNS, is given in Algorithm 1. The procedure starts with constructing several matrices
and arrays to be used in subsequent calculations. The entry d+kl of the matrix D+ = (d+kl)
stands for the clockwise distance between machine locations k and l. Similarly, the matrix
D− = (d−kl) represents distances between locations in the counterclockwise direction.
Clearly, d−kl = d+lk . The corresponding entry of the matrix D is dkl = min(d−kl , d+kl). The arrays
a = (a0, . . . , an−1), λ = (λ0, . . . , λn−1) and η = (η0, . . . , ηn−1) are constructed as follows.
Let K = {0, 1, . . . , n− 1} denote the set of machine locations. For each k ∈ K, we find the
largest natural number i such that d+kl 6 d−kl , where l = (k + i)( mod n). Then ak = l and
λk = i. If the above inequality is, in fact, an equality, then ηk is set to 1; otherwise ηk is
set to 0. For example, in Figure 1, a4 = 7, λ4 = 3, η4 = 0, a5 = 1, λ5 = 4, and η5 = 1.
The matrices and arrays constructed in line 1 of Algorithm 1 are left untouched during
the execution of SA-VNS. These data are used by both SA and VNS components of the
approach. The computational complexity of the initialization step of SA-VNS is O(n2).

The algorithm maintains two solutions p̂ and p∗. The solution p̂ with value f̂ is the
best one found in an iteration of SA-VNS (single execution of the “while” loop 3–12 of
Algorithm 1). The global best solution over all iterations is denoted as p∗ and its value
as f ∗. Each iteration starts with a call to the SA algorithm. After executing SA for the
first time, the maximum time limit on a run of VNS (denoted as trun_VNS) is computed.
At the initialization phase of SA-VNS, the specified cut-off time tlim is split between SA
time tlim_SA = ρtlim and VNS time tlim_VNS = (1− ρ)tlim, where ρ is the preset quota
parameter with values between 0 and 1. To compute trun_VNS, we use the predicted number
of SA-VNS iterations, I, evaluated as I = dtlim_SA/telapsed_SAe, where telapsed_SA is the
time spent by SA in the first iteration. We simply set trun_VNS = tlim_VNS/I. The iterative
process is stopped when the deadline tlim is reached while executing either SA (line 8)
or VNS (line 13). If, after termination of SA, a running time reserve is available, then the
VNS algorithm is triggered. It starts the search from the solution p̂ returned by the SA
component of the approach. An iteration of SA-VNS ends with an attempt to improve the
global best solution p∗ (line 11 of Algorithm 1).
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Algorithm 1 Integrating simulated annealing and variable neighborhood search

SA-VNS
1: Construct matrices D+, D−, D and arrays a, λ and η

2: f ∗ := ∞
3: while time limit, tlim, not reached do
4: Apply SA(p̂, f̂ , tlim)
5: if SA was executed for the first time then Compute trun_VNS end if
6: if elapsed time is more than tlim then
7: if f̂ < f ∗ then Assign p̂ to p∗ and f̂ to f ∗ end if
8: Stop with the solution p∗ of value f ∗

9: end if
10: Apply VNS(p̂, f̂ , tlim, trun_VNS)
11: if f̂ < f ∗ then Assign p̂ to p∗ and f̂ to f ∗ end if
12: end while
13: Stop with the solution p∗ of value f ∗

3. Simulated Annealing

In this section, we present an implementation of the simulated annealing method for
the bidirectional loop layout problem. This method is based on an analogy to the metallur-
gical process of annealing in thermodynamics which involves initial heating and controlled
cooling of a material. The idea to use this analogy to solve combinatorial optimization prob-
lems has been efficiently exploited by Kirkpatrick et al. [41] and Černý [42]. To avoid being
trapped in a local optimum, the SA method also accepts worsening moves with a certain
probability [43]. With F denoting the objective function of the BLLP as given by (1), the ac-
ceptance probability can be written as exp(−∆(p, p′)/T), where ∆(p, p′) = F(p′)− F(p) is
the change in cost, called the move gain, p is the current solution (permutation), p′ is a per-
mutation in a neighborhood of p, and T is the temperature value. To implement SA for the
BLLP, we employ two neighborhood structures. One of them is the insertion neighborhood
structure N1(p), p ∈ Π(n). For p ∈ Π(n), the set N1(p) consists of all permutations that
can be obtained from p by removing a machine from its current position in p and inserting
it at a different position. As an alternative, we use the pairwise interchange neighborhood
structure N2(p), p ∈ Π(n), whose member set N2(p) comprises of all permutations that
can be obtained from p by swapping positions of two machines in the permutation p. To
guide the choice of the neighborhood type, a 0− 1 valued parameter, VSA, is introduced. If
VSA = 0, then the pairwise interchange neighborhood structure is employed in the search
process; otherwise the search is based on performing insertion moves.

The pseudo-code of the SA implementation for the BLLP is presented in Algorithm 2.
The temperature T is initially set to a high value, Tmax, which is computed once, that is,
when SA is invoked for the first time within the SA-VNS framework. For this, we use
the formula Tmax = maxp′∈N′ |∆(p, p′)|, where p is a starting permutation generated in
line 1 of Algorithm 2 and N′ is a set of permutations randomly selected either from the
neighborhood N1(p) (if VSA = 1) or from the neighborhood N2(p) (if VSA = 0). We fixed
the size of N′ at 5000. The temperature is gradually reduced by a geometric cooling
schedule T := αT (line 27) until the final temperature, denoted by Tmin, is reached, which is
very close to zero. We set Tmin = 0.0001. The value of the cooling factor α usually lies in
the interval [0.9, 0.99]. The list of parameters for SA also includes the number of moves,
Q, to be attempted at each temperature level. It is common practice to relate Q linearly to
the size of the problem instance. According to literature (see, for example, [44]), a good
choice is to set Q to 100n. If SA is configured to perform insertion moves (VSA = 1), then an
auxiliary array B = (b1, . . . , bn−1) is used. Relative to a permutation p, its entry br for
machine r ∈ {1, . . . , n− 1} represents the total flow cost between r (placed in location k)
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and λk machines that reside closest to r clockwise. Formally, br = ∑k+λk
i=k+1 crp(i( mod n)),

where k = π(r) and π is the inverse permutation of p, defined as follows: if p(k) = r,
then π(r) = k. It is clear that the content of the array B depends on the permutation
p. The time complexity of constructing B (line 4 of SA) is O(n2). In the case of the first
call to SA, the array B, if needed (VSA = 1), is obtained as a byproduct of computing
the temperature Tmax (line 3). The main body of the algorithm consists of two nested
loops. The inner loop distinguishes between two cases according to the type of moves.
If a random interchange move is generated (VSA = 0), then the candidate solution, p(r, s),
obtained by swapping positions of machines r and s is compared against the current
solution p by computing the difference between the corresponding objective function
values (line 11). Since only machines r and s change their locations, this can be done in
linear time. If VSA = 1, then an attempt is made to move machine r to a new location l,
both selected at random. The move gain ∆ is obtained by applying the procedure get_gain.
Its parameter β stores the new value of br which, provided the move is accepted, is later
used by the procedure insert (line 21). The outer loop of SA is empowered to abort the
search prematurely. This happens when the time limit for the run of SA-VNS is passed
(line 26).

Algorithm 2 Simulated annealing

SA(p̂, f̂ , tlim)
// Input to SA includes parameters α, Q and Tmin

1: Randomly generate a permutation p ∈ Π(n) and set p̂ := p
2: f̂ = f := F(p)
3: if first call to SA then Compute Tmax and τ̄ = b(log(Tmin)− log(Tmax))/ log αc
4: else if VSA = 1 then Construct array B end if
5: end if
6: T := Tmax

7: for τ = 1, . . . , τ̄ do
8: for i = 1, . . . , Q do
9: if VSA = 0 then
10: Pick two machines r, s at random
// Let p(r, s) denote the solution obtained from p by swapping positions of machines r and s
11: Compute ∆ := F(p(r, s))− F(p)
12: else
13: Pick machine r and its new position l at random
14: ∆:=get_gain(r, l, p, β)
15: end if
16: if ∆ 6 0 or exp(−∆/T) > random(0, 1) then
17: f := f + ∆
18: if VSA = 0 then
19: Swap positions of machines r and s in p
20: else
21: insert(r, l, p, β)
22: end if
23: if f < f̂ then Assign p to p̂ and f to f̂ end if
24: end if
25: end for
26: if elapsed time for SA-VNS is more than tlim then return
27: T := αT
28: end for
29: return
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Before continuing with the description of SA, we elaborate on the computation of the
move gain ∆ in the case of VSA = 1. For this, we need additional notations. We denote
by K+

k , k ∈ {0, 1, . . . , n − 1}, the set of locations l ∈ K = {0, 1, . . . , n − 1} such that
d+kl 6 d−kl and define K−k = K \ (K+

k ∪ {k}). In Figure 3, for example, K+
7 = {8, 9, 0, 1, 2},

K+
8 = {9, 0, 1, 2, 3}, and K−8 = {4, 5, 6, 7}. Let us denote the set of machines assigned to

locations in K+
k by M+

k and those assigned to locations in K−k by M−k . We notice that since
the machine r is being relocated, M+

k is not necessarily equal to {p(l) | l ∈ K+
k } where p is

the permutation for which get_gain procedure is applied and which remains untouched
during its execution. A similar remark holds for M−k . In the example shown in Figure 3,
M+

8 = {3, 0, 7, 6, 9} initially, that is, for p = (0, 7, 6, 9, 5, 4, 8, 2, 1, 3) (part (a) of Figure 3),
and M+

8 = {3, 0, 7, 9, 5} after relocating the machine r = 6 from position 2 to position 7
(part (b) of Figure 3). For a machine s and M′ ⊂ M, we denote by c(s, M′) the total flow
cost between s and machines in M′, that is, c(s, M′) = ∑u∈M′ csu.
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Figure 3. Moving machine r = 6 clockwise from location k = 2 to location l = 8 (or 9): (a) initial solution; (b) solution at the
qth step where q = 8.

With these notations in place, we are now ready to describe our technique for com-
puting the move gain ∆. Let k (=π(r)) stand for the current position of machine r in the
permutation p. The target position of r is denoted by l. Two cases are considered depending
on whether l is greater or less than k. If l > k, then machine r is moved in the clockwise di-
rection. At each step of this process, r finds itself in position q− 1, q ∈ {k + 1, . . . , l}, and is
interchanged with its current clockwise neighbor p(q) (see part (b) of Figure 3, where r = 6
and q = 8). We denote the change in the objective function value resulting from this
operation by δq. The aforementioned parameter β stores the value of br when machine r
is placed in location q− 1. More formally, β = c(r, M+

q−1) (β = c(r, {1, 3, 0, 7, 9}) in part
(b) of Figure 3). According to the definition of the set M+

q−1, after swapping positions of
machines r and p(q) the distance between r and each of the machines in M+

q−1 \ {p(q)}will
become shorter by d+q−1,q. Hence the objective function value decreases by d+q−1,q(β− crp(q)).
A similar reasoning can be applied to machine p(q). We denote by γ the modified value
of the entry of B corresponding to machine p(q). In many cases, K+

q does not include k
and, therefore, γ is equal to bp(q). However, if aq ∈ [k, q− 1), then k ∈ K+

q (in Figure 3,
K+

q = K+
8 = {9, 0, 1, 2, 3} and k = 2). In this case, bp(q) should be corrected by substituting

cp(q)r with cp(q)p(aq+1) (c1,6 with c1,5 in Figure 3). Interchanging r and p(q) reduces the
distance between p(q) and each of machines in M−q \ {r} by d+q−1,q. Let us denote by zs the
total flow cost between machine s and all the other machines. Then the decrease in the
objective function value due to moving the machine p(q) by one position counterclockwise
is equal to d+q−1,q(zp(q) − γ− crp(q)). By adding this expression to the one obtained earlier
for machine r and reversing the sign we get the first term of the gain δq, denoted by δ′q:

δ′q = −d+q−1,q(β + zp(q) − γ− 2crp(q)) (2)
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where

γ =

{
bp(q) − cp(q)r + cp(q)p(aq+1) if k 6 aq < q− 1

bp(q) otherwise.
(3)

Consider now location j ∈ K+
q \ K+

q−1. From the definition of the set K+
q it follows that

d−q−1,j < d+q−1,j and d+qj 6 d−qj. Therefore, we have to take into account the flows between
machine (say s) in location j and machines r and p(q). We note that s = p(j) or s = p(j + 1)
depending on whether a condition like that of (3) is satisfied or not. It turns out that the
following value has to be added to δq:

δ
j
q = (crs − cp(q)s)(d

+
qj − d−q−1,j) (4)

where j ∈ K+
q \ K+

q−1 and

s =
{

p(j + 1) if k 6 j < q− 1
p(j) otherwise.

(5)

In Figure 3, j = 3 and s = p(j + 1) = p(4) = 5 since j ∈ [k, q− 1) = [2, 7). Changing
locations of r and p(q) relative to the machine s also affects the values of β and γ. They are
updated as follows: β := β + crs and γ := γ − cp(q)s. Suppose that machines r and
p(q) are (temporarily) interchanged (we remind that the permutation p is kept intact).
Then c(r, M−q \ {p(q)}) = zr − β and c(p(q), M+

q−1 \ {r}) = γ. After swapping positions
of r and p(q), the distance between r (respectively, p(q)) and machines in M−q \ {p(q)}
(respectively, M+

q−1 \ {r}) increases by d+q−1,q. Adding the resulting increase in the objective
function value to (2) and (4), we can write

δq = δ′q + ∑
j∈K+

q \K+
q−1

δ
j
q + d+q−1,q(zr − β + γ). (6)

In order to have a correct value of β while computing δi, i > q, β is updated by
subtracting crp(q). The gain of moving machine r from its current location k to a new
location l > k is defined as the sum of δq over q = k + 1 to l.

Suppose now that l < k, which means that machine r is moved in the counterclockwise
direction. This case bears much similarity with the case of l > k. One of the differences is
that the parameter β is replaced by a related quantity, β̄, which can be regarded as a comple-
ment to β. Initially, β̄ is set to zr − br (=zr − β). Where q ∈ {k− 1, k− 2, . . . , l}, consider the
qth step of the machine relocation procedure and denote by δ̃q the change in the objective
function value resulting from swapping positions of machines r and p(q). Since machine r
is initially placed in location q + 1 the value of β̄ is equal to c(r, M−q+1). This situation is
illustrated in Figure 4 where r = 7, q = 3 and M−q+1 = M−4 = {8, 4, 6, 0}. Like in the previ-
ous case, we use the variable γ, which is initialized to c(p(q), M+

q ) (in Figure 4, p(q) = 8
and M+

q = {7, 3, 2, 1}). Interchanging r and p(q) brings r closer to each of machines in
M−q+1 \ {p(q)} and p(q) closer to each of machines in M+

q \ {r} by d+q,q+1. In an analogy
with (2), the resulting change in the objective function value can be expressed as follows:

δ̃′q = −d+q,q+1(β̄ + γ− 2crp(q)) (7)

where

γ =

{
bp(q) + cp(q)r − cp(q)p(aq) if q + λq < k

bp(q) otherwise.
(8)



Mathematics 2021, 9, 5 11 of 30

(a) (b)

3

5 1

1

2

46

7

8

9

LUL

2 2

3

3

3
3

3

0

2 2

2 4

4
5

5

6789

3

5 1

1

2

46 78

9

LUL

2 2

3

3

3
3

3

0

2 2

2 4

4
5

5

6789

Figure 4. Moving machine r = 7 counterclockwise from location k = 9 to location l ∈ {1, 2, 3}: (a) initial solution;
(b) solution at the qth step where q = 3.

In Figure 4, q + λq = 3 + 4 = 7 < 9 = k, so γ is computed according to the first
alternative in (8), where aq = a3 = 7 and p(aq) = 9. Next, we evaluate the impact
of machines in locations j ∈ K+

q+1 \ K+
q on the move gain. For such j we know that

d+q+1,j 6 d−q+1,j and d−qj < d+qj. This implies that the change in the distance between r and

machine (say s) in location j is d−qj − d+q+1,j. The distance change for machines p(q) and
s is exactly the same with opposite sign. We thus get the following component of the
gain expression:

˜
δ

j
q = (crs − cp(q)s)(d

−
qj − d+q+1,j) (9)

where

s =
{

p(j− 1) if l < j 6 k
p(j) otherwise.

(10)

In Figure 4, K+
4 \ K+

3 = {8, 9} and s = p(j− 1) = 9 and 5 for j = 8 and 9, respectively.
In addition, for each j ∈ K+

q+1 \ K+
q , the values of β̄ and γ are updated: β̄ := β̄ + crs and

γ := γ + cp(q)s, where s is given by (10). Suppose machines r and p(q) are swapped.
This operation leads to the increase in the distance between r and machines in M+

q \ {p(q)}
as well as between p(q) and machines in M−q+1 \ {r} by d+q,q+1 (after swapping positions
of r = 7 and p(q) = 8, M+

3 = {8, 3, 2, 1} and M−4 = {7, 4, 6, 0} in Figure 4). The resulting
increase in the gain value is d+q,q+1(zr − β̄ + zp(q) − γ). Combining this expression with (7)
and (9), we obtain

δ̃q = δ̃′q + ∑
j∈K+

q+1\K
+
q

˜
δ

j
q + d+q,q+1(zr − β̄ + zp(q) − γ). (11)

The qth step ends with the operation of subtracting crp(q) from β̄. The move gain is
computed as the sum ∆ = ∑k−1

q=l δ̃q.
The pseudo-code implementing the described formulae is shown in Algorithm 3.

The loop 5–14 computes the gain ∆ when machine r is moved to a location in the clockwise
direction and loop 17–26 computes ∆ when r is moved to a location in the counterclockwise
direction.

One might wonder what is the point of using a quite elaborate procedure get_gain.
It is possible to think about simpler ways to compute the move gain ∆. An alternative would
be to compute F(p′) by Equation (1) for the solution p′ obtained from p by performing the
move and calculate ∆ as the difference between F(p′) and F(p). When making a choice
between different procedures, it is important to know their computational complexity.
The above-mentioned approach based on Equation (1) takes O(n2) time. Looking at
Algorithm 3, we can see that the pseudo-code of get_gain contains nested “for” loops.
Therefore, one may guess that the time complexity of get_gain is O(n2) too. However,
the following statement shows that this is not true, and the move gain ∆, using get_gain,
can be computed efficiently.



Mathematics 2021, 9, 5 12 of 30

Algorithm 3 Computing the move gain

get_gain(r, l, p, β)
1: ∆ := 0
2: k := π(r)
3: if k < l then
4: Initialize β with br

5: for q = k + 1, . . . , l do
6: Compute γ and δq := δ′q by (3) and (2)
7: for each j ∈ K+

q \ K+
q−1 do

8: Identify s by (5) and increase δq by δ
j
q computed by (4)

9: Add crs to β and subtract cp(q)s from γ

10: end for
11: Finish the δq computation process using (6)
12: Subtract crp(q) from β

13: ∆ := ∆ + δq

14: end for
15: else // the case of k > l
16: Initialize β̄ with zr − br

17: for q = k− 1 to l by −1 do
18: Compute γ and δ̃q := δ̃′q by (8) and (7)
19: for each j ∈ K+

q+1 \ K+
q do

20: Identify s by (10) and increase δ̃q by
˜

δ
j
q computed by (9)

21: Add crs to β̄ and cp(q)s to γ

22: end for
23: Finish the δ̃q computation process using (11)
24: Subtract crp(q) from β̄

25: ∆ := ∆ + δ̃q

26: end for
27: β := zr − β̄

28: end if
29: return ∆

Proposition 1. The computational complexity of the procedure get_gain is O(n).

Proof. We denote by S the accumulated number of times the body of an inner “for” loop
of Algorithm 3 is executed (lines 8 and 9 if k < l and lines 20 and 21 if k > l). Let k < l.
Then S = ∑l

q=k+1 |K+
q \ K+

q−1|. To bound S, imagine a cycle, G, with vertex set K =

{0, 1, . . . , n− 1} and edges connecting adjacent locations in K (an example is shown in
Figure 4). It is not hard to see that S is equal to the number of edges on the path in G
connecting ak with al in the clockwise direction (ak = 6, al = 3 for k = 2 and l = 8 in
Figure 3). Clearly S 6 n (equality is possible if al = ak). If k > l, then S = ∑k−1

q=l |K
+
q+1 \ K+

q |.
The same reasoning as above implies S 6 n also in this case. Thus we can conclude that the
time complexity of the loop 5–14 (if k < l) or loop 17–26 (if k > l) of Algorithm 3, and hence
of the entire procedure, is O(n).

If VSA = 1 and the move is accepted in SA, then the insert procedure is triggered
(line 21 of Algorithm 2). Its pseudo-code is presented in Algorithm 4. Along with perform-
ing the insertion, another task is to update the array B. We note that there is no need to
calculate its entry corresponding to machine r. Instead, the entry br is set to the value of β
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passed to insert as parameter (line 32). The update of B and insertion are accomplished by
performing a sequence of steps in which two adjacent machines in the permutation p are
interchanged, one of them always being machine r. First, suppose that k = π(r) < l and
consider the qth step, where machine r is in location q− 1, q ∈ {k + 1, . . . , l}. This step is
illustrated in Figure 5, assuming that r = 9, q = 4, k 6 3 and l > 4. The clockwise neighbor
of r is machine s = p(q) = 5. At each step, the algorithm first checks whether ηq−1 = 1
(or equivalently d+q−1,aq−1

= d−q−1,aq−1
). If this condition is satisfied, then the entry bu for

u = p(aq−1) is updated, provided u > 0, which means that u is not the LUL station (line 5
of insert). In Figure 5, ηq−1 = η3 = 1, aq−1 = 7, u = 2, and b2 is updated by replacing c2,9

with c2,5. Next, insert iterates through machines u ∈ M+
q \M+

q−1. For such u, the entry bs

and, in most cases, bu are updated (lines 8 and 10). Besides the case where u represents
the LUL station, the entry bu remains unchanged when u = p(aq) and ηq = 1. To illustrate
this part of the procedure, we again refer to Figure 5. We find that M+

4 \ M+
3 = {1, 3}.

Therefore, bs = b5 is reduced by subtracting c5,1 + c5,3, and b1 is updated by replacing c1,9
with c1,5. Since p(aq) = p(a4) = p(9) = 3 and η4 = 1, the value of b3 remains the same
(this can be checked by examining permutations shown in parts (a) and (b) of Figure 5).
The qth pass through the first main loop of insert ends by adding csr to bs and swapping
positions of machines r and s = p(q) in p (lines 13 and 14).
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Figure 5. Illustration of the insert procedure, where q = 4 and s = p(q) = 5 if r = 9, and q = 3 and s = p(q) = 9 if r = 5: (a) initial
solution; (b) solution obtained by interchanging machines r and s.

Suppose now that k = π(r) > l and let q ∈ {k− 1, k− 2 . . . , l}. At the beginning of the
qth step, the machine r is in location q + 1. The task of this step is to interchange r with its
counterclockwise neighbor s = p(q) and update the array B accordingly. The interchange
operation is illustrated in Figure 5 where it should be assumed that r = 5, k > 4 and l 6 3.
Looking at Algorithm 4, we can see that the structure of the code implementing the case
of k > l (lines 17–30) is very similar to that implementing the case of k < l discussed
previously (lines 2–15). Actually, the lines 19–28 of the pseudo-code can be obtained from
the lines 4–13 by replacing q, cus and cur with q + 1, −cus and −cur, respectively. Figure 5
can be used to illustrate how the relevant entries of the array B are updated. In particular,
for each u ∈ M+

4 \M+
3 = {1, 3} as well as u = p(a3) = 2, the same value of bu as in the

previous case is obtained.
The procedure insert is called inside the nested “for” loops in SA and, therefore,

is executed a large number of times. Thus it is desirable to know what is the computational
complexity of this procedure. Despite containing nested loops, insert runs in linear time,
as the following statement shows.

Proposition 2. The computational complexity of the procedure insert is O(n).

The proof is exactly the same as that of Proposition 1. From Propositions 1 and 2 and
the fact that the gain ∆ in the case of VSA = 0 (line 11 of Algorithm 2) can be computed
in linear time (see, for example, [45]) it follows that the complexity of an iteration of the
SA algorithm is O(n). Taking into account the fact that the outer loop of SA is iterated
τ̄ times and the inner loop is iterated Q times, the computational complexity of SA can
be evaluated as O(nτ̄Q). If Q is linear in n (which is typical in SA algorithms), then the
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complexity expression simplifies to O(n2τ̄), where τ̄ is the number of temperature levels,
which depends on the SA parameters α, Tmin and Tmax.

Algorithm 4 Performing an insertion move

insert(r, l, p, β)
1: if k := π(r) < l then
2: for q = k + 1, . . . , l do
3: s := p(q)
4: if ηq−1 = 1 then
5: if u := p(aq−1) > 0 then bu := bu + cus − cur end if
6: end if
7: for each u ∈ M+

q \M+
q−1 do

8: bs := bs − csu

9: if u > 0 and either u 6= p(aq) or ηq = 0 then
10: bu := bu + cus − cur

11: end if
12: end for
13: bs := bs + csr

14: Swap positions of machines r = p(q− 1) and s = p(q)
15: end for
16: else
17: for q = k− 1 to l by −1 do
18: s := p(q)
19: if ηq = 1 then
20: if u := p(aq) > 0 then bu := bu + cur − cus end if
21: end if
22: for each u ∈ M+

q+1 \M+
q do

23: bs := bs + csu

24: if u > 0 and either u 6= p(aq+1) or ηq+1 = 0 then
25: bu := bu + cur − cus

26: end if
27: end for
28: bs := bs − csr

29: Swap positions of machines r = p(q + 1) and s = p(q)
30: end for
31: end if
32: br := β

4. Variable Neighborhood Search

If a pre-specified CPU time limit for the run of SA-VNS is not yet reached, the best
solution found by SA is passed to the VNS component of the approach. This general-
purpose optimization method exploits systematically the idea of combining a neighborhood
change mechanism with a local search technique (we refer to [40,46] for surveys of this
metaheuristic). To implement VNS, one has to define the neighborhood structures used
in the shaking phase of the method. In our implementation, we choose a finit set of
neighborhood structures Ñk, k = 1, . . . , kmax, where, given a permutation p ∈ Π(n),
the neighborhood Ñk(p) consists of all permutations that are obtained from p by performing
k pairwise interchanges of machines subject to the restriction that no machine is relocated
more than once.
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The pseudo-code of our VNS method for the BLLP is shown in Algorithm 5.
The method can be configured to use two different local search (LS) procedures. This is done
by setting an appropriate value of the flag parameter VVNS. If VVNS = 0, then LS is based on
performing pairwise interchanges of machines. Otherwise (VVNS = 1), LS involves the use
of machine insertion moves. The algorithm has several parameters that control the search
process. One of them is kmin, which determines the size of the neighborhood the search is
started from. The largest possible size of the neighborhood is defined by the value of kmax,
which is computed in line 8 of Algorithm 5 and kept unchanged during the execution of
the inner “while” loop spanning lines 9–16. This value is an integer number drawn uni-
formly at random from the interval [ξ1n, ξ2n], where ξ1 and ξ2 > ξ1 are empirically tuned
parameters of the algorithm. The variable kstep is used to move from the current neighbor-
hood to the next one. Having kmax computed, the value of kstep is set to max(bkmax/µc, 1),
where µ > 0 is a scaling factor chosen experimentally. Notice that kmax and kstep vary
as the algorithm progresses. The inner loop of VNS repeatedly applies a series of proce-
dures, consisting of shake (Algorithm 6), either LS_interchanges or LS_insertions, and
neighborhood_change (Algorithm 7). The shake procedure generates a solution p ∈ Ñk( p̂)
by performing a sequence of random swap moves. The neighborhood_change procedure
is responsible for updating the best solution found, p̂. If this happens, the next starting
solution for LS is taken from Ñkmin . Otherwise the search is restarted from a solution in a
larger neighborhood than the current one. We implemented two local search procedures.
One of them, referred to as LS_interchanges, searches for a locally optimal solution by
performing pairwise interchanges of machines. The gain of a move is computed by apply-
ing the same formulas as in LS-based algorithms for the quadratic assignment problem
(the reader is referred, for example, to the paper of Taillard [47]). Therefore, for the sake
of brevity, we do not present a pseudo-code of the LS_interchanges algorithm. We only
remark that the complete exploration of the neighborhood of a solution in this algorithm
takes O(n2) operations [47].

Algorithm 5 Variable neighborhood search

VNS(p̂, f̂ , tlim, trun_VNS)
// Input to VNS includes parameter kmin

1: Assign p̂ to p and f̂ to f
2: if VVNS = 0 then f :=LS_interchanges(p)
3: else f :=LS_insertions(p)
4: end if
5: if f < f̂ then Assign p to p̂ and f to f̂ end if
6: while time limit for VNS, trun_VNS, not reached do
7: k := kmin

8: Compute kmax and kstep

9: while k 6 kmax do
10: shake(p, p̂, k)
11: if VVNS = 0 then f :=LS_interchanges(p)
12: else f :=LS_insertions(p)
13: end if
14: k :=neighborhood_change(p, p̂, f , f̂ , k, kmin, kstep)
15: if elapsed time is more than tlim then return end if
16: end while
17: end while
18: return
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Algorithm 6 Shake function

shake(p, p̂, k)
1: Assign p̂ to p
2: L := M \ {0}
3: for k times do
4: Randomly select machines r, s ∈ L
5: Swap positions of r and s in p
6: L := L \ {r, s}
7: end for
8: return

Algorithm 7 Neighborhood change function

neighborhood_change(p, p̂, f , f̂ , k, kmin, kstep)
1: if f < f̂ then
2: Assign p to p̂ and f to f̂
3: k := kmin

4: else
5: k := k + kstep

6: end if
7: return k

The pseudo-code of our insertion-based local search heuristic is presented in Algo-
rithms 8 and 9. In its main routine LS_insertions, it first initializes the array B that is later
employed in the search process by the explore_neighborhood procedure. This array is
also used in the SA algorithm, so its definition is given in the prior section. The value of the
variable ∆∗ is the gain of the best move found after searching the insertion neighborhood
of the current solution p. This value is returned by the explore_neighborhood procedure
which is invoked repeatedly until no improving move is possible. The main part of this
procedure (lines 1–27) follows the same pattern as get_gain shown in Algorithm 3. Basi-
cally, it can be viewed as an extension of get_gain. In explore_neighborhood, the gain is
computed for each machine r ∈ M \ {0} and each relocation of r to a different position in p.
The formulas used in these computations are the same as in get_gain. The best insertion
move found is represented by the 4-tuple (∆∗, r∗, l, β∗) whose components are the gain,
the machine selected, its new location, and the value of the parameter β for the move
stored, respectively. The condition ∆∗ < 0 indicates that an improving insertion move was
found. If this is the case, then explore_neighborhood launches insert, which is the same
procedure as that used by SA (see Algorithm 4).

Algorithm 8 Insertion-based local search

LS_insertions(p)
1: Construct array B and compute f = F(p)
2: ∆∗ := −1
3: while ∆∗ < 0 do
4: ∆∗:=explore_neighborhood(p)
5: if ∆∗ < 0 then f := f + ∆∗ end if
6: end while
7: return f
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As mentioned before, the exploration of the interchange neighborhood takes O(n2)
operations. One might wonder whether the same complexity can be achieved in the case of
the insertion neighborhood. Substituting line 6 of explore_neighborhood with lines 6–12
of get_gain we see that the former has triple-nested loops. Nevertheless, the following
result shows that the insertion neighborhood can be scanned in the same worst-case time
as the interchange neighborhood.

Proposition 3. The computational complexity of the procedure explore_neighborhood is O(n2).

Proof. From the proof of Proposition 1 it follows that each iteration of the outer “for” loop
of Algorithm 9 takes O(n) operations. This loop is executed for each machine. Furthermore,
according to Proposition 2, insert runs in linear time. Collectively these facts imply the
claim.

Algorithm 9 Insertion neighborhood exploration procedure

explore_neighborhood(p)
1: ∆∗ := 0
2: for each machine r ∈ M \ {0} do // let k be its position in p
3: Initialize β with br

4: ∆ := 0
5: for q = k + 1, . . . , n− 1 do
6: Compute δq by executing lines 6–12 of get_gain
7: ∆ := ∆ + δq

8: if ∆ < ∆∗ then
9: ∆∗ := ∆
10: r∗ := r
11: l := q
12: β∗ := β

13: end if
14: end for
15: Initialize β̄ with zr − br

16: ∆ := 0
17: for q = k− 1 to 1 by −1 do
18: Compute δ̃q by executing lines 18–24 of get_gain
19: ∆ := ∆ + δ̃q

20: if ∆ < ∆∗ then
21: ∆∗ := ∆
22: r∗ := r
23: l := q
24: β∗ := zr − β̄

25: end if
26: end for
27: end for
28: if ∆∗ < 0 then insert(r∗, l, p, β∗) end if
29: return ∆∗

5. Computational Experiments

The purpose of this section is to examine the computational performance of the
described simulated annealing and variable neighborhood search hybrid for solving the
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BLLP. We shall demonstrate the significance of having both components, SA and VNS,
employed to work together. A specific question to answer is which of move types, pairwise
interchanges or insertions, is preferable to get better quality solutions. We also test our
algorithm on the benchmark instances of the TIP.

5.1. Experimental Setup

The described algorithm has been coded in the C++ programming language, and the
tests have been carried out on a laptop with Intel Core i5-6200U CPU running at 2.30 GHz.
We performed our experiments on the following four datasets:

(a) quadratic assignment problem-based sko instances [48] tailored for the single row
facility layout problem by Anjos and Yen [49]. We have adapted these benchmark
instances for the BLLP by using the lengths of facilities as distances between adjacent
machine locations (the set consists of 20 instances with n = 64, 72, 81, 100). The sko
dataset is well known and is used as a benchmark to test algorithms in the facility
layout literature [32,45,50–52];

(b) a series of randomly generated larger-scale BLLP instances ranging in size from 110
to 300 machines. The off-diagonal entries of the flow cost matrix and the distances
between adjacent locations in these instances are integer numbers drawn uniformly
at random from the intervals [0, 10] and [1, 10], respectively;

(c) instances introduced by Anjos et al. [53] and adapted for the TIP by Ghosh [4]. Their
size ranges from 60 to 80 tools. It is assumed that the tool magazine has 100 slots;

(d) four largest sko instances used by Ghosh [4,26] to test the algorithms for the TIP. As in
dataset (c), the number of slots is fixed to 100.

We note that in each BLLP instance, the first machine serves as the LUL station,
and this station is installed at the first location. All the datasets as well as the source code
of SA-VNS are publicly available at http://www.personalas.ktu.lt/~ginpalu/bllp.html.

In the main experiments for the BLLP (Sections 5.3 and 5.4), we run SA-VNS 10
times on each problem instance in the selected datasets. Maximum CPU time limits for
a run of the algorithm were as follows: 30 s for n 6 80, 60 s for 80 < n 6 100, 300 s for
100 < n 6 150, 600 s for 150 < n 6 200, 1200 s for 200 < n 6 250, and 1800 s for n > 250.
To measure the performance of the algorithm, we use the objective function value of the
best solution out of 10 runs, the average objective function value of 10 solutions, and the
average time taken to find the best solution in a run. To compare our approach with the
state-of-the-art algorithm of Atta et al. [5], we increased the number of runs to 30 in the
experiments for the tool indexing problem.

5.2. Setting Parameters

In our implementation of SA, the main parameters are the cooling factor α and the
number of iterations, Q, at which the temperature is kept constant. We followed recom-
mendations from the SA literature [44,54] and set α to 0.95 and Q to 100n.

The behavior of the VNS algorithm is controlled by the parameters kmin, ξ1, ξ2 and µ
(see Section 4). In order to find good parameter settings for all of them, we examined the
performance of VNS on a training sample consisting of 10 BLLP instances of size varying
from 210 to 300 machines. Of course, this sample is disjoint from dataset (b), which is
reserved for the testing stage. The experiments have been conducted for various parameter
settings by running SA-VNS once for each problem instance in the training set and for each
move type (pairwise interchanges of machines and insertions). We set the cut-off time to be
10 min for each run. The experimental plan was based on a simple procedure. We allowed
one parameter to take a number of predefined values, while keeping the other parameters
fixed at reasonable values chosen during preliminary tests. We started by examining the
following 10 values of the parameter ξ1: 0.001, 0.005, 0.01, 0.02, 0.03, 0.05, 0.08, 0.1, 0.15 and
0.2. We have found that SA-VNS is fairly robust to changes in the parameter ξ1 over the
range of settings investigated. A marginally better performance was observed for ξ1 = 0.02.
Therefore, we set ξ1 to 0.02. The next step was to assess the influence of the parameter ξ2 on

http://www.personalas.ktu.lt/~ginpalu/bllp.html
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the quality of solutions. The ξ2 values ranged from 0.1 to 0.5 in increments of 0.1. The results
were similar for ξ2 values between 0.3 and 0.5. They were significantly better than those for
ξ2 6 0.2. We decided to fix ξ2 at 0.4. In the next experiment, we examined the following
values of the parameter kmin: 1, 3, 5, 10 and 20. The results obtained were quite robust to
the choice of kmin. The performance of SA-VNS slightly increased for lower values of kmin.
Based on this finding, we fixed kmin at 1. Further, we analyzed the effect of the parameter
µ on the performance of SA-VNS. We run SA-VNS with µ ∈ {1, 3, 5, 10, 25, 50, 100, 200}.
The range of acceptable values for µ has been found to be quite wide. Good quality
solutions were obtained for µ ∈ {3, . . . , 25}, with a slight edge to µ = 5. The performance
of SA-VNS became worse when µ was larger than 25. The choice of µ = 1 led to even more
significant decrease in the performance of the algorithm. Upon the above results, we set µ
to 5.

In our next experiment, we ran SA-VNS for different values of the parameter ρ.
We remind that this parameter is used to set the CPU time limit for both the SA and
VNS algorithms (see Section 2). We tested values of ρ from 0 to 1 in increments of 0.1.
We repeated this experiment for all four SA-VNS configurations that are defined by the
pair of the 0− 1 variables VSA, VVNS whose value controls the choice of the move operator:
if it is zero, then the search is based on the pairwise interchange mechanism, otherwise
insertion moves are used. It was found from the experiment that SA-VNS was capable of
producing good quality solutions when the parameter ρ was set to a value in the range of
[0.2, 0.7]. The best performance of SA-VNS was for ρ = 0.6 when VSA = VVNS = 0 and for
ρ = 0.5 in the remaining three cases. In light of these findings, we elected to set ρ to 0.5.

Summarizing, there are very few parameters whose value is required to be submitted
to the program implementing SA-VNS. These are the cut-off time tlim and the algorithm
configuration parameters VSA and VVNS that are used to decide which neighborhood
structure to employ in the search process. The remaining parameters are fixed in the code
with the values specified above.

5.3. Comparing SA-VNS versus Its Components

Our next step was to compare pure SA and VNS algorithms with their combination
SA-VNS. We tested two versions of each of the pure algorithms — one of them employs
pairwise interchanges of machines (when VSA or VVNS is set to zero) and another is based
on performing insertion moves (when VSA = 1 or VVNS = 1). In Table 1, the former version
is denoted by SA-0 and VNS-0, and the latter version is denoted by SA-1 and VNS-1. To run
SA-0 (or SA-1) alone, we simply set the parameter ρ to 1 in the SA-VNS code. Similarly,
by setting ρ = 0 we force SA-VNS to become VNS-0 or VNS-1. We note that SA-0 and SA-1
are, in fact, multi-start simulated annealing techniques. To refer to the hybrid approach,
we will use notation SA-VNS-i-j, where i = VSA and j = VVNS. For example, SA-VNS-1-1
is a variant of the hybrid algorithm in which both SA and VNS employ insertion moves.
Our decision to choose this variant as a representative of SA-VNS in Table 1 was driven by
the results from preliminary tests. To compare SA and VNS with SA-VNS, we carried out a
numerical experiment on a set of 15 randomly generated BLLP instances of size ranging
from 100 to 200 machines. This set of instances does not have any overlap with the set used
in the final testing phase (Section 5.4). Time limits for a run of the algorithm are specified
in Section 5.1: 60 s for n = 100, 300 s for n = 150, and 600 s for n = 200. Because of the
stochastic nature of our algorithms, the experimental results were collected by running
each algorithm 10 times on each problem instance.
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Table 1. Comparison of various configurations of SA and VNS against their combination: best (Γbest) and average (Γav) solution gaps
to the best objective value.

Instance Best Γbest(Γav)

Value SA-0 SA-1 VNS-0 VNS-1 SA-VNS-1-1

p100-1 3,003,926 0(124.4) 0(13.5) 0(2432.7) 0(1982.3) 0(19.8)
p100-2 3,148,061 2(221.2) 0(18.0) 2(2326.2) 446(1844.1) 0(86.8)
p100-3 2,995,405 18(84.9) 0(22.8) 14(2736.1) 0(2231.3) 0(19.5)
p100-4 2,709,226 8(130.6) 4(24.5) 0(1886.4) 0(1631.1) 0(1.8)
p100-5 3,081,967 230(749.6) 87(346.4) 0(3655.3) 0(2622.5) 0(245.1)
p150-1 11,209,802 931(1763.4) 46(736.7) 6055(9732.9) 0(6667.0) 0(753.5)
p150-2 9,592,147 110(575.2) 26(132.8) 1904(8409.7) 1951(8614.7) 0(111.1)
p150-3 10,363,199 0(1057.3) 0(153.4) 0(12,511.1) 379(9156.7) 0(202.5)
p150-4 10,306,319 116(535.6) 16(124.3) 1984(15,039.7) 0(13276.0) 0(45.9)
p150-5 10,345,363 32(386.1) 0(76.3) 127(10,685.3) 4224(8601.7) 0(17.5)
p200-1 26,003,404 242(3960.7) 247(2061.8) 8114(21,846.7) 0(10,178.4) 2(2992.1)
p200-2 25,812,802 186(916.8) 15(214.3) 2227(34,335.1) 308(25,313.8) 0(119.4)
p200-3 25,047,165 63(1950.7) 183(904.1) 7416(33,778.2) 7460(28,973.1) 66(822.8)
p200-4 24,982,077 1232(3441.9) 471(2452.1) 8245(28,021.8) 6821(23,232.3) 15(2855.1)
p200-5 26,576,831 109(1008.0) 138(460.5) 2330(20,172.8) 0(16,641.1) 15(319.3)

Average 218.6(1127.1) 82.2(516.1) 2561.2(13,838.0) 1439.3(10,731.1) 6.5(574.1)

The performance of the developed algorithms is assessed in Table 1. Its first column
contains the names of the problem instances. The integer following “p” in the name of an
instance indicates the number of machines. As a reference point for comparison between
the algorithms, we use the objective function value obtained in a single long run of SA-
VNS-1-1. It is referred to as “Best value” in Table 1 and in the next tables. For long runs,
we increased the time limits listed in Section 5.1 by a factor of 30. The performance of the
algorithms is quantified by the following measures: the gap, Γbest, of the value of the best
solution out of 10 runs (as well as the gap, Γav, of the average value of 10 solutions) found
by an algorithm to the value reported in the second column. The last five columns of the
table present the gaps Γbest and (in parentheses) Γav of the tested versions of SA and VNS
as well as SA-VNS-1-1. The bottom row of Table 1 shows these statistics averaged over all
15 problem instances.

Inspection of Table 1 reveals that the insertion neighborhood is definitely superior
to the pairwise interchange neighborhood for both algorithms, SA and VNS. Another
observation is that SA, on average, performs better than VNS. Comparing the results of
SA and VNS with those of their hybrid SA-VNS-1-1, we see that the quality of solutions is
significantly in favor of the SA-VNS-1-1 algorithm. In particular, SA-VNS-1-1 was capable
of reaching the best solution for 11 problem instances, whereas SA-1 and VNS-1 produced
the best result for 5 and, respectively, 8 instances only. Moreover, the average solution
gap Γav for SA-VNS-1-1 is smaller than for SA-1 in 9 cases out of 15. We can see in Table 1
that there are a few cases where an algorithm different from SA-VNS-1-1 shows slightly
better performance. For the first two instances, such an algorithm is SA-1. It is interesting
that SA-VNS-1-1 produced the best solution for these instances more times than SA-1: 8
for p100-1 and 5 for p100-2 against 5 for p100-1 and 1 for p100-2. However, SA-VNS-1-1
delivered solutions of significantly lower quality in one run for p100-1 and two runs for
p100-2. Though less frequently found the best permutation, SA-1 did not yield much worse
solutions in other runs. So, despite the fact that both algorithms, SA-1 and SA-VNS-1-1,
perform only insertion moves, the solution values from SA-VNS-1-1 are likely to be more
scattered than those from SA-1. Perhaps the reason is that SA-VNS-1-1 combines two
heuristic techniques. We can also see that another algorithm, VNS-1, found slightly better
solutions than SA-VNS-1-1 for p200-1 and p200-5. However, in each of these cases, the best
solution value stands far below from the objective function values of solutions produced in
the other nine runs of VNS-1. For example, the best objective value for p200-5 is 26,576,831
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and the second best objective value by VNS-1 is 26,577,728. The objective value of each of
the 10 solutions generated by SA-VNS-1-1 is less than the above number. This example
sheds some light on why the values of Γav for VNS-1 (and VNS-0 as well) in Table 1 are so
big. However, as our experiment shows, VNS-1, when used separately, may occasionally
produce better solutions than VNS-1 integrated with SA method. By examining Table 1,
we notice that the SA-VNS-1-1 algorithm has failed to find the best solution also for p200-3.
A better solution for this instance was obtained by SA-0. This situation is very similar to
the previous one, where SA-VNS-1-1 was compared with VNS-1. Now, the second best
solution by SA-0 is worse than all SA-VNS-1-1 solutions but one. In general, compared with
the results by SA-0, the SA-VNS-1-1 algorithm produced an inferior solution for one (out
of 15) problem instance only. It outperformed SA-0 in 12 cases and tied in the remaining
two cases.

The results achieved in Table 1 suggest that SA-1 is the best performing algorithm
among the tested versions of SA and VNS. In the main experiment, we therefore selected
SA-1 as a representative of the set of non-hybrid algorithms {SA-0, SA-1, VNS-0, VNS-1}.

5.4. Performance of SA-VNS

We now provide computational comparisons between four versions of the SA-VNS
algorithm. They are obtained by setting the values of the parameters VSA and VVNS.
The version notation is given in the previous section. We also include the SA-1 algorithm
in the comparison.

The results of solving BLLP instances in the sko dataset are summarized in Table 2.
Its structure is similar to that of Table 1. As before, the first integer in the name of the
instance is the number of machines. The value in the second column, for each instance,
was obtained by running SA-VNS-1-1 once for time 30tn, where tn stands for the run-time
limit specified in Section 5.1. We see from the table that SA-VNS-0-1 and SA-VNS-1-1 are
superior to the other three algorithms. Only these two versions of SA-VNS were capable
of reaching the best value for each instance in the sko set. The pure SA algorithm, SA-1,
is outperformed by these SA-VNS configurations. We also observe that SA-VNS-1-0 is on a
par with SA-1. Both of them surpass SA-VNS-0-0 in which both SA and VNS are based on
peforming pairwise interchange operation. In Table 3, we report the average running time
to the best solution in a run of each algorithm. For each n ∈ {64, 72, 81, 100}, the results
are averaged over 10 runs and over 5 instances with the number of machines equal to n.
We find that the ranking of algorithms according to running time correlates well with the
ranking obtained by analyzing the results in Table 2. However, it can also be seen that the
average running times of the algorithms differ by a small amount only. Overall, we can
conclude from Tables 2 and 3 that sko instances are not challenging enough for our hybrid
SA-VNS approach.

Table 4 shows the results obtained by SA-VNS and SA-1 algorithms for larger-scale
BLLP instances (set (b) in Section 5.1). The information in the table is organized in the
same manner as in Table 2. The integer in the instance name gives the number of machines.
The second column displays, for each instance, the objective function value of a solution
found in a single long run of SA-VNS-1-1. As in the previous experiments, the cut-off time
for this run was set to 30tn. From Table 4, it can be seen that SA-VNS-1-1 outperforms
other SA-VNS variants and SA-1 as well. We notice that SA-VNS-1-1 was able to match
the best objective value for 8 instances, whereas SA-VNS-1-0 and SA-1 did this only for
7 and 5 instances, respectively. Comparing average solution gaps, Γav, we observe that
SA-VNS-1-1 and SA-1 perform better than the rest of the algorithms. Among these two,
SA-VNS-1-1 has achieved smaller Γav values than SA-1 for 14 problem instances and larger
Γav values for the remaining 6 instances. Thus, we can conclude that SA-VNS-1-1 applied to
dataset (b) is superior to other tested algorithms. Another observation from Table 4 is that
also SA-VNS-1-0 and SA-1 performed quite well. The results show that these algorithms
are on the same level in terms of solution quality. Again, as in the case of sko instances,
SA-VNS-0-0 is the worst algorithm in the comparison.
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Table 2. Comparison of the objective function values for the adapted sko instances: best (Γbest) and average (Γav) solution gaps to the
best result.

Instance Best Γbest(Γav)

Value SA-1 SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1

sko64-1 74,067 0(0.1) 0(2.3) 0(0) 0(0.3) 0(0)
sko64-2 573,458 0(70.7) 0(73.1) 0(2.9) 0(37.0) 0(40.0)
sko64-3 363,994 0(11.1) 0(11.1) 0(10.0) 0(0) 0(0.2)
sko64-4 243,966 0(8.0) 0(18.8) 0(0) 0(4.8) 0(0)
sko64-5 430,063 0(114.6) 0(108.2) 0(23.0) 115(144.0) 0(38.4)
sko72-1 107,431 0(3.2) 0(52.1) 0(0) 0(0) 0(0)
sko72-2 609,044 0(85.3) 0(81.4) 0(29.7) 0(77.3) 0(26.2)
sko72-3 1,009,747 0(17.3) 0(21.0) 0(0) 0(100.5) 0(100.5)
sko72-4 853,106 0(85.7) 0(244.0) 0(139.7) 0(77.2) 0(54.4)
sko72-5 351,489 0(81.7) 0(97.1) 0(5.4) 0(93.9) 0(63.2)
sko81-1 155,730 0(0) 0(0.6) 0(0) 0(0) 0(0)
sko81-2 447,633 0(2.4) 0(7.2) 0(0) 0(0.8) 0(0)
sko81-3 848,904 0(13.3) 0(4.5) 0(0) 0(4.4) 0(4.4)
sko81-4 1,768,175 0(13.6) 0(11.1) 0(0) 0(3.5) 0(2.5)
sko81-5 1,175,705 0(10.5) 0(0.1) 0(0) 0(0) 0(0)
sko100-1 288,678 0(15.9) 20(64.3) 0(20.4) 0(31.3) 0(21.4)
sko100-2 1,806,738 141(435.7) 221(783.2) 0(472.6) 0(573.2) 0(392.4)
sko100-3 14,871,217 0(1320.5) 43(1857.1) 0(1046.2) 0(1502.9) 0(1341.4)
sko100-4 2,980,012 26(270.1) 78(654.9) 0(411.5) 0(422.1) 0(250.8)
sko100-5 879,038 0(258.3) 0(286.7) 0(195.5) 0(286.4) 0(259.4)

Average 8.3(140.9) 18.1(218.9) 0(117.8) 5.7(168.0) 0(129.8)

Table 3. Comparison of the average running time (in seconds) to the best solution in a run for the
adapted sko instances (the time is averaged over all runs and all instances of the same size).

Instance Group SA-1 SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1

sko64 11.7 13.2 11.0 11.4 10.9
sko72 11.8 14.0 9.1 12.1 9.9
sko81 16.7 21.8 12.3 16.6 14.6
sko100 30.9 29.7 26.0 29.5 27.2

Average 17.8 19.7 14.6 17.4 15.7

Table 4. Comparison of the objective function values for larger problem instances: best (Γbest) and average (Γav) solution gaps to the
best result.

Instance Best Γbest(Γav)

Value SA-1 SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1

p110 4,121,976 0(1.8) 0(52.8) 0(0) 0(0) 0(0)
p120 5,712,477 0(2.4) 0(352.7) 0(26.1) 0(0.8) 0(0)
p130 7,163,273 0(308.9) 0(372.6) 0(151.5) 0(272.8) 0(269.9)
p140 8,531,830 48(243.6) 55(577.3) 0(387.5) 0(301.5) 0(272.4)
p150 10,223,765 0(144.3) 296(1192.7) 0(213.8) 0(83.7) 0(49.0)
p160 13,831,552 0(153.0) 526(1119.9) 0(763.0) 0(211.9) 0(106.8)
p170 15,765,986 57(860.2) 313(1529.4) 28(633.8) 63(1085.2) 63(908.3)
p180 17,879,424 469(850.8) 294(830.0) 30(529.1) 231(981.0) 257(875.5)
p190 22,570,679 30(177.3) 122(1249.0) 45(504.2) 30(106.6) 0(33.0)
p200 25,948,640 109(435.1) 766(2763.3) 217(2052.7) 109(504.3) 7(293.5)
p210 28,275,043 86(221.3) 246(932.7) 28(199,3) 27(353.4) 19(176.9)
p220 34,618,625 170(687.0) 447(2614.5) 125(1584.5) 72(566.6) 28(483.0)
p230 42,559,657 344(628.2) 309(1306.9) 302(656.8) 116(519.6) 113(360.8)
p240 43,876,137 318(1523.6) 1095(2803.3) 381(1913.4) 277(1968.5) 507(1852.9)
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Table 4. Cont.

Instance Best Γbest(Γav)

Value SA-1 SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1

p250 50,981,493 336(634.1) 1174(4150.3) 267(1352.4) 0(481.5) 50(328.8)
p260 58,694,312 64(343.3) 2130(5529.0) 778(4098.1) 10(570.0) 0(481.5)
p270 64,033,556 86(561.1) 1503(4106.2) 679(2358.4) 74(609.1) 36(337.5)
p280 69,343,736 479(1225.9) 715(3681.5) 719(2392.8) 414(1423.3) 44(1018.5)
p290 80,334,743 516(2164.9) 3492(5716.0) 1481(4434.9) 1050(2295.7) 535(1924.1)
p300 89,325,779 430(2590.7) 2225(8680.3) 1544(6846.3) 321(3649.8) 22(3129.9)

Average 177.1(687.9) 785.4(2478.0) 331.2(1554.9) 139.7(799.3) 84.0(645.1)

In Table 5, we present the results for running time, where every entry represents the
average of 10 runs. Specifically, the second column of the table shows the average running
time to the best solution in a run of SA-1. The next columns provide the same kind of
statistics for the SA-VNS variants. The running times, averaged over all problem instances,
are given in the last row. We can see that they do not differ much among algorithms.
Actually, SA-1 and SA-VNS-1-1 took slightly less time than the other three techniques.
The longest running time was observed with the SA-VNS-0-1 configuration of our method.

Table 5. Comparison of the average running time (in seconds) to the best solution in a run for larger
problem instances.

Instance SA-1 SA-VNS-0-0 SA-VNS-0-1 SA-VNS-1-0 SA-VNS-1-1

p110 77.3 197.9 60.7 53.3 46.2
p120 110.4 161.0 101.0 86.5 64.1
p130 130.8 104.0 128.7 141.4 151.0
p140 132.0 176.4 193.1 144.3 144.0
p150 108.4 154.2 130.7 154.3 102.5
p160 327.3 338.2 359.5 378.0 345.3
p170 265.9 211.1 290.0 343.2 306.2
p180 274.6 315.7 334.5 220.3 249.5
p190 219.9 276.7 306.9 249.7 206.8
p200 288.8 364.2 312.4 293.5 298.9
p210 607.1 497.7 484.2 611.9 581.9
p220 468.4 695.7 644.5 502.5 630.9
p230 465.7 804.3 905.8 839.6 824.7
p240 767.6 611.6 582.6 592.6 488.1
p250 511.3 612.7 583.0 693.0 645.3
p260 959.9 760.5 1088.0 1321.7 1172.5
p270 411.2 1028.8 1059.6 578.2 559.0
p280 932.4 808.4 998.2 730.7 759.6
p290 1087.7 965.3 890.0 1049.5 1172.6
p300 976.3 925.2 1059.6 1032.8 966.5

Average 456.2 500.5 525.6 500.9 485.8

5.5. Results on Benchmark Instances of the Tool Indexing Problem

In order to show the applicability of our algorithm for solving the TIP, we tested
it on two sets of TIP benchmark instances. In accordance with the results of previous
subsection, we chose SA-VNS-1-1 to represent our approach. We assess the performance
of SA-VNS-1-1 by comparing our results for TIP with those obtained with the harmony
search (HS) algorithm proposed by Atta et al. [5]. HS has been shown in [5] to outperform
earlier methods for the TIP. In our experiment, the computation time limits were chosen
dependent on the number of tools, m: 20 s for m < 75, 30 s for 75 6 m < 100, and 40 s for
m = 100.
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The results of solving TIP instances are reported in Tables 6 and 7. The number of tools
is encoded in the instance name displayed in the first column. The results of HS algorithm
(columns 2–4) are taken from [5]. In the tables, Fbest and Fav (computed using (1)) denote
the value of the best solution and, respectively, the average value of solutions found by an
algorithm. In [5], these values are determined from 30 runs of HS per instance. Our results
were obtained by making 30 runs of SA-VNS-1-1 for each problem instance. The second
column of each of the tables presents the best known values (BKV) reported in the literature.
They were obtained using the HS algorithm [5]. The values better than BKV are highlighted
in bold face (“Fbest” column for SA-VNS-1-1). The penultimate column of each of Tables 6
and 7 shows the number of runs (out of 30) where the best solution was found by SA-VNS-
1-1. The fourth column displays the average computation time (in seconds) of HS. Atta et
al. [5] run their algorithm on a computer with Intel Core i5 (3.10 GHz) processor. In the last
column of each table, we show the average running time needed for SA-VNS-1-1 to hit the
best objective value in the run. We also present the percentage gaps between the results
of SA-VNS-1-1 and HS. The gaps are calculated as gbest = 100(FHS

best − FSA−VNS
best )/FSA−VNS

best
and gav = 100(FHS

av − FSA−VNS
av )/FSA−VNS

best , where FHS
best and FSA−VNS

best are the entries of the
columns under heading Fbest for HS and SA-VNS-1-1, respectively, and FHS

av and FSA−VNS
av

are defined analogously with respect to Fav. Both the algorithms obtained the same best
result for almost all Anjos instances, so gbest is not shown in Table 6.

Table 6. Performance comparison for the Anjos instances of the tool indexing problem.

Instance HS a SA-VNS-1-1

Fbest Fav Time(s) Fbest Fav gav Succ. Rate Time(s)

Anjos-60-1 54,053 54,124.7 6.8 54,053 54,110.4 0.03 13 10.9
Anjos-60-2 31,274 31,386.1 6.8 31,274 31,282.6 0.33 28 7.3
Anjos-60-3 23,510 23,648.1 7.0 23,509 23,525.7 0.52 23 9.5
Anjos-60-4 11,592 11,734.0 7.4 11,592 11,596.6 1.19 29 5.0
Anjos-60-5 15,168 15,324.6 7.4 15,168 15,168.0 1.03 30 3.9
Anjos-70-1 42,296 42,508.5 7.4 42,296 42,390.3 0.28 12 10.8
Anjos-70-2 51,723 51,803.6 7.5 51,723 51,770.8 0.06 27 6.5
Anjos-70-3 43,794 43,961.3 7.9 43,794 43,794.0 0.38 30 2.6
Anjos-70-4 27,702 27,886.6 8.4 27,701 27,701.0 0.67 30 5.6
Anjos-70-5 134,238 134,526.8 7.3 134,238 134,394.8 0.10 19 9.0
Anjos-75-1 66,630 66,849.9 8.0 66,630 66,631.7 0.33 27 10.8
Anjos-75-2 111,806 112,103.1 7.6 111,806 111,806.0 0.27 30 7.2
Anjos-75-3 38,151 38,385.8 8.2 38,151 38,179.5 0.54 23 11.6
Anjos-75-4 106,341 106,512.3 8.6 106,341 106,341.0 0.16 30 2.6
Anjos-75-5 47,017 47,219.1 8.0 47,017 47,017.0 0.43 30 2.8
Anjos-80-1 54,463 54,536.6 8.7 54,463 54,494.4 0.08 25 10.8
Anjos-80-2 52,853 52,979.8 8.4 52,851 52,852.1 0.24 14 8.5
Anjos-80-3 95,091 95,415.1 8.7 95,091 95,091.0 0.34 30 1.9
Anjos-80-4 100,828 101,084.2 9.1 100,828 100,828.0 0.25 30 1.8
Anjos-80-5 36,217 36,433.6 8.8 36,213 36,213.2 0.61 25 8.6

a results of the HS algorithm are reported in [5].

Table 7. Performance comparison for the sko instances of the tool indexing problem.

Instance HS a SA-VNS-1-1

Fbest Fav Time(s) Fbest gbest Fav gav Succ. Rate Time(s)

sko-64 95,191 96,361.7 8.8 95,187 0.00 95,210.9 1.21 23 6.8
sko-72 132,613 134,197.2 9.6 132,566 0.04 132,566.0 1.23 30 6.1
sko-81 183,934 186,312.3 10.2 183,782 0.08 183,782.1 1.38 28 9.1

sko-100 289,069 291,906.6 12.7 288,678 0.14 288,720.2 1.10 8 16.0
a results of the HS algorithm are reported in [5].
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The obtained results indicate that the solutions found by SA-VNS-1-1, on average,
are better than those produced by the HS algorithm. Comparing the values of Fav, we can
see that SA-VNS-1-1 consistently outperformed HS for all 24 instances. The superiority of
SA-VNS-1-1 over HS is more pronounced for instances in the sko dataset (Table 7). We also
observe that, for 9 instances, SA-VNS-1-1 was able to produce the best solution in each
of 30 independent runs. Notably, this algorithm has improved the best known values for
four Anjos instances and all four sko instances. The other observation is that running times
of HS and SA-VNS-1-1 reported in Tables 6 and 7 are comparable. Specifically, the times,
averaged over all instances in a set, are as follows: 7.9 s for HS and 6.9 s for SA-VNS-1-1 in
Table 6, and 10.3 s for HS and 9.5 s for SA-VNS-1-1 in Table 7.

For a more realistic comparison of algorithms, the computer and the programming
language used should be taken into consideration (an example of comparison can be found
in [55]). However, comparison of SA-VNS and HS is somewhat complicated because
of the absence of some information regarding HS in [5]. The single thread rating of
Intel Core i5-6200U (2.30 GHz) is 1602 (for example, these data are available from https:
//www.cpubenchmark.net/singleCompare.php). Atta et al. [5] used a computer with Intel
Core i5 (3.10 GHz) processor. However, they provided only Intel Core brand modifier i5,
and not the full processor name. One might guess that the single thread rating of their CPU
is comparable or slightly larger than that of the CPU of our laptop. If this is true, then our
computer has no speed advantage over the computer used in [5]. Our algorithm was
coded in the C++ programming language and the HS algorithm was coded in MATLAB
(see [5]), so our code runs faster. According to [56], MATLAB is 1.29 times slower than C++
when MEX file functions are used, and about 9 times slower in the general case. Despite
difficulties in the direct comparison of SA-VNS and HS, we can draw a conclusion that our
algorithm achieves a good balance between time consumption and solution quality.

From Tables 6 and 7, one can see that SA-VNS-1-1 did not succeed in all runs for
15 problem instances. We increased the time limit by a factor of 10 and repeated the
experiment with SA-VNS-1-1 for these instances. The aim was to estimate how much
time is required to produce the best result in each run. The answer is given in Table 8,
where the second column stands for the average time taken per run and the third column
reports the CPU time for the longest run. Interestingly, the most difficult instances for
SA-VNS-1-1 are three smaller size instances (with m 6 70) and the largest instance. For the
latter, we show in Figure 6 how the number of runs producing the best solution increases
with increasing cut-off time. We observe, for example, that SA-VNS-1-1 can find the best
solution in 70 seconds with the probability of about 50%.

Table 8. Time (in seconds) taken by SA-VNS-1-1 to reach the best solution in all 30 runs.

Instance Average Time Maximum Time

Anjos-60-1 35.5 156.9
Anjos-60-2 8.6 33.1
Anjos-60-3 13.6 40.3
Anjos-60-4 6.1 28.8
Anjos-70-1 48.4 191.1
Anjos-70-2 9.6 51.5
Anjos-70-5 25.0 170.4
Anjos-75-1 11.7 31.4
Anjos-75-3 20.3 72.9
Anjos-80-1 17.1 64.0
Anjos-80-2 36.0 114.1
Anjos-80-5 12.2 47.0
sko-64 12.9 52.1
sko-81 9.1 19.3
sko-100 85.8 300.2

https://www.cpubenchmark.net/singleCompare.php
https://www.cpubenchmark.net/singleCompare.php


Mathematics 2021, 9, 5 26 of 30

0 25050 100 150 200

5

20
S

u
cc

es
s 

ra
te

Time (s)

300

10

15

25

30

Figure 6. Number of runs where the best solution was found by SA-VNS-1-1 versus the computation
time (in seconds) for sko-100.

6. Discussion

As noted in the introduction, the main goals of our work are to develop a metaheuristic
algorithm for solving the BLLP and to compare the performance of this algorithm with that
of HS which is the most advanced method for the tool indexing problem. The latter can
be regarded as a special case of the BLLP. The results of the previous sections suggest that
these objectives were achieved. In the past, many techniques, both exact and heuristic, have
been proposed for the unidirectional loop layout problem (ULLP). The BLLP is perceived
as being inherently more difficult than the ULLP. Perhaps it is one of the reasons why the
BLLP has been considered less in the literature. As outlined in the introduction, the existing
algorithms for the BLLP in its general formulation are exact or approximation methods.
To the best of our knowledge, we are not aware of metaheuristic-based algorithms presented
in the literature to solve this problem. To bridge this gap, in this paper, we propose an
algorithm that combines simulated annealing with the variable neighborhood search
method. In the absence of other metaheuristic algorithms for the BLLP, we restricted
ourselves to testing various configurations of SA-VNS. The algorithm was validated using
two datasets: one consists of the adapted sko instances and the other is our own dataset.
The latter is made publicly available and could be used as a benchmark to design and
experiment with new metaheuristic algorithms intended to solve the BLLP. This set consists
of large-scale BLLP instances. Experimental data support the usefulness of our algorithm.
For problem instances with up to around 150 machines, various configurations of SA-
VNS were able to find the best solutions multiple times. This shows the robustness and
effectiveness of the method. Our algorithm has also shown an excellent performance in
solving the TIP. As it is evident from Tables 6 and 7, SA-VNS is superior to the HS heuristic
which is the state-of-the-art algorithm for the TIP. This observation, together with the
results in Tables 4 and 5 in [5], allows us to believe that SA-VNS also performs better than
earlier algorithms for this problem. Generally, we notice that the results of this paper
are consistent with previous studies showing that both SA and VNS are very successful
techniques for solving optimization problems defined on a set of permutations (see [39]
and references therein).

Next, we discuss the effect of using procedures get_gain and explore_neighborhood
invoked by SA and, respectively, by VNS (via LS_insertions). Their description is ac-
companied by Proposition 1 (Section 3) and, respectively, Proposition 3 (Section 4). First,
we eliminate get_gain from SA. Actually, we replace the statement in line 14 of Algorithm
2 by a statement similar to the one in line 11: Compute ∆ := F(p′)− F(p), where p′ is the
permutation obtained from p by removing machine r from its current position in p and
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inserting it at position l. The computation of F(p′), according to Equation (1), takes O(n2)
time, as opposed to O(n) time, as stated in Proposition 1. The modification of SA-VNS-
1-1 just described is denoted by SA’-VNS-1-1. We performed computational experiment
on the same TIP instances as in Section 5.5. The results are reported in columns 4–6 of
Tables 9 and 10. The percentage gaps gav are calculated for Fav values displayed in the
third and fifth columns. For the sake of comparison, we also include the SA-VNS-1-1
results taken from Tables 6 and 7. After eliminating get_gain, the next step was to replace
explore_neighborhood by a standard procedure which calculated the gain ∆ directly by
computing the value of the function F for each permutation in the insertion neighborhood
N1 of the current solution. The time complexity of such procedure is O(n4), which is
much larger than the complexity of explore_neighborhood (as stated in Proposition 3).
The obtained modification of SA’-VNS-1-1 is denoted by SA’-VNS’-1-1. The results of
SA’-VNS’-1-1 are presented in the last three columns of Tables 9 and 10. We can see from
the tables that both modifications of SA-VNS-1-1 produce inferior solutions. The reason is
that they run slower compared to SA-VNS-1-1 and, within the time limit specified, often
fail to come up with a solution of highest quality. In particular, both modifications failed
to find the best solution for Anjos-70-1 instance in all 30 runs. Thus both get_gain and
explore_neighborhood are important ingredients of our algorithm.

Table 9. Comparison of different SA-VNS-1-1 versions for the Anjos instances of the tool index-
ing problem.

Instance SA-VNS-1-1 SA’-VNS-1-1 SA’-VNS’-1-1

Fbest Fav Fbest Fav gav Fbest Fav gav

Anjos-60-1 54,053 54,110.4 54,053 54,400.8 0.54 54,053 54,451.1 0.63
Anjos-60-2 31,274 31,282.6 31,274 31,383.0 0.32 31,274 31,395.3 0.36
Anjos-60-3 23,509 23,525.7 23,509 23,710.9 0.79 23,509 23,724.7 0.85
Anjos-60-4 11,592 11,596.6 11,592 11,739.8 1.24 11,592 11,739.8 1.24
Anjos-60-5 15,168 15,168.0 15,168 15,331.7 1.08 15,168 15,338.3 1.12
Anjos-70-1 42,296 42,390.3 42,405 42,520.7 0.31 42,405 42,588.7 0.47
Anjos-70-2 51,723 51,770.8 51,723 52,155.0 0.74 51,723 52,236.3 0.90
Anjos-70-3 43,794 43,794.0 43,794 43,916.5 0.28 43,794 43,922.7 0.29
Anjos-70-4 27,701 27,701.0 27,701 27,913.3 0.77 27,701 27,915.2 0.77
Anjos-70-5 134,238 134,394.8 134,238 134,909.1 0.38 13,4238 134,985.5 0.44
Anjos-75-1 66,630 66,631.7 66,630 67,037.2 0.61 66,630 67,053.7 0.63
Anjos-75-2 111,806 111,806.0 111,806 112,339.3 0.48 111,806 112,361.9 0.50
Anjos-75-3 38,151 38,179.5 38,151 38,315.8 0.36 38,151 38,326.7 0.39
Anjos-75-4 106,341 106,341.0 106,341 106,761.2 0.40 106,341 106,761.3 0.40
Anjos-75-5 47,017 47,017.0 47,017 47,110.7 0.20 47,017 47,130.5 0.24
Anjos-80-1 54,463 54,494.4 54,463 54,715.6 0.41 54,463 54,721.2 0.42
Anjos-80-2 52,851 52,852.1 52,851 52,852.7 0.00 52,851 52,898.5 0.09
Anjos-80-3 95,091 95,091.0 95,091 95,236.6 0.15 95,091 95,236.6 0.15
Anjos-80-4 100,828 100,828.0 100,828 100,912.8 0.08 100,828 100,912.8 0.08
Anjos-80-5 36,213 36,213.2 36,213 36,332.8 0.33 36,213 36,334.8 0.34

Table 10. Comparison of different SA-VNS-1-1 versions for the sko instances of the tool
indexing problem.

Instance SA-VNS-1-1 SA’-VNS-1-1 SA’-VNS’-1-1

Fbest Fav Fbest Fav gav Fbest Fav gav

sko-64 95,187 95,210.9 95,187 95,550.6 0.36 95,187 95,614.0 0.42
sko-72 132,566 132,566.0 132,566 133,050.4 0.37 132,566 133,067.8 0.38
sko-81 183,782 183,782.1 183,782 183,963.0 0.10 183,782 184,034.9 0.14

sko-100 288,678 288,720.2 288,678 288,759.9 0.01 288,678 288,841.1 0.04

The heuristics employed in our study, simulated annealing and variable neighborhood
search, have advantages and disadvantages compared to other optimization techniques.
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A well-known drawback of SA is the fact that annealing is rather slow and, therefore,
execution of an SA algorithm may take a large amount of computer time. We mitigate this
threat by using a fast procedure for computing move gain. Another weakness of SA is that
it can be trapped in a local minimum that is significantly worse than the global one. In our
hybrid approach, the local minimum solution is submitted to the VNS algorithm which
may produce an improved solution. Such a strategy allows to partially compensate the
mentioned weakness of SA. The VNS metaheuristic has certain disadvantages too. In many
cases, it is difficult to determine appropriate neighborhood structures that are used in the
shaking phase of VNS. In our implementation, the neighborhood is defined as the set of all
permutations that can be reached from the current permutation by performing a predefined
number of pairwise interchanges of machines (see Section 4). A possible direction to extend
the current work is to try different neighborhood structures for VNS in the BLLP.

7. Concluding Remarks

In this paper, we develop simulated annealing and variable neighborhood search
algorithms for the BLLP and combine them into a single method. The two components
of the approach are executed iteratively. At each iteration, SA starts with a randomly
generated initial solution. Then, the solution produced by SA is submitted as input to
the VNS algorithm for further improvement. An important result of the paper is a local
search technique that is based on a fast insertion neighborhood exploration procedure.
The computational complexity of this procedure is commensurate with the size of the
neighborhood, that is, it performs O(1) operations per move. This LS algorithm stands at
the heart of our VNS implementation.

By selecting one of the move types, either pairwise interchanges of machines or
insertions, we consider two variations of SA as well as VNS and four variations of their
hybrid SA-VNS. We have shown empirically that the variation with the insertion moves
enabled definitely gives better results than the variation of an algorithm, SA or VNS,
configured to perform pairwise interchanges of machines. Computational experiments
were carried out on large-scale instances of the BLLP. From the results, we can conclude
that SA and VNS hybrid algorithm is superior to both SA and VNS used stand-alone.

We have also conducted experiments for SA-VNS on two sets of benchmark tool
indexing problem instances. Our algorithm obtains excellent solutions at a modest compu-
tational cost. It competes very favorably with the best performing algorithm so far in the
literature. In particular, for 8 TIP instances, new best solutions were found.

There are several issues where further research is likely to be valuable. First, efforts
can be oriented towards improving the speed of existing algorithms for the BLLP and TIP.
For example, it would be interesting to investigate various neighborhood structures for
VNS. Another possibility is to replace SA in the combination SA-VNS by a faster heuristic.
Second, population-based evolutionary algorithms might provide an advantage over local
search-based techniques like SA and VNS. It would be a valuable work to implement,
for example, a memetic algorithm for solving the BLLP. The proposed insertion-based
LS procedure could be embedded in such algorithm and used as a powerful technique
for search intensification. Third, a natural direction is to use the SA and VNS hybrid
method as a basis for developing suitable algorithms for solving layout problems that are
generalizations or variations of the BLLP (like that considered in [23]). Fourth, it would be
intriguing to investigate the performance of the proposed algorithm on very large-scale
BLLP and TIP instances and find a good balance between the quality of solution and the
computation time. Testing the approach on real-world BLLP or TIP instances would be
of special interest. Finally, the strategy to hybridize SA and VNS can be adapted to solve
other combinatorial optimization problems, especially those whose solution space consists
of permutations.
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