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Abstract: We consider the multi-armed bandit problem with penalties for switching that include
setup delays and costs, extending the former results of the author for the special case with no
switching delays. A priority index for projects with setup delays that characterizes, in part, optimal
policies was introduced by Asawa and Teneketzis in 1996, yet without giving a means of computing
it. We present a fast two-stage index computing method, which computes the continuation index
(which applies when the project has been set up) in a first stage and certain extra quantities with cubic
(arithmetic-operation) complexity in the number of project states and then computes the switching
index (which applies when the project is not set up), in a second stage, with quadratic complexity.
The approach is based on new methodological advances on restless bandit indexation, which are
introduced and deployed herein, being motivated by the limitations of previous results, exploiting the
fact that the aforementioned index is the Whittle index of the project in its restless reformulation. A
numerical study demonstrates substantial runtime speed-ups of the new two-stage index algorithm
versus a general one-stage Whittle index algorithm. The study further gives evidence that, in a
multi-project setting, the index policy is consistently nearly optimal.

Keywords: multi-armed bandits; setup delays; setup costs; index policies; semi-Markov decision
processes; hysteresis

1. Introduction
1.1. Background

In a much-studied version of the multi-armed bandit problem (MABP), a decision-maker
selects one project to engage from a finite set of dynamic and stochastic projects at each of an
infinite sequence of discrete-time periods. Each project is modeled as a classic (non-restless)
bandit, so the engaged (active) project gives rewards and its state changes in a Markovian
fashion, while rested (passive) projects neither produce rewards nor change state. The goal
is to find a policy that selects one project to be engaged at each time, for maximizing the
expected total geometrically discounted reward. The MABP is widely applicable, being
regarded as a modeling paradigm of the exploration versus exploitation trade-off, and it has
generated a vast literature (see the monograph [1] and the cited references there). Although
the curse of dimensionality hinders direct numerical solution of its dynamic programming (DP)
optimality equations for realistic-size models, as the size of the multi-dimensional state
space grows exponentially with the number of projects, the MABP is solved optimally
by a remarkably simple type of policy, a so-called (priority-) index policy. Index policies
are based on defining for each project m an index Ay, (i, )—a scalar mapping of the project
state 7, that depends only on the project parameters—and engage at each time a project
of largest index. See, e.g., [2-6]. The index that is considered in [2], which is known in
the literature as the Gittins index, extends to general Markovian bandits that which was
introduced by Bellman in [7] for solving a Bernoulli bandit model.

However, appropriate modeling of potential applications often entails the incorpora-
tion of features that violate assumptions of the classic MABP. Regarding the assumption
that passive projects do not give rewards, this is noncritical, since passive rewards can be
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readily eliminated through a linear transformation, as shown in [8]. Yet, other assumptions
turn out to be critical, as index policies are typically suboptimal when they are violated.
Such is the case, as demonstrated in [9], with the requirement that switching from engaging
one project to another be costless, which is hardly realistic in many, if not most, applications.
As stated in (p. 1, [9]), “it is diffificult to imagine a relevant economic decision problem in which
the decision-maker may costlessly move between alternatives”. This motivates the interest of
investigating extensions of the MABP that incorporate costs and/or delays for switching
projects, which we will refer to generically, as in [10], as the multi-armed bandit problem with
switching penalties (MABPSP).

Despite its practical relevance, the MABPSP has received relatively scant research
attention when compared to the standard MABP. We refer the reader to [11] for a review of
research on the MABPSP until the early 2000s. Important references on such early work
include [9,10,12-14]. Additionally, see the survey [15]. Yet, the last decade has witnessed
growing interest on variants of the MABPSP, being motivated by the relevance of switching
penalties in a variety of application areas, including hiring and retention of workers who
learn over time [16], online marketing [17,18], experiential learning [19], opportunistic
channel access in communication networks [20,21], and continuation and abandonment
decisions for research projects [22]. For recent theoretical work on properties of the
MABPSP, see [23].

While the aforementioned work concerns discrete-state projects, ref. [24,25] address
Markovian continuous-state projects with constant setup penalties (costs or delays).

1.2. Index Policies, Histeresis, and the Asawa and Teneketzis Index for the MABPSP

While switching penalties can generally be sequence-dependent, this paper will focus
on the case that such penalties are separately defined for each project, while allowing them
to depend on the project state. Specifically, we will assume that switching from engaging
one project to another entails, similarly as in [26], a setdown cost to switch off the currently
engaged project, and then a setup cost followed by a random sefup delay to switch on the
project about to be engaged. Note that setup delays can be used to model, e.g., time for
preparing the ground or building infrastructure, as well as training or learning delays.

Although index policies are generally suboptimal for the MABPSP (see [9]), their
ease of implementation motivates the interest of designing policies from such a class
that perform well. An index policy in such a setting attaches to each project m an index
Am (8, i), which now depends on both the previous action a;, € {0,1} (passive: 0 or
active: 1) and the current project state i,,. Thus, such an index decouples into a continuation
index Ay (1,1,), which applies when the project has already been set up, and a switching
index Ay (0,1iy,), to be used when the project has not yet been set up.

Drawing on intuition one would expect that switching penalties should discourage
frequent switching and, hence, should cause a histeresis effect on the structure of optimal
policies. Thus, it should be optimal to stick longer to the currently engaged project that
would be the case in the absence of such penalties. As putin (p. 691 [9]), “it is obvious that in
comparing two otherwise identical arms, one of which was used in the previous period, the one which
was in use must necessarily be more attractive than the one which was idle”. To be consistent
with such a hysteresis property, the indices of a project m must satisfy that

Am(L,im) = Am(0,iy) for every project state iy,. (1)

Note that index policies can be optimal in special cases of the MABPSP, as shown
in [13], in a model for scheduling a multi-class batch of stochastic jobs.

An intuitively appealing choice of index, extending that in [13], is that considered by
Asawa and Teneketzis in [10]—which we will refer to in the sequel as the AT index—for
a project having either a constant (not dependent on the project state) setup cost or a
constant setup delay distribution, and no setdown costs. It is shown in [10] that the AT
index provides a partial characterization of optimal policies for the version of the MABPSP
considered there. The continuation AT index of a project is simply its Gittins index. As for
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the switching AT index, it is the highest rate of discounted expected reward minus setup
cost per unit of discounted expected active time (counting the setup delay as active time)
that can be attained from an initially passive project by first setting it up and then engaging
it for a random duration that is given by a stopping time.

1.3. Index Computation

Efficient index computation is a key issue that must be addressed in practice for
deploying an index policy for the MABPSP. For a project with n states and constant setup
cost, but without setup delays, (Section III.C [10]) shows that the 21 AT continuation and
switching index values A*(a~, i) can be computed as the Gittins index of an appropriately
defined 2n-state project with augmented state (a~, 7). Because computing the Gittins index
has, in general, a cubic operation complexity in the number of states, such an approach
results in an eightfold increase in complexity relative to that of computing the continuation
index only.

A faster two-stage approach for a project with both setup and setdown costs—but no
setup delays—that can be state-dependent was given by the author in [27]. The proposed
algorithm computes, in the first stage, the continuation index and certain extra quantities
by applying the (4/3)n3 + O(n?) fast-pivoting algorithm with extended output presented
in [28]. Subsequently, in the second stage, it computes the switching index in at most
O(n?) operations. Hence, computing with that algorithm the 2n AT index values entails
only a twofold complexity increase relative to the (2/3)n® + O(n?) operation count to
compute the continuation (Gittins) index only through the fast-pivoting algorithm (without
extended output) given in [28]. Further, ref. [27] reports on the results of a numerical study
demonstrating that the resulting index policy for the version of the MABPSP considered
there is close to optimal and outperforms the Gittins index policy by a wide margin, across
a wide range of instances.

1.4. Approach via Restless Bandit Reformulation, Whittle Index, and Indexability

The two-stage index algorithm shown in [27] exploits the reformulation of a project
with switching costs and states i as a restless bandit—i.e., a project that can change state
while passive—without such costs, moving across augmented states (a~,i). In that way,
the MABP with switching costs is cast as a multi-armed restless bandit problem (MARBP)
without them, which allows for the deployment of theoretical and algorithmic results
on restless bandit indexation, as introduced in [29] by Whittle. Such a theory has been
developed in [30-33] by the author. Additionally, see the survey [34].

Thus, while the MARBP is generally intractable, as it is known to be PSPACE-hard
(see [35]), Whittle introduced, in [29], a widely applied heuristic index policy. For a sample
of recent applications, see, for example [36—48]. Yet, the Whittle index is only defined for a
limited class of restless bandits, called indexable, and it is nontrivial to verify whether such
an indexability property holds for a given model. The work of the author referred to above
provides sufficient indexability conditions for general restless bandits, which are grounded
on satisfaction by project performance metrics of partial conservation laws (PCLs), together
with an adaptive-greedy index algorithm that computes the Whittle index (and extensions
thereof) under such conditions.

Such a PCL-indexability approach is deployed in [27], using the result that the AT index
of a non-restless bandit with switching costs (but no switching delays) is its Whittle index
in the project’s restless reformulation. The corresponding restless bandit model is shown
to satisfy the PCL-indexability conditions, ensuring that its Whittle index can be computed
by the adaptive-greedy algorithm. Special structure and the results in [49] are then used
in [27] in order to decouple that algorithm into a faster two-stage method.

1.5. Motivation and Goals

Yet, no method is given in Asawa and Teneketzis [10] in order to compute their
proposed index under switching delays. The latter’s relevance in applications, along with
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the tractability and effectiveness of the AT index policy in the pure-switching-costs case,
motivates the interest to extend the restless bandit indexation approach for developing
an efficient index algorithm for bandits that incorporate both switching costs and delays,
which is the first goal of this paper.

Carrying out such an extension turns out to raise methodological research challenges
on restless bandit indexation. Thus, when a Markovian non-restless bandit with switching
delays is reformulated as a semi-Markov restless bandit without them, it is found that the
resultant model need not satisfy the PCL-indexability conditions that were the cornerstone
to the analyses presented in Nifio-Mora [27] for the pure-switching-costs case. This mo-
tivates us to significantly extend the scope of previous theory, obtaining more powerful
sufficient indexability conditions, which are both easier to apply and applicable to a wider
class of models, including that of concern herein. That is the second goal of this paper.
The third goal entails assessing the runtime performance of the proposed index algorithm,
and evaluating the performance of the resulting index policy, both in terms of its optimality
gap and its improvement over alternative simpler index policies.

1.6. Contributions

Concerning the second goal, on general restless bandit methodology, we introduce,
for finite-state restless bandits, significantly simpler and less stringent sufficient conditions
for indexability than the former PCL-based conditions, under which it is also assured that
the adaptive-greedy algorithm computes the MPI. We further show such conditions to be
necessary, in that any indexable finite-state restless bandit satisfies them. Thus, the new
conditions furnish a complete characterization of indexability, which can be used in order
to analytically establish a priori that a restless bandit model of concern is indexable—as
opposed to numerically verifying a posteriori that a given instance is indexable.

As for the first goal, we deploy the new indexability conditions in the restless bandit
reformulation of a non-restless bandit with switching delays and costs. Because the AT
index emerges as the Whittle index in such a reformulation, we are thus assured that
the adaptive-greedy algorithm will compute it. The complexity of such an algorithm is
then reduced by exploiting special structure, which again yields a substantially faster two-
stage method. In the first stage, the continuation index is computed in (4/3)n® + O(n?)
arithmetic operations, and then the switching index is computed in the second stage in
only—at most—(5/2)n% + O(n) operations. Thus, we obtain a two-stage algorithm that
computes both the continuation and switching index in roughly twice the time that is
required to compute the continuation index alone (if the latter were computed using the
fast-pivoting (2/3)n3 + O(n?) algorithm in [34]).

Regarding the third goal, we report on a computational study demonstrating the
substantial runtime speed-up that is achieved by the two-stage algorithm relative to direct
application of the one-stage adaptive-greedy algorithm. This study further reports on
experiments providing evidence that the index policy is close to optimal and it attains
significant gains against a benchmark index policy across a wide range of randomly
generated instances with two and three projects.

1.7. Structure of the Paper and Notation

The rest of the paper proceeds as follows. Section 2 describes the MABPSP model of
concern, reviews the AT index, and describes the restless bandit indexation approach to be
applied. Section 3 lays the groundwork for such an approach in a general framework of
finite-state restless bandits, introducing the new methological advances on restless bandit
indexation. Section 4 deploys the new results in the special restless bandit model that arises
from the reformulation of a non-restless bandit with switching penalties, which culminates
in the development of the new two-stage index algorithm in Section 5. Section 6 presents
some qualitative properties on how the index depends on setup and setdown penalties.
Finally, Section 7 presents and discusses the numerical study.
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Because the notation of the paper may be hard to follow, Table 1 summarizes it for the
reader’s convenience.

Table 1. Some notation employed in the paper.

M=E{1,..., M} set of projects
k decision periods
X (), X(¢) project state in period ¢
Xy, X project state space
Ap(t), A(t) action chosen on a project in period ¢
A (), A= (1) previously chosen action
Ry (im), R(7) rewards
B one-period discount factor
P (in, jm), p(i, ) state-transition probabilities
cm(im), c(i) setup costs
A (im), d(i) setdown costs
Cm(im), €(7) setup delays
(,bm( m), P(i) setup delay z-transforms, for z = 8
ms P setdown delay z-transform, for z = 8
Y (t), Y(¢) augmented state in period ¢
Y,V augmented state space
FT&, Fy7r ,EF7™ reward metric
G, Gy, G™ resource consumption metric
fy marginal reward metric
gi .87 marginal resource consumption metric
A7, A marginal productivity metric

2. MABPSP Model and Its Semi-Markov MARBP Reformulation

A decision-maker ponders how to prioritize the allocation of effort to M dynamic
and stochastic projects that are labelled by m € M £ {1,..., M}, one of which must be
engaged (active) at each of a sequence of decision periods t; € Z = {0,1,2,...}, withtg =0
and t; /" coask / oo, while others are rested (passive). Switching projects on and off
entails setup and setdown delays and costs, respectively. A setup (resp. setdown) delay
on a project is necessarily followed by a period in which the project is worked on (resp.
rested), i.e., the times at which a setup or a setdown delay are completed are not decision
periods. We will say that a project is "active” when it is either being engaged (worked upon)
or undergoing a setup or a setdown delay. Let X, (t) and A, (t) denote the prevailing state,
which belongs to the finite state space X}, and action for project m at time t (A, (t) = 1:
active; Ay, (t) = 0: passive), and let A;,(t) = Ay (t — 1) denote the previously chosen action,
with A;,(0) indicating the initial setup status.

While project m is passive, it neither accrues rewards nor changes state. Switching it
on when it lies in state i, entails a lump setup cost ¢, (i), followed by a random setup
delay of duration &, (i, ) periods, whose z-transform is ¢, (z; i) E ) [25'"("'”)], over which
no rewards are earned. After such a setup, the project must be engaged, yielding a reward
Ry (im), after which its state moves at the next period to j,, with transition probability
Pm(im, jm). After at least one period in which the project is engaged, it may be decided
to switch it off. If this is done when the project lies in state j,,, then a lump setdown cost

A ( ]m) is incurred, followed by a random setdown delay of duration 7, with z-transform
¥m(z) £ E[z""], over which no rewards accumulate. Subsequently, the project remains
passive for one or more periods. Note that setup delay distributions are allowed to be
state-dependent, whereas setdown delay’s are not (cf. Section 2.1). Rewards and costs are
geometrically time-discounted with factor § < 1. We write, in what follows, the above
z-transforms evaluated at z = B simply as ¢y, (i;) and .

Actions are prescribed through a scheduling policy 7r, which is chosen from the class
IT of policies that are admissible, i.e., nonanticipative with respect to the history of states
and actions, and engaging one project at a time. The MABPSP (cf. Section 1) is concerned
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with finding an admissible scheduling policy that attains the maximum expected total
discounted reward net of switching costs.

This problem can be cast into the framework of semi-Markov decision problems (SMDPs)
by including into the state of each project m the last action taken, i.e., by using the augmented
state Yy, (t) = (A;, (), X (t)), which belongs to the augmented state space Yy = {0,1} x Xy
Thus, one obtains a multidimensional SMDP having joint state Y(t) = (Yy(t))me s and joint
action A(t) = (Am(t))mer- This is a special type of semi-Markov MARBP (cf. Section 1),
as the constituent projects become restless in such a reformulation.

Rewards and dynamics for the reformulated project m are as follows, where R} (a;,,1)
and py" (a5, im), (b, jm)) denote the one-stage (i.e., from ty to ;1) expected reward and
transition probability, which results from taking action a,, in state Yy, (tx) = (a;,,im). On
the one hand, if, in period t, the project lies in state (1, iy, ) and it is again engaged, it yields
the reward R}, (1,i,,) £ Ry (i) and its state transitions at 1 = t; + 1 to (1, ;) with
probability pl,((1,im), (1, jm)) £ Pm(im, jm)- If, instead, the project is switched off, it gives
the reward RY,(1,iy,) = —dy (i) and its state moves at ty 1 = t; + 7 + 1 to (0, i) with
probability 1, i.e., pom((l, im),(0,in)) = 1. On the other hand, if the project occupies at time
tr the state (0,i,,) and is then switched on, it yields the expected reward

Ry, (0, im) £ E[—cp(im) + .Bgm(im)Rm(im)] = —cm(im) + Pm (im) R (im) 2

until the following decision time t;1 = fx + ¢ (i) + 1, in which the project state transi-
tions to (1, j,) with probability p,((0,im), (1,jm)) = pm(im, jm)- If the project is kept idle,
then it gives no reward, i.e., R% (0,im) = 0, and its state remains frozen up to ty, 1 = f + 1,

S0 p?ﬂ((ol im)/ (0/ lm)) = 1
Thus, the MABPSP of concern is formulated as the semi-Markov MARBP

E, RO (v, (1)) Bl
max1€m1ze Z Z (te))B 3)

where EJ ) [-] is expectation under policy 7t conditioned on starting from the joint state Y(0).

2.1. Reduction to the Case with No Setdown Penalties

We next show that one can restrict attention with no loss of generality to the case that
there are no setdown penalties, which will allow for us to simplify subsequent analyses.
Imagine that, say, at time t = 0, a passive project is set up and is then worked on for a
random number of periods determined by a stopping time T > 1, after which it is set down.
Dropping the label m, denote, by R = (R;)icx, ¢ = (¢j)jex, and d = (d;)jcx, the active
reward vector, and the setup and setdown cost vectors. Denote, by ¢ = (¢;)c x, the setup
delay z-transform vector and by i the constant setdown delay transform, both evaluated
at z = pB. The total discounted expected net reward that is obtained from the project over
such a time interval, starting from the augmented state Y(0) = (0, i), is

Foy(Roe,d ¢, 9) = Efy {—Cz + E Rx () —dx(ﬂﬁé"”}/ (4)
t=0

where §; is the setup delay. The corresponding discounted active time expended on the
project is

1-—
01)(¢ lp) (01 |: 'Bﬁ + 'Bg Z ‘Bt FTB ‘B§1+T:| (5)
where, as pointed out above, the setup and setdown delays ¢; and 7 are both considered to
be active time.

In the next result, which extends Lemma 3.4 of [27] to the present setting, I is the
identity matrix indexed by X', P = (p;j); jcx, 0 is a vector of zeros, and ¢ - d = = (¢jd))jcx-
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Lemma 1.
(@ Fj;,(R.cd g, w) =Fi) @ ' (R+ (I-pP)d),c+¢-d,0,y9,1).
®) Gl (9,9) = Gy (b, 1).
Proof. (a) Use the identity
7—1
dx)B" =di — Y (dx() — Bdx(+1)) B

t=0

to write
-1
Foy(Rc,d ¢, ) = 01)[ ci+B% Y RynB' _dY(T)ﬁéi+T:|
t=0

T—1
Y RxnB - dY(T)IBT‘|
=

:—Ci-i-(l)i( d; +E01)

i 0+ dx() — Bx(an )ﬁD
—1

= —¢i — ¢idi + PiE( Z Rx(p) +dx(r) — Bdx(t41))B ]
171
— ¢idi + PipEl o |~ Z (Rx(t) +dx(r) — Bdx(t41)) B ]

= F&),i)<w‘1<R+ (I-BP)d),c+¢-d,0,pgp,1).

(b) This part follows by writing

T A T 1- :B /3 T 4)1 .
Clon = E(o,z‘)l iy + B Z B+ ~B — Bt ] =g + ¢

e

_ 1_¢i T — ;lzb _ _ — Lt
—1_ﬁ+¢lE(1) E)ﬁ+1—ﬁ<1 (1 5)2/3)

1— ; . -1 -1
=7 _"’[f T9E,) | L1 -0 —w))&f] 1 ‘Pﬁ“’ +PipEf, ;oﬁt]
= Glo) (¥9, 1).

O

Lemma 1 can be used in order to eliminate setdown penalties: it suffices to incorporate
them into new setup costs, setup delay transforms, and active rewards, while using the
transformations

G2ci+¢id, ¢ =9, and R2¢p 'R+ (I-pP)d). (6)

Note that such a reduction would not have been accomplished had the setdown delay
transform not been constant. In the case ¢; = c and d; = d, we obtain ¢; = ¢ + d¢; and
Rj = (Rj+ (1—p)d) /.

Accordingly, we will focus henceforth on the normalized case without setdown penal-
ties d]- =0,p=1
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2.2. The AT Index

We next consider the AT index of a project with setup penalties—dropping again the
label m—extending the original definitions in [10]. The continuation AT index is

71
X Ef ;}Rxmﬁtl
T A -
K S = I 7
EF| LB

where T 2> 1is a stopping time for engaging the project starting in state i when it is already

set up; hence, AéTi) is just the project’s Gittins index. As for the switching AT index, it is
given by
-1 ; -1 ;
—ci +ET [B Y Ry»B —ci +¢ET | ) Rxn)B
AT & =0 _ t=0
Moo =X — o 7 S T, =1 ®
. 1
Ef Zﬁwﬁélmf] g+ HE Zﬁ]
t=0 t=0 t=0

where now T is a stopping-time rule that is followed after the project has been set up in
state i.

The following requirements will be assumed henceforth on setup costs and setup
delay transforms, which extend the corresponding conditions in [10].

Assumption 1. The following holds:
(i) non-negative setup costs: ¢; = 0 for j € X.
(ii) non-negative rewards: If some setup delay can be positive, i.e., ¢ # 1, then R; > 0 forj € X.

The next result shows that Assumption 1 ensures the satisfaction of the hysteresis
property in (1).

Lemma 2. Under Assumption 1, Aﬁa) > /\%Ti) forie X.

Proof. For a given state i € X and stopping-time rule T as above, write GT = EF [T p']
and FT £ EF [y} Ry (1) B']- Now, Assumption 1 ensures that ¢; > 0 and F > 0, and hence

F it i} 1 (1= P)aGl + (A —g)E

G =T >0, ©)
R p— T 1 ¢+ (1—B)p:GT

G; 1 _4;; + ¢;Gf Gf 1—¢i+(1-B)$iG;

Further, (9), (7), and (8) immediately yield that )V(AlTi) = /\‘(AE)TZ.), which completes the

proof. O

3. New Methodological Results on Restless Bandit Indexation

This section presents new results on restless bandit indexation, which, besides having
an intrinsic interest, are required and form the basis for the approach to non-restless bandits
with switching times that is deployed in later sections.

3.1. Indexable Restless Bandits and the Whittle Index

Consider a semi-Markov restless bandit, representing a dynamic and stochastic project
whose state Y(t) transitions over time periods t = 0,1, 2, ... through the finite state space
Y. The project’s evolution is governed by a policy 7 that is taken from the class I1
of nonanticipative randomized policies, which, at each of an increasing sequence t; of
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decision periods with ty = 0 and t; " oo as k oo, prescribes an action A(f;) € {0,1}
that determines the status during the ensuing stage until the next decision period ¢ 1 (1:
active; 0: passive). Taking action A(t;) = a at time t; when the project occupies state
Y(t;x) = y has the following consequences over the following stage, relative to a given
one-period discount factor 0 < f < 1: an expected total discounted amount of reward Ry
and of a generic resource Qy > 0 is earned and expended, respectively; further, the joint
distribution of the stage’s duration t;, 1 — t; and its final state Y (¢;,1) is given through

the discounted transition transform ¢{, £ E [ﬁtkﬂ’tkl{y(tkﬂ):y/} | Y(t) =y, Alty) = a] ,
where 1, denotes an event indicator.
It will be convenient to partition ) into the (possibly empty) set of uncontrollable states

pio} 2 {i ey: QS = Q; and ¢Sy/ = 4>;y/, y e y}/

where both actions entail identical resource consumptions and dynamics, and the remaining
set Y101} 2 Y\ {0} of controllable states, which is assumed to consist of N = [Y{01}] > 1
elements. The notation J{%} is meant to reflect the convention that the passive action a = 0
is chosen in uncontrollable states.

The value of the rewards earned and amount of resource expended by a policy 7
starting from state y is evaluated, respectively, by the discounted reward and resource
consumption metrics

T A 7T
Fy - Ey Y (g

kZ:,)RA(tk)),Btk] and G £EJ

o A(l)
k;) Qi) ﬁtk] :

Let us introduce a parameter A representing the resource unit price, and consider the
A-price problem
maximize FJ' — AGT, 10
mell Y Y ( )
which concerns finding a policy that maximizes the value of rewards earned minus the cost
of resources expended. Because (10) is an infinite-horizon finite-state and -action SMDP,
by standard results it is solved by stationary deterministic policies that are characterized
by the solutions to the following DP equations, where V;/(1A) denotes the optimal value
starting from y under price A:

* _ a __ a a *
Vi(A) = max, Ry — AQy + ygy Py Vy(A), yEY. (11)

Such a project is said to be indexable (cf. [29]), if, for each controllable state y € Y{01},
there exists a unique break-even price A}, such that: it is optimal to engage the project in
state y if and only if A < A}, and it is optimal to rest it if and only if A > A;. Or, in terms of
the DP Equation (11),

1 1 1 * 0 0 0 * * 0,1
Rl — Q)+ %} Py Vi (A) = R) — AQ) + gy P Vi(A) = Ay >, yeyion
Y Y

and

1 1 1 * 0 0 0 * * 0,1
Ry —AQy+ Y ¢y, Vi (M) SR) = AQY+ Y 0D, Vi(A) <= A" <Ay, ye YO,
y'ey y'e)
We will refer to the mapping i — Aj as the project’s Whittle index. See [29].

3.2. Exploiting Special Structure: Indexability Relative to a Family of Policies

While one can readily numerically test whether a given restless bandit instance is
indexable, a researcher investigating a particular restless bandit model will instead be
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concerned with analytically establishing its indexability under an appropriate range of
model parameters. The key to achieving such a goal is—as in optimal-stopping problems—
to exploit special structure by guessing a family of policies (stationary deterministic), among
which there exists an optimal policy for (10) for every resource price A € R.

We represent a stationary deterministic policy by its active (state) set, consisting of
those controllable states where it prescribes engaging the project. Thus, a family of such
policies is given as a family F of active sets S C Y {0'1}, and, hence, we will refer to the
family of F-policies. Relative to such a family, we will call the project F-indexable if (i) it is
indexable, and (ii) F-policies are optimal for A-price problem (10) for every resource price
AeR

We will impose the following connectivity requirements on F.

Assumption 2. The active-set family F satisfies the following conditions:

0 oyl eF

(i) foranyS,S" € F,withS C S, there existy,y’ € S'\ S such that SU{y},S'\{y'} € F;
(iii) foranyS,S' € F,SUS,SNS € F.

Note that condition (iii) in Assumption 2 means that F is a lattice relative to set
inclusion. As for condition (ii), it ensures that any two nested active sets S, S’ € F with
S C &' can be connected by an increasing chain S = Sy C -+ C Sy = S’ of adjacent (i.e.,
differing by one state) sets in F. Further condition (i) ensures that one can connect in

monotonically connected Zattzce

3.3. New Sufficient Conditions for F-Indexability and Adaptive-Greedy Index Algorithm

Suppose that, for a particular restless bandit model, a suitable active-set family
F, as above, has been posited relative to which one aims to analytically establish F-
indexability. While, in the aforementioned earlier work of the author, sufficient conditions
for F-indexability are given, which further ensure that the project’s Whittle index can be
computed by using an adaptive-greedy index algorithm that was introduced in such work,
we next introduce new sufficient conditions that are significantly less restrictive.The new
conditions are motivated by the model of concern in this paper, as we will see that it need
not satisfy the former conditions, as mentioned in Section 1.

In order to formulate the new conditions and the index algorithm we need to define
certain marginal metrics, as follows. Given an action a € {0,1} and active set S C pyiol}
write, as <a, S), the policy that initially chooses action a, and then follows the S-active policy.
For a given state y and active set S, consider the marginal work metric

& 26" -6, (12

which represents the marginal increase in the amount of resource expended resulting from
taking first the active rather than the passive action and, then, following the S-active policy.
Note that such a marginal work metric vanishes at uncontrollable states:

g =0 yey (13)
Further, define the marginal reward metric

fS N P(l S) Fy(O,S)/ (14)
which represents the marginal increase in rewards earned. Finally, for gi # 0, define the

marginal productivity metric
S

Saly
%_g. (15)
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We will consider the adaptive-greedy index algorithm that is given in Algorithm 1 in its
top-down version, where index values are meant to be computed from highest to lowest;
one could similarly consider the symmetric bottom-up version. Such an algorithm has a
very simple structure, as it constructs in 7 steps (recall that N 2 |V{01}|), an increasing
chain of successive active sets S = @ € §! c ... € SN = Y{01} in F, proceeding at each
step in a greedy fashion. Thus, once active set S*"1 € F has been obtained, the next active
set SK is constructed by augmenting S~ with a controllable state y € Y101} \ 55~ that
maximizes marginal productivity metric A;kil, restricting attention to states y for which
the following active set is in F, so S* = S¥=1 U {y} € F. Ties are broken arbitrarily.

Note that Algorithm 1 only shows an algorithmic scheme, as it is not specified how
to compute the metrics that are required for computations. A complete fast-pivoting
implementation of such an algorithm is given by the author in [49].

Additionally, note that the algorithm’s input consists of all the project’s primitive
parameters, namely states, rewards, transition probabilities, and discount factor.

The same considerations apply to Algorithm 2.

Algorithm 1: Top-down adaptive-greedy index algorithm AGr.
Output: {yy, A;k}ll(\]:1
"=
fork:=1to N do
choose y; € arg max {)\5#1: y € YO\ gk-1 gk {y} € F}
« k—1 _
Ay =AY SFi= U {y)
end { for }

The main result of this section, giving the new indexability conditions and ensuring
the validity of the adaptive-greedy index algorithm for computing the Whittle index, is
stated next.

Algorithm 2: Geometrically intuitive reformulation of adaptive-greedy index
algorithm AGr.

Output: {yy, A;k}}c\le

S0.=@
fork:=1to Ndo

Fskflu{j} o F5k71
Gsk—lu{y} _ Gsk—l
A=A S =510 (g

end { for }

choose j; € argmax{ 1y € ylot \Sk*l,Skfl U{y} e .7:}

Theorem 1. The following holds:
(a) Suppose that the project satisfies the following conditions:
(i) forevery active set S € F,
gf >0, ye€S§,S\{y} eF

(16)
gﬁ >0, ye ytol} \S,Su{y} e F;

or, equivalently, for every nested active-set pair S C S' with S,S' € F,

(Gs)yey S (Gj/)yey' (17)
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(i) for every resource price A € R, there exists an optimal F-policy for A-price problem (10).

Then, the project is F-indexable and algorithm AGy computes its Whittle index Ay in
non-increasing order.
(b) If the project is indexable, then it satisfies conditions (i) and (ii) in part (a) for some nested
family of{adj}{zcent active sets of the form F = {S°,S8!,..., SN} withS® =@ c S' C ... C
N — o1},

In order to prove Theorem 1, we need to establish a number of preliminary results.
Before doing so, let us clarify the improvement that the new sufficient F-indexability
conditions (i) and (ii) in Theorem 1(a) represent over those that were introduced in Nifio-
Mora [30,31] based on PCLs, which are:

(i) foreverySe F, g§ >0fory € yiot,
(ii) algorithm AGr computes index )L;k in non-increasing order: A;l > A;z > > A;N.

Thus, the new condition (i) in Theorem 1(a), as formulated in (16), is significantly less
stringent than the old condition (i). Further, the reformulation in (17) clarifies its intuitive
meaning: it means that resource consumption metric G§ is monotone non-decreasing in the
active set S within the domain F, and that two nested active sets S C S in F give different
resource consumption vectors (GJ),cy and (Gfl)yey.

As for the old condition (ii), the author has found that, in complex models with a
multidimensional state, it can be elusive to establish it analytically. In contrast, the new
condition (ii) in Theorem 1(a) allows one either to draw on the rich literature available on
optimality of structured policies for special models, or to deploy ad hoc DP arguments to
prove the optimality of F-policies for the model at hand.

Note that [50] has proposed sufficient F-indexability conditions, which are, however,
significantly more restrictive than those herein. Thus, the conditions in [50] require, among
further assumptions, including (i) and (ii) in Theorem 1(a), that the resource metric be
submodular and reward metric be supermodular in the active set. Theorem 1(a) shows
that such extra assumptions are unnecessary.

Theorem 1(b) further assures that the new conditions are also necessary for indexabil-
ity, in the sense that any indexable restless bandit satisfies them relative to some nested
active-set family F, as stated.

We start by establishing the equivalence between the formulations in (16) and (17) of
condition (i) in Theorem 1(a), by drawing on the results in Nifio-Mora (Sect. 6 of [31]) (for
Markovian restless bandits) and in Nifio-Mora (Sect. 4 of [32]) for semi-Markov restless
bandits. These refer to relations between resource and reward metrics and their marginal
counterparts, via state-action occupancy measures

[e9)

Xy S B Z ' Al)—a} B (18)

Note that x;;,r measures the expected total discounted number of decision periods,

in which action a is chosen in state y’ while using policy 7, starting from state y. In the
present notation, the relevant relations are

G;\{y’} _ GS S OS\{y} s

SyXyy Y
GSU{y’} GS 1 oS 1Su{y} /e yloa} \'S (19)
and
S\{y'} _ S OS\{y} '
Fy fy vy’ » Y ES 20)
suiy’ 1,5U
F, vy _ fyS o {/} Y € y{O,l}\S‘
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Lemma 3. Conditions (16) and (17) in Theorem 1(a) are equivalent.

Proof. Suppose that (16) holds for a certain S € F. We then have, on the one hand, that

g;, > 0fory’ € SsuchthatS\ {y'} € F, along with xg’ys,\{j }

first identity in (19), that G; Wy < G; ; further, by taking y = i/, we obtain G;,\{yl} < G;,,
. 0,5\{y'} S\{v'} s
since X, , > 0. Hence, we have (Gy )iey < (Gy)yey, ,
we have that gj/ > 0fory € Y101\ Ssuch that SU {y'} € F, along with x;,y&;‘u{y > 0 for

> 0 for any y, implies, via the
for suchy’. On the other hand,

any y, implies, via the second identity in (19), that Gf < GS Vi ; further, by takingy = v/,

we obtain G;/ < Gy’SU{y/j}, since x;ig{y’} > 0. Hence, we have (G;)yey < (Gju{y’})yey
for such i’. Now, the proven relations imply (17) via Assumption 2(ii).

Conversely, suppose that (17) holds for a certain S € F. Then, on the one hand,
S\{y' . .
we have (Gy\{y })yey < (G;)yey fory’ € Ssuch that S\ {y'} € F. This, along with
KOS\
vy

other hand, we have (G;)
LSu{y'}
vy’
gj/ > 0 for such y/’. Therefore, (16) holds, which completes the proof. [

> 0 for every y implies, via the first identity in (19), that gs, > 0 for such y’. On the

yey = (G;U{y/})yey for y’ € Y1011\ Ssuch that SU {y'} € F.

This, along with x > 0 for every y implies, via the second identity in (19), that

3.4. Proving Theorem 1: Achievable Resource-Reward Performance Region Approach

We next deploy an approach in order to prove Theorem 1, which draws on first
principles via an intuitive geometric and economic viewpoint introduced in [31,32]. We
will find it convenient to consider, instead of (10), the A-price problem that is obtained
by using the averaged resource and reward metrics where the initial project state Y(0) is
drawn from a distribution p with positive probability mass p, > 0 at every statey € ),

G & Z pyG, and F7" = Z pyFy”, (21)
yey yey
ie.,
maximize F™ — AG”™. (22)
mell

Relative to such metrics, consider the project’s achievable resource-reward performance
region
H 2 {(G",F7): mell}, (23)

which is defined as the region in the resource-reward plane that consists of all the perfor-
mance points (G”, F") that can be achieved under admissible project operating policies
7t € I1. The optimality of stationary deterministic policies for infinite-horizon finite-state
and -action SMDPs ensures that H is the closed convex polygon spanned as the convex hull of
points (GS ,F S) for active sets S C V{01 Thus, we can reformulate A-price problem (22)
as the linear programming (LP) problem

maximize F — AG. (24)
(G, F)eH

In order to illustrate and clarify such an approach, consider the concrete example of a
certain restless bandit having state space ) = Y 01} — {1,2,3} that is discussed in (Sec. 2.2
of [34]) For such a project, Figure 1, in that paper, plots the achievable resource-reward
performance region H, with points (G°, FS) being labeled by their active sets S.
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FT(

G@ GS GTl GTZ GS/ Gy{O,l} G7T
Figure 1. Illustration for the proof of Theorem 1.

The fact that such a project is indexable is apparent from the structure of the upper
boundary of H,

oM = {(G,F) € H: F < Fforevery (G, F) € H having G = G}, (25)

as this is determined from left to right by an increasing nested family of adjacent active sets
connecting @ to yiol}, F = {@, {1},{1,2},{1,2,3} } Thus, the Whittle indices of the states
are given by the successive slopes measuring the marginal reward versus resource trade-off
rates:
Iy {1} _ @ s p{r2} _ p{1} py p{123} _ p{12}
1= Gl —go 7"~ gl gy = 73~ Gli23y —glizy

In this example, the geometry of the top-down adaptive-greedy algorithm AGr
corresponds to traversing the upper boundary 0H from left to right, proceeding, at each
step, by augmenting the current active set by a new state in a locally greedy fashion, as the
slopes in (26) are equivalently formulated as

(26)

2 ;Y A
PE L R S A Ay 27)
g7 gt gt

The insights that are conveyed by such an example extend to the general setting of
concern herein, as elucidated in Nifio-Mora [31,32,34]. Thus, the indexability of a project
is recast as a property of the upper boundary dH of region H, whereby it is determined
by a nested active-set family as in the example. Note that the equivalence between the
geometric slopes in (27) and the marginal productivity rates (26) in follow from (19) and
(20) or, more precisely, from the corresponding relations for the averaged metrics,

G\ = S = gSIXO;S\{y’}, yes
Y (28)
GSUY'} = S _,_g;,x;;su{y }/ y e Yoy,

and

S\ = S _fys./x;);s\{y’}’ yes )
PT =P fx U,y e 0D,
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where x;',” is the state-action occupancy measure that is obtained by drawing the initial

state according to the probabilities p,. Thus, assuming condition (i) in Theorem 1(a), we
have, for S € F,

FS — pS\v'} ess NeF
s GS_ oS y'eS5,5\{y'} e
+ = (30)
8y FSU{Y'} _ ES

ST y e YO\ s su{y}eF

Such relations allow for us to reformulate the adaptive-greedy algorithm AGx in
Algorithm 1 into the geometrically intuitive form that is shown in Algorithm 2. Such a
reformulation clarifies that this algorithm seeks to traverse, from left to right, the upper
boundary 0H, proceeding at each step by augmenting the current active set by a new state
in a locally greedy fashion, while only using active sets in F.

We next proceed to establish a number of preliminary results, on which the proof of
Theorem 1 will draw. The first shows that the family of optimal active sets for the A-price
problem is a lattice that contains its intervals.

Lemma 4. If S and S’ are optimal active sets for (22), then so is any S” satisfying SNS' C " C
Sns”.

Proof. The result is an immediate property of the DP Equations (11) characterizing the
optimal stationary deterministic policies (i.e., the optimal active sets) for the A-price prob-
lem. O

The following result shows that, under condition (i) in Theorem 1(a), resource con-
sumption metric G° is strictly increasing relative to active-set inclusion in the domain
SeF.

Lemma 5. Suppose that condition (i) in Theorem 1(a) holds. Then, G° < G5 for S C &/,
S,8' e F.

Proof. The result follows immediately from the formulation of such a condition (i) in (17),
along with the assumption of positive initial state probabilities p, > 0 fory € . O

The next result establishes, under conditions (i) and (ii) in Theorem 1(a), the non-
degeneracy of the extreme points of H in upper boundary 07, showing that each is achieved
by a unique active set in F.

Lemma 6. Suppose that conditions (i) and (ii) in Theorem 1(a) hold. Then, for every (G*,F*) €
OH that is an extreme point of H, there exists a unique active set S* € F achieving it, i.e., with
(G*,F*) = (G5, F%).

Proof. Because (G*, F*) is an extreme point of 7 in 9%, there exists a resource price A*,
such that (G¥, F*) is the unique solution to the LP problem (24) for A = A*. Now, condition
(if) in Theorem 1 ensures that there exists an active set S* € F that is optimal for A*-price
problem (22), i.e., such that (G*, F*) = (GS*, Fs*). Let us argue, by contradiction, that
such an active set is unique, assuming that there exists a different active set 5** € F, for
which (G*,F*) = (G5, F5™"). Then, by Assumption 2(iii) and Lemma 4, both §* N $** and
S§* U §** would belong in F and be optimal for the A*-price problem. Therefore,

(G*,F*) — (GS*/FS*) — (GS*QS**,FS*QS**) — (GS*US**,FS*US**). (31)

Now, since it is assumed that §* # §**, there are two cases to consider: in the first case,
if it were S* ¢ S**, then it would be S* N S** C S* C §* U S** and, hence, by Lemma 5,
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G5 < G5 < G5'MS™, which contradicts (31). In the second case, if it were S** ¢ S*,
then it would be S* N S$** C §** C §* US* and, hence, by Lemma 5, G <« G5 <«
G5"YS™ which again contradicts (31). Therefore, there cannot exist such an $**, which
completes the proof. [

We can now prove Theorem 1.

Proof of Theorem 1. (a) We will show that the project is F-indexable by using the geo-
metric characterization of indexability that is reviewed in the present section. Namely,
by showing that the upper boundary 0% is determined by an increasing nested family of
adjacent active sets in F connecting @ to Y101}, We refer the reader to the plot shown in
Figure 1 for a geometric illustration of the following arguments.

Let us start by showing that the extreme points of H, which determine 0H, are attained,
from left to right, by a unique increasing chain of active sets in /—not necessarily adjacent.
Thus, consider two adjacent extreme points of H in 0H, i.e., joined by a line segment
in 0H. By Lemma 6, there exist two unique and distinct active sets S,S’ € F, whose
performance points (G5, FS) and (G5, FS') achieve such extreme points, where we assume,
without loss of generality, that G5 < G5'. We will show that it mustbe S C §'. Letting
A= (F' = F5)/(G% — G9) be the slope of the line segment joining such extreme points
we have that both S and S’ solve the A-price problem and, hence, by Lemma 4, so do SN S’
and SUS’. Now, from the stated properties of S and S, it follows that points (GSNS', FSns’y
and (GSUS/, FSUS/) must lie in the line segment joining (GS,FS) and (GSI, FS/) and, hence,
GSNS' GSUS' ¢ (G, GSI]. Further, since, by Assumption 2(iii) SN'S’,SU S’ € F, Lemma 5
gives that GSNS' < G and GS' < GSYS'. Therefore,

U

GS — GSQS, — GSUS/ — GS . (32)

We next argue, by contradiction, that S C S': if such were not the case, ie., S ¢ S,
then it would follow that SN S’ € S € SUS’ and, hence, by Lemma 5, G < GS < GSVY,
contradicting (32).

Let us next show that, if any two adjacent extreme points (G5, F%) and (G5, F%') in
oM, with G° < GS/, are determined by active sets S C S’ in such a chain that are not
adjacent, they can be connected from left to right by points in 0% that are attained by an
increasing chain of adjacent active sets in . On the one hand, Assumption 2(ii) ensures
the existence of an increasing chain of active sets in F that are adjacent and connect S to S':
S=TyCTyC---CTyq CTi =S Ontheother hand, if A = (FS' — FS) /(G5 — G5) is
the slope of the line segment joining such extreme points, then we have that both S and S’
solve the A-price problem and, hence, by Lemma 4, so does every intermediate active set
Ti,..., T in such a chain. Hence, Lemma 5 ensures that G° < GTt < ... < GTk-1 < GSI,
as required.

In order to establish F-indexability, it only remains to show that the leftmost (resp.
rightmost) extreme point of # in 9% is that attained by active set S = @ (resp. S = Y101}).
This follows from Assumption 2(i), condition (ii) in Theorem 1(a), and Lemma 5 (ensuring
that G2 < GS < GV for S € F, @ c § c Yio1}y,

Having established F-indexability, the result that algorithm AGz computes the
project’s Whittle index follows immediately from the algorithm’s geometric interpretation,
as revealed by its reformulation in Algorithm 2.

(b) Suppose now that the project is indexable. Then, 0H is determined by some
increasing chain of adjacent active sets connecting @ to Y{01}: $9 = @ c §' ¢ ... ¢
SN = pio1}, Letting F 4 {SO, si,..., 6N }, it is readily seen that such an active-set family
satisfies conditions (i) and (ii) in part (a). This completes the proof. [
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4. Application to Projects with Setup Delays and Costs

This section deploys the framework and results above on restless bandit indexation in
our motivating model: the restless bandit reformulation of a non-restless bandit with setup
costs and delays (and no setdown penalties: cf. Section 2.1), as discussed in Section 2. The
project label m is dropped thereafter from the notation.

In this reformulation, all of the augmented states are controllable, i.e., Y =Y {01}
and an active-state subset of the augmented state space ) representing a stationary deter-
ministic policy is given by specifying the original-state subsets Sp, 51 C X, such that the
project is engaged when it was rested (resp. engaged) previously if the state X(t) belongs
to Sg (resp. in S1). We will denote such an active set/policy, as in [27], by

So@S1 2 {0} xSoguU{l} xS C Y.

We next address the issue of guessing an appropriate family F of active sets So & Sy,
which contains optimal active sets for the A-price problem of concern (cf. (10)), which is
now formulated as

7T

maximize F( i G(a,,i), (33)

mell

where FZZ - ) and GEZ, j) are the reward and resource (work) metrics that are given by

A
(i) = Bl )

’;JRz/((tt))ﬁtkl and G( 2E- lz Qy 1 (34)

The intuition that, under Assumption 1, if engaging the project is optimal when it was
not set up, then engaging it should also be optimal when it was set up, leads us to posit the
following choice of F:

FE{So®S1:5C S C X} (35)

Such an F represents a family of policies that satisfies Assumption 2. If Sy C Sq, policy
So @ S1 € F has the hysteresis region Sq \ Sp, i.e., when the original state X(t) lies in S1 \ Sy
the policy sticks to the previously chosen action. We will seek to prove indexability with
respect to such a family of policies, i.e., F-indexability.

Note that the marginal work, reward, and productivity metrics defined in general by
(12)—(15) now take the form

So®S (1,5o®S1)  ~(0,5®S1)
a0 = Guty = Guty (36)

So®S (1,S0S1) (0,S9dS1)
fan = Fash = Fath (37)

and, for gso@sl #£0,
SoDS
AS0®S1 2 Ut (38)
(a=i) = So®S1°

(a=0)
We next adapt to the present setting the general top-down adaptive-greedy algorithm
AG7 in Algorithm 1, which yields the algorithm in Algorithm 3, where n £ |X| is now
the number of project states in the non-restless formulation. The output of the algorithm

has been decoupled, noting that, at every step, the algorithm expands the current active

set Sk0 g kl ! by adding a state that can be either of the form (0, 10 %) or (1, ilf ). Thus,

1nstead of usmg a single counter k, ranging from 0 to 21, two counters 1 < ko < k1 < n

are used, with such counters being related by k = ko + k1 — 1. Henceforth, we use a
ko=1 k-1

more algorithm-like notation, writing, e.g., )‘fo ) P s /\ES(’]; 14171 Note that the active

sets 5160 and Slfl that are generated in the algorithm are given by 5160 ={,..., igo} and
kl = {11, . ,illq}, and satisfy Sgo - S’l(l, for 1 < kg < kg < n, consistently with (35). Thus,
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the algorithm produces a decoupled output consisting of two augmented-state strings
strings (0, iléo) and (1, i’lc1 ), which jointly span Y, along with corresponding switching and

continuation index values A* , and A* |
(0, 100) (1 111)

Algorithm 3: Adaptation of index algorithm AGr to the present model.
. -k n -k n
Output: {(0,iy’), A?o,igo) }kozy {(Li), )V(kl’i};l ) }klzl

=Q; S?:z@; ko:=1;, k1 :=1
while kg + k1 <2n+1do

if k1 < n choose "™ € arg max {A ko]) b je x bty

if ko < ki choose j"® € arg max {A k(’]) 1k1_1) 1je Skl i\ Sk0 1}

if k1 =n+1lor{ky <k <nand /\(ko Lk=1) A(komixkl_l)}

(L) (0,78 )
= max. )\* = A(ko 1kl 1) Sko :: kO 1 0 k :k 1
Jomr 4 o oy i) 70 UL ko= ot
else
K= jma pe = Al Mgk LG iy =k 1
{ f} (L") (1,11 )
end {i

end { while }

4.1. Proving That F-Policies Are Optimal

We next aim to establish that condition (ii) in Theorem 1(a) is satisfied by the present
model, i.e., that F-policies, i.e., those with active sets Sg @ S; € F that are defined by (35),
suffice to solve the A-price problem (33) for any price A € R. We will use the DP optimality
equations that characterize the optimal value function V’;,,i) (A) for problem (33), starting

from each augmented state (a~,i) € ): thus, for each original state i € X/,

V(*Li) (A) = max {5‘/{5,1') (A)Ri—A+B Z pijV(*l,j) (/\)}

4>1 (39)
At gi(Ri = A+B Y piiVi (M) }-

ﬁ jex

Vo (A) = max { BV, (A), —¢; —

We start by showing that the optimal value function is non-negative.
Lemma 7. V(’;,/i)()\) >0.

Proof. Because no setdown penalties are assumed (cf. Section 2.1), a possible course of
action incurring zero net reward is to set down the project and keep it that way, which
yields the result. [

We can now prove the optimality of F-policies.

Lemma 8. For every A € R, there exists an optimal active set So & S1 € F for A-price problem
(33).

Proof. Fix A € Rand i € &. It suffices to show that, if resting the project is optimal in state
(1,1), then it is also optimal doing so in state (0, 7). Let us formulate that hypothesis, as

BV(o(A) = Ri = A+ B Y piiV(y iy (A). (40)

jex
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We aim to show that, then, it is optimal resting the project in state (0,7), so

BT (R =+ B T Vi (1),
jex

o > —c;—
IBV(O,l)(/\) Z —Ci 1

Consider first the case A < 0. We will argue, by contradiction, that hypothesis (40)
then cannot hold, i.e., it cannot be optimal to rest the project once it is active. Drawing
on non-restless bandit theory, note that, when the project is active, it is optimal to rest it
only if it ever reaches an original state j € X at which A < )t/’f, where )L]’f is the original
(non-restless) bandit’s Gittins index. Assumption 1(ii) now assures us that /\]"F > 0 for each
j € X, and, therefore, it is optimal to keep the project active forever.

Next, consider the case A > 0. Then, the following chain of inequalities holds:

* * 1—¢; *
BVo(A) ZRi—A+pB Y piiViLj(A) = —ci — 1 _471/\ +i(Ri—A+B) PiiV,, (M),
jex ,B jex

where the fact that the second inequality holds is apparent by reformulating it as

(L= (Ri+B ) pisV(1,(A) = —ei = By —EA
jex

and noting that Assumption 1(ii) and Lemma 7, ensure that the latter inequality left-hand
side is non-negative, and, further, Assumption 1(i) and A > 0 ensure non-positivity of its
right-hand side. This completes the proof. O

4.2. Work Metric Analysis and F-Indexability Proof

We now consider how to calculate work and marginal work metrics G?;EB i5)1 and g?;fe i5)1 ,

by relating them to the corresponding metrics G and g7 for the underlying non-restless
project. We will further use such analyses to establish that condition (i) in Theorem 1(a)
holds for the model of concern, thus allowing for us to apply such a theorem.

For each S C X, the G are characterized by the unique solution to the evaluation

equations
{1+ﬁ2pijcf ifics
G =

1

jeSs (41)
0 otherwise.

Further, the marginal work metric gf is evaluated by

S a ~(LS)  ~(0S) (1-B)G? ifies

4 ’ g

§ 26 =G =148 Y PGl —BG] = 14BY pG°  otherwise.  (42)
jex &

Note that (41) and (42) imply that
g >0, i€N. (43)

We now go back to the project’s restless bandit reformulation. The next result, whose
proof is omitted, as it is immediate, gives the evaluation equations for work metric G(SUGJS)1

under a given active set.
Lemma9. For So @ S1 € F,

1-¢ oS g 1+ 2 Gio ifies

+ ¢; G voifie Sy B Pij&a,j) 1
So®S1 _ i So®S1 _
Gogy ' = 1 P and G =

otherwise 0 otherwise.
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The following result represents work metric G(SOEBS)1 in terms of the GS

Lemma 10. For Sy & S1 € F:

@) G(S;_@f)l =G =0,for a €{0,1},i€ X\S,.

(b) G(Slo?fl: 51 fori € Sy.
© Gf“fsl—u—fpz)( —B)+ ;G fori € Sp.

d) Gfg?sl 0, fori € S1\ So.

Proof. (a) The result follows readily from the definition of Sy & 5.
(b) Fori € S, we have

So®S GSo®S S S s S
Gy ' =1+5 ZPU U 1+ﬁ Z Pl] by =148 Z PiGiLy)
while using Lemma 9 and part (a). Thus, the G(Sf?isl satisfy the equations in (41) character-
izing the Gfl for i € S1, which gives the result.
(c) We have, fori € S,

G(S((J),??S1 = 1 (Zl ‘|‘¢z 50@51 = 1 g;;l +¢1

I

using Lemma 9, the inclusion Sy C S1, and (a, b).
(d) The result follows readily from the definition of So @ S1. O

Concerning the marginal work metric g(ngaf)ll (36) and Lemma 9, they readily give that

gfo@sl 1 +’B Z pl] 50951 ‘BGSOEle
(44)

gf(()),%S] = (Zl +¢1(1 +B Z pij (Sfijl) :BGSO@Sl-

The following result represents marginal work metric g?;? i5)1 in terms of the g].s .

Lemma 11. For every a- €{0,1},S0® S1 € F:
(a) g(so@)sl = 81 Lforie X\ Sy

1—¢;
®) 5" =7 4/;+g1 Jori€ X\ ;.

sows; _ L= PBoi( s —¢; .
(©) g(leg 1.8 (Si —51_ﬁ¢i),forzeso,

@ 85T =1- i+ 9ig) fori € 5o

S
(e) g(sf,?é& - i B forie S1\ So.
i

1-
1-¢,
® 855" = 1—4/; i ﬁgz L fori € Su\So.

Proof. (a) We have, fori € X'\ Sy,

SoPS SoPS SoPS S S
g(0€a1_1+ﬁz l]Go@l 'BG0€91 1+,BZ}71] 1_gi1/
JEST

using (44), Lemma 10(a,b), and (42).
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(b) We can write, fori € X'\ Sy,

1—
S0 = Top TP T PG — O

1-p

1_4)1 4)1 S1
= 11 1 - 1 ’

1_ﬁ+¢( +ﬁ]6251p] ) 1 ,B+4)gl

while using (44), Lemma 10(a,b), and (42).
(c) We have, for i € Sy,

S =G - Gl = 6 (10 0iG)

= (- BpGY By = LA (s By )

using (44), Sp C S1, Lemma 9, Lemma 10(b,c), and (42).
(d) We obtain, for i € S,

L 0wo1 0wo1 ! 1- 1
855 = T GRS — G = T8 1968 - p(T2 + piG)

0) ~1-B 1-B 1-B
=1—¢i+¢i(1-P)G' =1— i + i},
while using Lemma 9, Sy C S1, Lemma 10(b,c), and (42).
(e) We have, fori € 51\ S,
50981 _ S @s So®S s &
g(i)lz)l_ 0 1 IBGO 1:Gi1:11‘3,
using (44), Lemma 9, Lemma 10(d), and (42).
(f) We have, fori € 57\ Sp,
S0®S CSo®S 1 1—-¢i '
g(gf?lzl 4;1—’_(1)1 0691:1 (Ig—i_(Pl :1_% 1¢_)l glll

using (44), Lemma 9, Lemma 10(b), and (42). O

It must be now remarked that, at the corresponding point in the analysis of [27]—for
the case with no setup delays ¢; = 1—one could establish the positivity of the marginal
work metric, i.e., gf;?f)l > 0 for (a=,i) € ), So® Sy € F, which is the first PCL-
indexability condition and it implies the less stringent condition (i) in Theorem 1(a).
However, here, it is apparent from Lemma 11(c) that, for i € Sy, g?fei ! can be nega-
tive for B that is close to 1. This is why we cannot use here the same line of argument that
is given in [27] to show indexability.

As mentioned above, we will use, instead, for such a purpose, Theorem 1(a). The fol-
lowing result shows that condition (i) in that theorem holds for the model of concern.

Lemma 12. For 5o & S1 € F,

gf;)@il >0, (a,i)€So®S1,SdS\{(a i)} eF
gfﬁ?%l >0, (a,i))eY\So®S1,SodS1U{(a,i)} € F.
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Proof. First, consider the case So & 51 = @ @ @. Then, using Lemma 11(a—d), along with
g% =1, gives that, fori € X,

1—o;
gh =gl =1>0, ¢@P= L T

1-8 ! 1 B

Now, consider the case So @ S; = X & X = V. Then, again using Lemma 11(a—d)
along with g = 1 gives that, fori € X,

xox _ 1— P i\ Xox _ ¥
gﬂ% N 1—/31(&' Bl—ﬁq;)*1>0' 3(0?) 1—¢i+¢igi =1>0.

Finally, consider So & S; € F, which is different from @ ® @ and X © X. Then,

Lemma 11 and (35) imply that it could only happen that marginal work metric g(so@s)l

be negative if i~ = 1 and i € Sp. However, such a case is not included in the required
conditions, since (1,7) € So @ Sy (due to Sy C S1), yet So® S\ {(1,1)} = So & (S1\ {i}) &
F (sincei € Sg Z 51\ {i}). This completes the proof. [

We are now ready to deploy Theorem 1(a) in the present model.

Proposition 1. The present restless bandit model is F-indexable and Algorithm 3 computes its
Whittle index.

Proof. Lemmas 8 and 12 show that conditions (i) and (ii) in Theorem 1(a) hold, respectively,
which implies the result. O

4.3. The AT Index Is the Whittle Index

We next use the results above in order to prove the identity between the Whittle index
and the AT index. We will reformulate the AT index formulae in (7)—~(8) while using active
sets S C X, rather than stopping times 7. Thus, we can reformulate the continuation and
switching AT indices, as

AT & F'S
£ 1t
1) = s G5 )
and S
—C;
4 SCX:ieS (Pz +‘P GS
1-8 !

Recall that we denote the Whittle index by )\(

a=,i)

ege . % _ * __ AT
Proposition 2. Fori € X, /\(1,1-) ( ) and A(o i /\(O,i)'

Proof. We start by showing that AZ‘l H= AAT

(i) while using the equivalences

A = Afy ;) <= resting the project in (1,1) is optimal for problem (33)
SobS So®S
<~ 0> 0001 0®o1
02> sggsfgé}(xs ics, F(l i) AG(LZ)
SodS
F(lol) 1

m.
SoCSCX:ies Gflo??Sl
g

!
= A2 max —-— = éTi),
i€s;Cx G ’

= A
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drawing on the project’s F-indexability (Proposition 1), and so, if resting the project iin (1, )
is optimal, then resting it in (0, 7) is also optimal, together with Lemmas 10(b) and 14(b).
We next prove that /\Z“O = A‘(‘E)Tl.), through the chain of equivalences

A = Ay <= resting the project in (0, ) is optimal for (33)

<0 2 max FSO@SI AGSQ@Sl
SoCS CA:ies, (0d) (0,i)
Fo0B51

o
= A > max (S /) 3
SpCS1CX: ieS, G(Oei 1

S
—c; + ¢;F?
<= A > max iz)\jﬂ

S1CX: ieSl 4)1 (O'i)’
1 ,B + 4)1
drawing on the result that the project is F-indexable, together with Lemmas 10(c) and 14(c).

O

4.4. Reward Metric Analysis

We proceed by considering how to calculate the reward and marginal reward metrics
F(sa 0,6?31 and f, (Sa O,G?Sl, by relating them to the metrics F and f;* for the corresponding non-
restless project with no setup penalties.

For every active set S C X, the reward metric FZ.S is determined by the evaluation
equations

S .
s Ri-i-,BZPi]'F]- ifieS§
F = j€s (47)
0 otherwise,

and the marginal reward metric is given by

S o (1S) (05 5 -8 .
fPEEY —F =Ri+B)Y. PZJ —PE =R +B Y piiF  otherwise. (48)
je€S j€S "

Going back to the semi-Markov restless bandit reformulation, the following result

shows the evaluation equations for the reward metrics F(sa 0,@31 , for an active set S & 51 € F.

Lemma 13.
SoDS J X
R; +.BZ]€XPIJF(OG§1 lfﬂ =1,i€ 5
FS(JEBS1 _ ) _ R HFSU@S] fa- —0i€S
(a=ji) — ci + (Pl( i+ ﬁZ/EX pz] (1) ) lfll ,i €59
ABP SO@SI otherwise.

The following result formulates the reward metric F(S O@S)l in terms of the F?’s.

Lemma 14. For S0 & S € F:
(a) F&O@f)l—o— ol Jfora= €{0,1},i € X'\ Sy.

@)F&?l #yﬁmesL

(c) F(Soold)as1 = —q +4)iFI-Sl,fori € Sp.

(d) Foi™ =0=F"fori €S\ So.

Proof. (a) This part follows from the definition of So & S;.
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(b) We have, fori € 51,

So®S F500S 5085 508
F(loz)l_R+5ZPlJ ¥ l+ﬁ Z PIJFO 1_R+:BZPZJF(10]) g

while using Lemma 13 and part (a). Thus, the F(S 06)951 ’s, for i € Sy, satisty (47), which yields

the result.
(c) We can write, for i € S,

SoS SoS s
Fon ' =i+ 9i(Ri+B Y PZJF(lofEB ') = —ci+@iE",
j€S1

using parts (a, b), Lemma 13, and (47).
(d) The result follows from the definition of Sy & S1. O

50@51

Concerning the marginal reward metric f , we obtain, from (37) and Lemma 13,

that

SodS So®S SodS
f(o)l_R+BZp11FO 1 ‘BFO 1

(49)
fan®t = —ci+¢i(Ri+ B 2 pFSISS) — BESIES

50@51

The following result represents the marginal reward f in terms of the f7. 5

Lemma 15. For 5o & S € F:

@ fnt=f fori€ X\ Sy,

©) £2055 = —ci+ £ fori € X\ Sy,

1— Bo; .
(c) f(slogs1 = pei + 1—€;Pﬂ'slrf0” € So.

@ f(s&?;& =—(1—PB)ci+if" fori € Sp.

s _ i)
@ fui™ = 11_'B,fori€ 51\ So.

S =—cit9i

S1

i
1-p
Proof. (a) We have, fori € X'\ Sy,

So®S PSS So®S = S
f(o)] R+IBEP1] ; 1_1:(0)1 R+'B]ezs:1pl] L=

,fOT’i €5 \ So.

using (49), Lemmas 13 and 14(a,b), (47), and (48).
(b) We can write, fori € X'\ Sy,

f€&16)51 — _Cz _|_4)1 (1 _|_ ﬁ Z plj 50@51) IBFS()@Sl

= —ci+¢;(1+P Z‘, piE) = —ci+ oif,
J€ST

using (49), (48), and Lemma 14(a,b).
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(c) We have, for i € Sy,
So®S So®S SoBS S S
f(10,?)9 ' 1:(1016)9 ' = BFy; 0@ T=F" *,3(*Cz‘+4’iF'1)
= pei+ (1= B)ES = pey+ L0
using (49), So C S1, Lemmas 13 and 14(b,c), and (48).
(d) We can write, fori € Sy,
f(s(;),?;& = —ci+ §iF, 50@51 ﬁF(S&?;Sl = —¢; _|_471.F,51 —B(—c +¢in'51)
Z—U—@Q+@ﬂ—@§h:—ﬂ—mﬁ+%f,
while using Lemmas 13 and 14(b,c), So C 51, and (48).
(e) We have, for i € S1 \ Sy,
S
fSOEBSl _ FSU@Sl ﬁFSO@S] _ F,Sl o fi 1
(Li) (L 1-p’
using (49), Lemmas 13 and 14(d), and (48).
(f) We obtain, fori € S1 \ S,
S
SoeS1 _ (R, %@a F%®&<— S fit
f(o,,*) —Ci + 4’1 +p Z Pz] ) p —Cci+ ¢ = —ci+ ‘Pim/

using (49), Lemmas 13 and 14(b), and (48). This completes the proof. O

5. Designing an Efficient Two-Stage Index Algorithm

This section draws on the above in order to develop an efficient index algorithm,
which exploits special structure to simplify the one-stage adaptive-greedy algorithm in
Algorithm 3, by decoupling the calculation of the continuation and switching indices into a
two-stage method, for which an efficient implementation is provided.

5.1. Marginal Productivity Metric Analysis

We start by addressing the calculation of required marginal productivity metrics

A?ngiS)l in (38), also by relating them to metrics A? for the corresponding non-restless project

without setup penalties, which are given by

P
S 7
i

A2 ieX,SCX. (50)

The next result represents A (a- 5085 )1 in terms of the /\5
Lemma 16. For Sy & 51 € F:

(a) Afgf'gsl AL fori€ X\ Sy

S S
—ci + f! g ci .
(b) AT = " 5 = 5 5 (A - g ) fori€ X\ 5.,
3 +g 3 +g 8i
Bei + T g s, B1—B) c
(c) Sfﬂ'aSl =1 R T ) fori € So such
A0 TR (oS gl g gl 1—pgi gt

that g?l # ,8117 ﬁ%’i' .
—(1=B8)c; Y U g
(d) /\?8@)51 — ( :B)Cl + (Pslfl — ( JB)CZ + (P fOTl c SO
! 1— i+ ¢ig;" 1_@+@i
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() Afgj.'gsl = AL fori € S1\ So.

S
) A=A - (1_5)“”1_;”"))‘1‘1 i €51\ So.
’ 1—gi+ gt

Proof. All of the parts follow readily from (50), (38), and Lemmas 11 and 15. O

5.2. Simplified Version of the Index Algorithm

Using the above results allows for us to give a simplified and more explicit version

of the index algorithm AGr in Algorithm 3, which is given in Algorithm 4. Init, we

So®

draw on Lemma 16(b,d) to formulate marginal productivity rates A (a- ) in terms of the

g]- and /\]5. Thus, the g]( Y and A](- Y in the algorithm correspond to géko) V=1 and

k-1
, respectively. Further, we use AEO k1) (Wthh denotes A (0 )S ) in place of

, drawing on Lemma 16(d). Note that such simplifications achieve significant

savings in computer memory, since storage of quantities )\](- 171 and Aggg 2 entail one

less dimension than storing of the /\Eko) V=1 and )LEI(C)O].)*l’kl*l).

Algorithm 4: Simplified version of index algorithm AGr.

. ik * k "
Output: {(0,1,"), /\(O,igo) }]’(’0:1, {(,i), A(llillq)}l?l:1
Spi=0; S:=0; ko:=1; ki:=1; compute {(g”,A["): i€ X}
while ko +k; < 21 +2do

if kl < n choose ]inax € arg max {/\(klfl) . ] c X \ Sllfl—l}

(k
2 (0ki-1) _/\(kl y  (L=B) (1—4’1))‘; b

0, ki—1
if ko < ki choose j7'** € arg max {)\ (01 =1), 1je Sk1 i\ Sk0 1}

if ki =n+1or{ky <k <nand /\(maX < /\(Bnax }

* k .
0 — ]max (Oigo) EO 1 )1)’ SSO — Sgo 1 U {1160},. ko :=ko+1

. cki—1\ cko—1
,JESTTTNSY

else
ki jmax; My 1= AT s =S U k=t

compute {(gl( ),Agkl)): ie X}
end {if}
end { while }

5.3. Two-Stage Implementation of the Index Algorithm

We next proceed to still further simplify the index algorithm in Algorithm 4, by de-
coupling it into two successive algorithms. The first stage of such a scheme computes
the continuation index Af iy which we saw above is just the Gittins index A}. We will

need additional quantities as input to the second stage: the g} v and )L](. v appearing in
Algorithm 4.

In order to obtain such an index and the required additional quantities, consider the
algorithmic scheme AG! in Algorithm 5, which is a variant of that in [8], reformulated as
in [28]. For implementations, we can use algorithms that are provided in the latter paper,
in particular the fast-pivoting algorithm with extended output, which has an (4/3)n® 4+ O(n?)
arithmetic-operation count.
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Algorithm 5: Gittins-index algorithmic scheme AG.
K . k k . ok
Output: {7}'}} _;, {A7:j € X}, {(g]( 1>,A]( )y J €SI =1

set SY:= @; compute {(gl(O),)\l{O)): ie X}
fork; :=1tondo
choose i'! € arg max {)\gkl*l): iex\sh 1)
x k1), ck k=1, sk
Aikl = )\fkll ); Syt i=5" Uiy}
oute (o) 4607, ;
compute {(gl( VAT )ie X
end

We next address the computation of the switching index in the second stage, once
the Gittins index and required extra quantities have been computed. Consider algorithm
AG? that is given in Algorithm 6, whose input is the output of algorithm AG!, and which

returns a sequence of all the states igo in X, together with index values A* , . Note that
/i
such an algorithm is formulated in a form applying to the case of concern herein, with a

positive setup delay at every state j, so ¢; < 1.

Algorithm 6: Switching-index algorithm AG?.
ALGORITHM AG":
Input: {1y} _,, {A7:j € X}, {(g], A jesiy
Output: {ig}}. _;, {Afy;:j € X}

1= .
Cji= 1_50]-,] €X; z :gbj/(l—(p]-); 58 = Q; S? =Q; kg:=0
]
fork; :=1tondo
Syt =S U {if1); AUGMENT; := false
g+t
Ak A=) T i€ gk \Sko
(0,)) j 1 +ng](k1—1) 1A=
while ky < k1 and not(AUGMENT;) do
choose j"** € arg max {/\ng)l) [j€ 511(1 \SSO}

. _ * (O/kl)
if ki =n or Aifl < A(O,jglax)

ko+1 . * 0,k
=0 )\(O,i]0(0+1) = EO,iglO)+1)
SSOH = 5160 U {iSUH}; ko:=ko+1
else
AUGMENT]; := true
end {if }
end { while}

end { for}

We have the following result.

Proposition 3. Algorithm AG® computes index AE‘O i in no more than (5/2)n? 4+ O(n) opera-
tions.

Proof. The fact that algorithm AG? calculates the /\E‘O i) follows by noting that we have
obtained it from algorithm AGr in Algorithm 4 simply by decoupling the calculation of

the /\Eﬂo,i) and the A?Li) = A7



Mathematics 2021, 9, 52 28 of 36

As for the algorithm’s arithmetic-operation count, it is dominated by the statements

g+l

A(Or’fl) . A(kl—l) _ ] ] jE Skl \Sko
- 1) 1 0

(0,) ] 1 +ng(k1 1)

forky =2,...,n + 1, each of which performs no more than 5k; operations. This gives the

maximum stated operation count. [

6. How Does the Index Depend on Switching Penalties?

We next present and discuss properties on the index dependence on the switching
penalties, when considering the case where the latter are constant across states: ¢; = c,
d; =dand ¢; = ¢ for i € X. The notation below will make explicit the prevailing penalties,
writing )\Z‘U) (d, ), and /V(ko,i) (c,d, ¢, ).

We write, as A > 0, the Gittins index, and as Fis > 0, the reward metric of the original
project with no switching penalties. We will draw on the following expression for the
switching index:

Aoy (e d @) = max H(c,d, ¢, 9, FS,GS), -
where ) -
A —(c+ +o(F+(1—
H(c,d,¢,9,F,G) 2 (c 4’1)_ 4)9’:/}( (1-p) )
[ V6

Note that (51) uses the transformation that is considered in Section 2.1, together with
the switching-index formulation in (46), while using the result that the original non-restless
project’s reward metric with transformed rewards R; = (R; + (1 — B)d)/¢, for j € X, is
TS — (ES S
F> = (F? + (1= pB)dG})/ 9.

We will further use the following preliminary result.

Lemma 17.
(@ IfSCS C X, then FP <F and GS < G
(b) Ifd+yc> gngJFiX , then H(c,d, , ¢, F, G) is monotone increasing in F and in G.

Proof. (a) The results follows from the interpretation of work and reward metrics, using
Assumption 1(ii) for the latter.
(b) This part follows from the following results:

) ¢ E) d + e — pyF
~H(c,d,¢,,F,G) = ——"—— >0 and ==H(c,d ¢ ¢,F,G) =¢p— 7T "7 _ 0.
oF 1 gyG 9G (‘2L + ppG)°

O

We have the following result.

Proposition 4.

@ Aty (@d9) = (A +(1-p)d)/p.

(b) Ifd+pc > $pYFY, then Mojy = PAY — (1 - B)c.

© Ady (¢, d, ¢, ) is convex and piecewise linear in (c,d), decreasing in ¢ and non-increasing
ind.

(d) Ford+yc > ¢pyYE*, or for c,d > 0 small enough and R; > 0, or for c = d = 0,
/\Eﬁo,i) (c,d, ¢, ¥) is convex and non-decreasing in ¢ and in .

(e) limq,\o A’(*O’l.)(c, d,¢o,p)=—(1-B)c.

B Ay (cd g p) =AY — (1 B)c+O(y?), as § 0.
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Proof. (a) The result follows from noting that /\* (d ) is the Gittins index of the project
with modified active rewards R] =(Rj+(1- [S) ) /1 (cf. Section 2.1), which is related to
the project Gittins index A} (with unmodified rewards R;) by the stated expression.

(b) Using Lemma 17(b) and At = (1 — B)F*, we obtain

Moa(cd, ¢, ) = H(c,d,¢,v,F,G) = H(c,d, ¢, 1, FX,G¥) = pA* — (1 — B)c.
00 (Ed99) = o maX o HEA 99 F G = Hled ¢ FLGT) = A7 = (1= e

*

(c) The result follows by noting that (51) formulates A (0,) (c,d, ¢, ) as the maximum

of linear functions in (¢, d) that decrease in ¢ and are non-increasing in d.
(d) Concerning the dependence on ¢, when d + c > ¢pypE* the result follows by (b).
Furthermore,

FP = (1= (1-B)G})(d+yc)
—H(c,d, ¢, 9, F°,GS) = (1—p) - : >0
ol )= (1—¢p(1—(1-p)GF))’
aZ H(C,d,¢,l[],F1-S,G1$),: 2(1_ﬁ)(1_ (1_ﬁ)G;S)1‘/) (Fis_ (1

K e
" (1-gyp(1-1-p)GE))’ (1=B)G})(d+yc)) >0

where the inequalities hold for ¢, d small enough, using that R; > 0 so that FZ-S > 0, and for
¢ =d = 0. Hence, /\E‘O,i)(c, d,$,¢) is a maximum of convex non-decreasing functions,
which is also convex non-decreasing.

The same argument can be applied to dependence on ¥, while using that

d 1-p(1-(1-PpGCP)¢
—H(c,d, ¢, 9, F°,G?) = i FF—c—(1-(1—-PB)G})opd
sy 1(Cd ey ) 1= pp(— (P59 7 (9F, (1- (1= B)G)¢d)
22 _201-p)(1 ( ﬁ)Gf)

Parts (e) and (f) follow straightforwardly. O

We conjecture that Lemma 4(c) should hold without the qualifications considered above.

Now, consider the following examples to illustrate the results above . The first
example concerns a three-state project with no setdown penalties or setup costs, setup
delay transform ¢, § = 0.95,

0.9685 0.1957 0.0067 0.7976 .
0.1557 0.1378 0.5959 0.2663

0.7221 0.8061 0.1574 0.0365
and P=

Figure 2 plots the project’s switching index for each of the three states versus 1 — ¢.
Note that each of the lines shown corresponds to one of the project states. The plot agrees
with Proposition 4(d, e). It also illustrates that the relative ordering of states that is induced
by the switching index can vary with ¢.
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1-¢

Figure 2. Switching index versus setup delay transform.

The following example is based on the same project, but with no setup delays and with
setdown delay transform . Figure 3 displays the continuation and switching indices for
each of the three states versus 1 — 1p. Note that each of the lines shown corresponds to one
of the project states. The plots agree with Proposition 4(a,d,f). Note that the continuation
index /\Eﬁl,i) (d, ) increases to infinity as ¢ vanishes, as the incentive of sticking to a project
increases steeply as the setdown delay becomes larger. The plot for the switching index
further shows that the relative ordering of states can vary with ¢.

1

100

Al

0.5
0
1—9¢ T—vy

Figure 3. Continuation and switching indices versus setdown delay transform.

7. Numerical Study

We next report on the results of a numerical study, which is based on MATLAB
implementations of the algorithms that are discussed here developed by the author.

The first experiment addressed the runtime of the decoupled index computing method.
A random project instance with setup delays and costs was randomly generated for each
of the following numbers of states: n = 500,1000, . ..,5000. For each such 7, the time to
compute the continuation index and required extra quantities while using the fast-pivoting
algorithm with extended output in [28] was recorded, as well as the time for computing
the switching index by algorithm AG’, and the time for jointly computing both indices
by using the simplex-based implementation that is given in [49] of the adaptive-greedy
algorithm AGx. This experiment was run on a 2.8 GHz PC with 4 GB of memory.

Figure 4 shows the results. The left pane plots total runtimes (measured in hours) to
compute both indices versus n. Red squares represent the AG r joint-computing scheme,
and blue circles represent the two-stage scheme. We see that the latter attained approxi-
mately a fourfold speed-up over the former. The right pane plots runtimes (measured in
seconds), for the switching index algorithm versus the number of states n. The timescale
change from hours to seconds highlights the order-of-magnitude speed-up attained.
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Figure 4. Exp. 1: Runtimes of index algorithms.

The following experiments were designed in order to evaluate the average relative
performance of the Whittle index policy in randomly generated two- and three-project
instances, both versus the optimal problem value, and versus the benchmark Gittins index
policy, which does not take setups into account. For each problem instance, the optimal
value was calculated by solving with the CPLEX LP solver the LP formulation of the DP
optimality equations. The Whittle index and benchmark scheduling policies were evaluated
by solving, with MATLAB, the appropriate systems of linear evaluation equations.

The second experiment was designed to assess the dependence of the relative per-
formance of Whittle’s index policy for two-project instances on a constant setup-time
transform ¢ and discount factor f—with no setdown penalties. A sample of 100 randomly
generated instances with 10-state projects was obtained with MATLAB. In each instance,
the parameters for each project were independently drawn: transition probabilities (by scal-
ing a matrix with uniform entries) and uniform (between 0 and 1) active rewards. For every
instance k = 1,...,100 and parameters (¢, B) € [0.5,0.99] x [0.5,0.95]—with a 0.1 grid—
the optimal value V(K).0pt and the values of the Whittle index (V)W) and benchmark
(v (k) benchy policies were calculated, together with the relative optimality of the Whittle
index policy A®W 2 100(Vkhopt — ()W) /|7().0pt| and the optimality-gap ratio of the
Whittle index over the benchmark policy p(K)-W-bench 2 100 (1 (k)W _ 7 (k)0pt) /(y/(k) bench _
V(K).0Pt) The latter were then averaged over the 100 instances for each (c, B) pair, in order
to obtain the average values AW and p"Wench,

Values VK).opt V(W and v (k)bench yere computed, as follows. The corresponding

. (k),opt (k)W (k) bench _
value functions V( (@ iasi2)) (i) (a3 i) and V( (0 i) (5 2)) were calculated. Subse

quently, the values were calculated when considering that both projects start out being
passive, as

1 n
ylk)m & = ZN V(((ko),/z‘l),(o,iz))’ 7 € {opt, W,bench}. (52)
11,lp€

Figure 5 displays, in its left pane, the relative gap A" versus ¢—note the inverted
¢-axis used throughout—for multiple , while using cubic interpolation. The gap starts
at 0 as ¢ approaches 1 (as the optimal policy is then obtained), and then grows up to a
maximum, which is below 0.18%, and then decreases to 0 as ¢ gets smaller. That pattern
agrees with intuition: for small enough ¢, both the optimal and Whittle index policies
initially pick a project and stick to it. Because the best such project can be determined by
single-project evaluations, the Whittle index policy will correctly choose it. The right pane
shows that AW is not monotonic in B, as it is increasing for small § and then decreases for
B closer to 1. Hence, in the left pane, the higher peaks typically correspond to larger values
of B.

Figure 6 shows similar plots for the optimality-gap ratio p"VP"h of the Whittle index
over the benchmark policy. They highlight that the average optimality gap for the Whittle
index policy remains below 45% of that for the benchmark policy. The left pane shows that
the ratio vanishes for ¢ that is small enough, as the Whittle index policy is then optimal.
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Additionally, the right pane shows that the ratio is increasing with . Thus, in the left pane,
for fixed ¢, higher values correspond to larger 8.

The third experiment was similar in nature as the previous one, but, when considering
instead a constant setup delay T for each project, ¢ = BT. Figures 7 and 8 show the results,
which highlight that Whittle’s index policy was optimal for T > 2, its relative optimality
gap did not exceed 0.06%, and it substantially outperformed the benchmark Gittins-index
policy, as the optimality-gap ratio stays below 2%.

Dependence on ¢ for multiple fis Dependence on  for ¢ = 0.95
0.18

= z
< <
0
0.5 0.5 0.95
B
Figure 5. Exp. 2: Average optimality gap (%) of Whittle’s index policy.
Dependence on ¢ for multiple fs Dependence on  for ¢ = 0.99
45 45
g g
g 51
o =
z z
= <
0 1
0.99 0.5 0.5 0.95
¢ g
Figure 6. Exp. 2: Average optimality-gap ratio (%) of Whittle’s index policy over the benchmark policy.
Dependence on T for multiple B’s Dependenceon § for T =1
0.06 0.06
z S
< <

0
0.5 0.95
p

Figure 7. Exp. 3: Average optimality gap (%) of Whittle’s index policy.

—
oy
[6%]
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Figure 8. Exp. 3: Average optimality-gap ratio (%) of Whittle’s index over benchmark policy.

The fourth experiment addressed the effect of asymmetric (and constant) setup delay
transforms, with these varying over the range (¢1, ¢») € [0.8,0.99]2, in two-project instances
with discount factor f = 0.9. In the left contour plot in Figure 9 it is shown that the average
relative optimality gap of Whittle’s index policy, AW, reaches a maximum of approximately
0.14%, and it vanishes as both ¢ and ¢, get close to unity, and as either of them becomes
small enough. The right contour plot shows that the optimality-gap ratio p*V reaches the
maximum values of nearly 50%, then vanishing as either ¢; or ¢, becomes sufficiently
small.

AW pW,bench

0.8

¢2

0.99
0.99

0.14 0.8
50

P2

0 0.99 @ 0

0.8 0.99 0.8
P 1

Figure 9. Exp. 4: Average relative performance (%) of Whittle’s index policy versus (¢1, ¢2), for p = 0.9.

The fifth experiment studied the effect of state-dependent setup delay parameters ¢;,
as the discount factor is changed. Uniform[0.9, 1] i.i.d. state-dependent setup costs were
randomly generated for every instance. The left pane shown in Figure 10 displays the
average relative optimality gap versus the discount factor, showing that such a gap stays
below 0.14%. The right pane highlights that the average optimality-gap ratio p"VP"<h stays
below 20%.

The sixth experiment considered the relative performance of Whittle’s index pol-
icy on three-project instances in terms of a setup delay parameter ¢ and discount factor,
while using a random sample of 100 instances of three eight-state projects. For each in-
stance, the parameters varied over the range (¢, B) € [0.5,0.99] x [0.5,0.95]. The results
are displayed in Figures 11 and 12, which are the counterparts of Figures 5 and 6. Com-
paring Figures 5 and 11 shows a slight degradation of performance for Whittle’s index
policy in the latter, although the average gap AW stays small, beneath 0.25%. Comparing
Figures 6 and 12 shows similar values for the ratio p*Vbeneh,
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Figure 10. Exp. 5: Average relative performance (%) of Whittle’s index policy with state-dependent setup delays.
Dependence on ¢ for multiple ’s Dependence on 3 for ¢ = 0.95
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Figure 11. Exp. 6: Version of Figure 5 for three-project instances.

Dependence on ¢ for multiple Bs Dependence on 8 for ¢ = 0.99

pW,bench
pW,bench

0.5 0.5 0.95

Figure 12. Exp. 6: Version of Figure 6 for three-project instances.

8. Conclusions

Bandit models with switching penalties are relevant for a wide variety of applications.
Computing optimal policies is generally intractable, which motivates the search for simple
policies that can be implemented in practice and perform well. Index policies are an appeal-
ing class of policies, which have been proposed for such problems. Yet, while algorithms are
given in [10,27] for computing the Asawa and Teneketzis index for a bandit with switching
costs only, no algorithms have been given in the literature in order to compute the extension
of such an index for bandits with switching penalties that incorporate switching delays.
This paper presents the first such algorithm. It further provides evidence in a numerical
study that the resulting index policy is nearly optimal across the instances considered. This
work could be extended in several directions, including developing specialized algorithms
for computing the index, in particular, models that arise in applications.
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