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Abstract: In this short communication, we present a new limit relation that reduces pseudo-Jacobi
polynomials directly to Hermite polynomials. The proof of this limit relation is based upon 2F1-
type hypergeometric transformation formulas, which are applicable to even and odd polynomials
separately. This limit opens the way to studying new exactly solvable harmonic oscillator models in
quantum mechanics in terms of pseudo-Jacobi polynomials.
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1. Introduction

Polynomials with an orthogonality property under some continuous or discrete mea-
sure play a major role in the exact solution of a number of phenomena expressed by means
of differential or finite-difference equations. Some well-known problems of quantum
mechanics and quantum computing, as well as stochastic processes, probability theory,
and statistical finance, are among of these phenomena [1]. Hermite, Laguerre, and Jacobi
polynomials, as exact solutions of a second-order differential equations of the hypergeo-
metric type, are among the most widely used classical polynomials. The Askey scheme
or table of orthogonal polynomials, introduced in the 1980s, exhibited “hidden” proper-
ties of these polynomials and their higher-order generalizations (and their q-deformed or
basic analogues [2]). This scheme is a way of organizing orthogonal polynomials of the
hypergeometric type (or basic hypergeometric type) into a directed graph, with Wilson
polynomials and Racah polynomials (or Askey–Wilson polynomials and q-Racah polyno-
mials) on the top level, and other polynomials arranged on lower levels, roughly speaking,
according to the number of variables. A beautiful aspect of the scheme is that it is possible
to establish connections between almost all polynomials located at the nearest or almost
nearest neighbor nodes in the graph via exact limit relations or special cases, which are
indicated by arrows in the graph. For example, the Hermite polynomials described by 2F0
hypergeometric functions are located at the lowest level of the scheme, and the generalized
Laguerre polynomials located on next level of the scheme are connected to the Hermite
polynomials both via an exact limit relation [2] (9.12.13) and through a well-known special
case that is separately valid for even and odd polynomials [2] (p. 244) (see Equations (16)
and (19) in this paper). Some other interesting properties of these polynomials are a general
limit relation between these two polynomials in terms of the Srivastava–Singhal polynomi-
als [3] and the appearance as a generic polynomial solution of a differential equation [4].
In general, one easily observes from the Askey table that all orthogonal polynomials within
this scheme are special or limiting cases of the Wilson polynomials or Racah polynomials
(or Askey–Wilson or q-Racah polynomials).

In the early days of the Askey scheme [5,6], four classes of polynomials appear at
the 2F1 level. Nowadays, a fifth class, pseudo-Jacobi polynomials, is usually included
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in the scheme at this level [2] (p. 183). These pseudo-Jacobi polynomials are among the
least studied polynomials of the Askey scheme. These polynomials were first obtained by
Routh [7], and later, were independently introduced by V. Romanovski as a finite system
of Jacobi-like polynomials [8]. They are sometimes referred to as Routh–Romanovski
polynomials. Their q-analogues were studied in [9], wherein further references can be found.
An attractive property of the pseudo-Jacobi polynomials is their orthogonality relation for
a weight function with support over the whole real line (see Equation (4)). Furthermore, it
is known that the pseudo-Jacobi polynomials can be recovered from the continuous Hahn
polynomials under a certain limit (see Equation (5)); hence, there is an arrow in the Askey
scheme from continuous Hahn polynomials to pseudo-Jacobi polynomials. On the other hand,
only a special case of the Bessel polynomials can be obtained as a limit of the pseudo-Jacobi
polynomials [2,10]. In that sense, there is no arrow in the Askey scheme from pseudo-Jacobi
polynomials to a class of polynomials at a lower level.

The main goal of this short communication is to show that there exists a direct limit
from pseudo-Jacobi polynomials to Hermite polynomials, and hence, an extra arrow can
be drawn in the Askey scheme.

The paper is structured as follows: In Section 2, some basic properties of both Hermite
and pseudo-Jacobi polynomials are recalled. These properties include their hypergeometric
expressions, orthogonality relations, and differential equations. In Section 3, the limit
relation between these two polynomials is presented. Conclusions with some further
discussions are presented in Section 4.

2. Basic Properties of Hermite and Pseudo-Jacobi Polynomials

In this section, we give the main formulas for Hermite and pseudo-Jacobi polynomials.
All of these can be found in [2], but it is convenient to list them here for further reference.

Hermite polynomials are defined in terms of 2F0 hypergeometric functions as fol-
lows [2] (9.15.1):

Hn(x) = (2x)n
2F0

(
−n/2,−(n− 1)/2

− ;− 1
x2

)
. (1)

They are exact solutions of the following second-order differential equation [2] (9.15.5):

y′′(x)− 2xy′(x) + 2ny(x) = 0,

where y(x) = Hn(x). Hermite polynomials satisfy an orthogonality relation [2] (9.15.2) on
the interval (−∞, ∞):

1√
π

∞∫
−∞

e−x2
Hm(x)Hn(x)dx = 2nn!δmn. (2)

Pseudo-Jacobi polynomials belong to a higher level in the Askey scheme, and are
defined in terms of 2F1 hypergeometric functions as follows [2] (9.9.1):

Pn(x; ν, N) =
(−2i)n(−N + iν)n
(n− 2N − 1)n

2F1

(
−n, n− 2N − 1
−N + iν

;
1− ix

2

)
(3a)

= (x + i)n
2F1

(
−n, N + 1− n− iν

2N + 2− 2n
;

2
1− ix

)
, n = 0, 1, 2, . . . , N. (3b)

Herein, ν is an arbitrary real parameter and N is an arbitrary positive integer. The poly-
nomials Pn(x; ν, N) are real polynomials in x of degree n, and n is restricted by N. They
are also the exact solution of a second-order differential equation, namely [2] (9.9.5):(

1 + x2
)

y′′(x) + 2(ν− Nx)y′(x)− n(n− 2N − 1)y(x) = 0,
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where y(x) = Pn(x; ν, N). Pseudo-Jacobi polynomials also satisfy an orthogonality rela-
tion [2] (9.9.2) on the interval (−∞, ∞):

1
2π

∞∫
−∞

(
1 + x2

)−N−1
e2ν arctan xPm(x; ν, N)Pn(x; ν, N)dx

=
Γ(2N + 1− 2n)Γ(2N + 2− 2n)22n−2N−1n!

Γ(2N + 2− n)|Γ(N + 1− n + iν)|2
δmn. (4)

The pseudo-Jacobi polynomials can be related to Jacobi polynomials P(α,β)
n (x) in the

following way [2] (p. 233):

Pn(x; ν, N) =
(−2i)nn!

(n− 2N − 1)n
P(−N−1+iν,−N−1−iν)

n (x),

but this is only a formal relation, only referring to the 2F1 structure. They follow from the
continuous Hahn polynomials pn(x; a, b, c, d) under the limit relation [2] (p. 233):

lim
t→∞

pn

(
xt;

1
2
(−N + iν− 2t),

1
2
(−N − iν + 2t),

1
2
(−N + iν− 2t),

1
2
(−N − iν + 2t)

)
=

(n− 2N − 1)n
n!

Pn(x; ν, N). (5)

A special case of the Bessel polynomials yn(x; a) can be obtained from them as follows:

lim
ν→∞

Pn(νx; ν, N)

νn =
2n

(n− 2N − 1)n
yn(x;−2N − 2).

3. Direct Limit Relation between Pseudo-Jacobi and Hermite Polynomials

Before presenting the main theorem, we have a lemma with two transformation
formulas (which appeared already in [11], but were not derived there).

Lemma 1. For m a non-negative integer, the following transformation formulas hold:

2F1

(
−2m, 2m + 2λ

λ + 1/2
;

1− ξ

2

)
= (−1)m (1/2)m

(λ + 1/2)m
2F1

(
−m, λ + m

1/2
; ξ2
)

, (6)

2F1

(
−2m− 1, 2m + 2λ + 1

λ + 1/2
;

1− ξ

2

)
= (−1)m (3/2)m

(λ + 1/2)m
ξ 2F1

(
−m, λ + m + 1

3/2
; ξ2

)
. (7)

Proof. First, apply the quadratic transformation formula 2.11.2 in [12] on the left-hand side
of (6):

2F1

(
−2m, 2m + 2λ

λ + 1/2
;

1− ξ

2

)
= 2F1

(
−m, m + λ

λ + 1/2
; 1− ξ2

)
.

Next, apply the linear transformation formula 15.8.7 of [13]:

2F1

(
−m, m + λ

λ + 1/2
; 1− ξ2

)
=

(−m + 1/2)m

(λ + 1/2)m
2F1

(
−m, m + λ

1/2
; ξ2
)

,

yielding (6).
For the second formula, apply the quadratic transformation formula 2.11.3 in [12] on

the left-hand side of (7):

2F1

(
−2m− 1, 2m + 2λ + 1

λ + 1/2
;

1− ξ

2

)
= ξ

Γ(λ + 1/2)Γ(−1/2)
Γ(−m− 1/2)Γ(m + λ + 1/2) 2F1

(
−m, m + λ + 1

3/2
; ξ2

)
.
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After simplification of the Gamma functions, this yields (7).

The main result of this note is the following:

Theorem 1. (Limit relation from Pn(x; ν, N) to Hn(x)) The Hermite polynomials (1) follow from
the pseudo-Jacobi polynomials given by (3a) or (3b) by setting x → x/

√
N and ν → ν/N and

then letting N → ∞ in the following way:

lim
N→∞

N
n
2 Pn

(
x√
N

;
ν

N
, N
)
=

1
2n Hn(x). (8)

Proof. Using (3a), the left-hand side of Equation (8) can be rewritten as follows:

lim
N→∞

N
n
2 Pn

(
x√
N

;
ν

N
, N
)
= (−2i)n lim

N→∞
N

n
2

(
−N + i ν

N
)

n
(n− 2N − 1)n

2F1

(
−n, n− 2N − 1
−N + i ν

N
;

1− i x√
N

2

)
. (9)

It is directly clear that

lim
N→∞

(
−N + i ν

N
)

n
(n− 2N − 1)n

= 2−n. (10)

Hence,

lim
N→∞

N
n
2 Pn

(
x√
N

;
ν

N
, N
)
= (−i)n lim

N→∞
N

n
2 2F1

(
−n, n− 2N − 1
−N + i ν

N
;

1− i x√
N

2

)
. (11)

In the denominator of the hypergeometric series, the term +i ν
N plays no role in the

limit, leading to

lim
N→∞

N
n
2 Pn

(
x√
N

;
ν

N
, N
)
= (−i)n lim

N→∞
N

n
2 2F1

(
−n, n− 2N − 1

−N
;

1− i x√
N

2

)
. (12)

After these straightforward simplifications, one has to take more care in order to
proceed. In particular, it is now necessary to distinguish the cases for even and odd n.
For n = 2m, we have

lim
N→∞

NmP2m

(
x√
N

;
ν

N
, N
)
= (−1)m lim

N→∞
Nm

2F1

(
−2m, 2m− 2N − 1

−N
;

1− i x√
N

2

)
. (13)

Using (6), this leads to

lim
N→∞

NmP2m

(
x√
N

;
ν

N
, N
)
= (1/2)m lim

N→∞

Nm

(−N)m
2F1

(
−m, m− N − 1/2

1/2
;− x2

N

)

= (−1)m(1/2)m lim
N→∞

2F1

(
−m, m− N − 1/2

1/2
;− x2

N

)

= (−1)m(1/2)m 1F1

(
−m
1/2

; x2

)
. (14)

For the last step, one can simply use

lim
N→∞

(−m)k(m− N − 1/2)k
(1/2)kk!

(
− x2

N

)k

=
(−m)k
(1/2)kk!

(x2)k
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in each term of the hypergeometric series. Taking into account the definition of generalized
Laguerre polynomials L(α)

n (x) [2] (9.12.1)

L(α)
n (x) =

(α + 1)n
n! 1F1

(
−n

α + 1
; x
)

, (15)

and the following connection between Hermite and generalized Laguerre polynomials [2]
(p. 244)

H2m(x) = (−1)mm!22mL

(
− 1

2

)
m

(
x2
)

, (16)

one obtains that

lim
N→∞

NmP2m

(
x√
N

;
ν

N
, N
)
=

1
22m H2m(x).

Next, consider the case n = 2m + 1 in (12):

lim
N→∞

Nm+ 1
2 P2m+1

(
x√
N

;
ν

N
, N
)
= i(−1)m+1 lim

N→∞
Nm+ 1

2 2F1

(
−2m− 1, 2m− 2N

−N
;

1− i x√
N

2

)
. (17)

Here, one can use (7), leading to

lim
N→∞

Nm+ 1
2 P2m+1

(
x√
N

;
ν

N
, N
)
= (3/2)mx lim

N→∞

Nm

(−N)m
2F1

(
−m, m− N − 1/2

3/2
;− x2

N

)

= (−1)m(3/2)mx lim
N→∞

2F1

(
−m, m− N − 1/2

3/2
;− x2

N

)

= (−1)m(3/2)mx 1F1

(
−m
3/2

; x2

)
. (18)

According to (15), the hypergeometric series in the right-hand side of (18) is again a
generalized Laguerre polynomial, with α = 1

2 . Taking into account the relation [2] (p. 244)

H2m+1(x) = (−1)mm!22m+1x L

( 1
2

)
m

(
x2
)

, (19)

one obtains that

lim
N→∞

Nm+ 1
2 P2m+1

(
x√
N

;
ν

N
, N
)
=

1
22m+1 H2m+1(x).

This proves the limit relation (8).

It is interesting to observe that under this limit, the orthogonality relation for pseudo-
Jacobi polynomials actually reduces to the orthogonality for Hermite polynomials. This is
because the weight function for pseudo-Jacobi polynomials behaves under this limit as

lim
N→∞

(
1 +

x2

N

)−N−1

e2 ν
N arctan x√

N = e−x2
,

by using the classical limit

lim
n→∞

(
1 +

t
n

)n
= et.

For the norm squared of the polynomials under this limit, it is sufficient to use
Stirling’s approximations

n! ∼
√

2πn
(n

e

)n
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and

Γ(z) ∼
√

2π

z

( z
e

)z

in order to relate the right-hand side of (4) to the right-hand side of (2).

4. Discussion and Conclusions

Taking into account the existence of a direct limit from pseudo-Jacobi polynomials
Pn(x; ν, N) to Hermite polynomials Hn(x) by setting x → x/

√
N and ν→ ν/N and then

letting N → ∞, let us explore this relation in more detail. In particular, let us examine
the graphs of the corresponding polynomials. In Figure 1, we have plotted Hermite
polynomials Hn(x) and pseudo-Jacobi polynomials 2nN

n
2 Pn

(
x√
N

; ν
N , N

)
for certain values

of n and of the variables. Taking into account that the Hermite polynomial H0(x) is constant
and H1(x) is equal to 2x, we concentrate on the plots for n = 2 and n = 3, the simplest
cases for even and odd degrees. In addition, taking into account the dependence of the
weight function for pseudo-Jacobi polynomials on ν, we have chosen two values of ν with
opposite signs, namely ν = ±10.

Figure 1. Hermite polynomials Hn(x) vs. pseudo-Jacobi polynomials 2n N
n
2 Pn

(
x√
N

; ν
N , N

)
. Panel (a) depicts n = 2 and

panel (b) depicts n = 3. The Hermite polynomials are plotted by a solid line. The pseudo-Jacobi polynomials with ν = −10
are plotted by a dash-dotted line, and the pseudo-Jacobi polynomials with ν = 10 are plotted by a dashed line. The plots are
given for N = 5 and N = 15, where the case N = 15 is closest to the solid line.

In both plots, one observes that the value of ν plays the role of shifting the pseudo-
Jacobi polynomial to the left or right of the Hermite polynomial depending on the sign
of this parameter. Actually, as the limit relation (8) holds for the parameter ν → ν/N,
the plots of pseudo-Jacobi polynomials tend to the plots of the Hermite polynomials as
N increases. Both plots clearly demonstrate the limit behavior and how the value of the
parameter ν no longer plays a role as it disappears under the limit. Similar plots with
similar behavior can be made for the polynomials with a degree n higher than 3.

To conclude, we emphasize again that we have obtained a proper limit relation that re-
duces the pseudo-Jacobi polynomials to the Hermite polynomials and, moreover, transfers
the orthogonality relation from pseudo-Jacobi polynomials to that of Hermite polynomials.
To prove the limit, we had to use 2F1-type hypergeometric transformation formulas for
even and odd polynomials separately. We think that the consequences of our result can
be of major importance in quantum mechanical models. It is well known that Hermite
polynomials play a vital role as exact solutions of the quantum mechanical harmonic



Mathematics 2021, 9, 88 7 of 8

oscillator problem. In the context of non-relativistic quantum theory under the canonical
approach, where the commutation relation between the one-dimensional momentum and
position operators is a c-number, the exact solution of the time-independent Schrödinger
equation for the one-dimensional non-relativistic harmonic oscillator with homogeneous
effective mass m0 leads to wave functions of stationary states in terms of the Hermite poly-
nomials Hn(x) [14]. The exact solution of same problem, but with an additional external
homogeneous field, leads to wave functions of the stationary states in terms of the Hermite
polynomials with a shifted variable as Hn(x + x0). The solution of the same Schrödinger
equation under the non-canonical approach leads to wave functions of stationary states
in terms of the generalized Laguerre polynomials L(α)

n
(
x2) [15], sometimes referred to

as generalized Hermite polynomials [16]. Therefore, in view of the established limit (8),
we think that it is interesting to study new exactly solvable harmonic oscillator models
in terms of pseudo-Jacobi polynomials Pn

(
x√
N

; ν
N , N

)
, where, for example, the parameter

ν takes the role of a shifting parameter. Even beyond that, in view of the limit (5), one
could examine new quantum oscillator models where the continuous Hahn polynomials
pn(x; a, b, c, d) [17], subject to certain parameter restrictions, play the role of wave functions.
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