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Abstract: A nonlinear-observer-based design methodology is proposed for an adaptive event-driven
output-feedback tracking problem with guaranteed performance of uncertain underactuated un-
derwater vehicles (UUVs) in six-degrees-of-freedom (6-DOF). A nonlinear observer using adaptive
neural networks is presented to estimate the velocity information in the presence of unknown nonlin-
earities in the dynamics of 6-DOF UUVs where a state transformation approach using a time-varying
scaling factor is introduced. Then, an output-feedback tracker using a nonlinear error function
and estimated states is recursively designed to overcome the underactuated problem of the system
dynamics and to guarantee preselected control performance in three-dimensional space. It is shown
that the tracking error of the nonlinear-observer-based output-feedback control system exponentially
converges a small neighbourhood around the zero. Efficiency of the resulting output-feedback
strategy is verified through a simulation.

Keywords: adaptive neural network observer; event-driven three-dimensional tracking; output-
feedback; guaranteed performance; underactuated underwater vehicles (UUVs)

1. Introduction

Over the past few decades, the development of advanced control strategies has stim-
ulated interest in the control field of autonomous underwater vehicles [1]. The design
and control techniques of autonomous underwater vehicles were surveyed in [2]. Several
study results have been presented for various control problems of autonomous underwater
vehicles such as subsea cable tracking using magnetic sensing guidance [3], control in
remote and hostile environments [4], chemical plume tracing [5], path following using
Lagrange multipliers [6], and survey, inspection and intervention of Girona 500 [7]. Ini-
tial research has focused on the two-dimensional horizontal or vertical tracking control
problems of autonomous underwater vehicles. In [8], an adaptive nonlinear controller
was designed for depth control of autonomous underwater vehicles on the vertical plane.
In [9], a combined problem of trajectory planning and tracking control was addressed for
underactuated underwater vehicles (UUVs) on the horizontal plane. A terminal sliding
mode control approach was proposed for the trajectory tracking of UUVs on the horizontal
plane [10]. In [11], a Lyapunov-based model predictive control design was developed
for fully-actuated underwater vehicles on the horizontal plane. A robust backstepping
controller using the time delay estimation was proposed for fully-actuated underwater
vehicles [12]. These results [8–12] are only available for the two-dimensional tracking
control of autonomous underwater vehicles.

To deal with more practical underwater environments, the control problems in three-
dimensional underwater space were addressed for autonomous underwater vehicles.
In [13], a three-dimensional path following a control problem was addressed for 5-degrees-
of-freedom (5-DOF) UUVs in the presence of ocean current. In [14], an ocean current
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observer design was presented for three-dimensional trajectory tracking of 5-DOF UUVs.
Function approximation methods using neural networks have been applied to design
adaptive trackers of 5-DOF UUVs. A command filtered backstepping control approach
using neural networks was developed for uncertain 5-DOF UUVs [15]. In [16], a neural-
network-based target tracking problem was investigated for uncertain 5-DOF UUVs. The
tracking control problems of uncertain 6-DOF underwater vehicles have been addressed
using several control approaches such as neural-network-based adaptive control [17], hi-
erarchical robust nonlinear control [18], and hybrid tracking control [19]. Furthermore,
predefined performance control designs have recently been developed for uncertain 6-DOF
underwater vehicles. In [20], a tracking controller using performance functions was pre-
sented for uncertain 6-DOF UUVs. A neural-network-based target tracking control problem
with a prescribed performance was considered for uncertain 6-DOF UUVs [21]. In [22], an
adaptive region tracking control problem with prescribed transient performance was ad-
dressed fully-actuated 6-DOF underwater vehicles with thruster fault. An event-triggered
neural network tracking control design with predefined performance was developed for
uncertain 6-DOF UUVs [23]. Despite these successful results, full state measurements are
required in the aforementioned tracking designs, that is, all positions and velocities of
underwater vehicles should be measured online. Owing to the economic cost and other
limitations, underwater vehicles may not be equipped with velocity sensors, or the velocity
measurements can be easily corrupted by sensor noises.

To design the controller independent of the velocity sensors, some output-feedback
control designs have been developed of underwater vehicles. Due to the existence of
rotational matrices for linear and angular velocities in the kinematics, the observer design
problem to estimate velocity information has been regarded as a challenging problem
in the output-feedback tracking field of 5-DOF or 6-DOF underwater vehicles. In [24],
an output-feedback controller using nonlinear Luenberger observers was designed for
5-DOF slender-body underwater vehicles. In [25], an output-feedback control law for
5-DOF UUVs without model uncertainties was designed by using sliding mode observer
and backstepping technique. A linear-observer-based adaptive control strategy was sug-
gested for fully-actuated 6-DOF underwater vehicles [26]. In [27], a neural-network-based
robust tracker using a prescribed performance technique and a high-gain observer was
designed for fully-actuated 6-DOF underwater vehicles. However, the aforementioned
works [24–27] did not consider the model of 6-DOF UUVs for the design of the output-
feedback tracking controllers. Besides, the continuously updated tracking laws reported
in [24–27] cannot be efficiently operated in the network-based underwater environment
with low propagation speed, capacity-limited bandwidth and high energy consumption. To
manage the transmission signal data economically, some limited studies have tried to deal
with the event-triggered full state-feedback design problems for the depth control of under-
water vehicles [28] and the prescribed performance control of 6-DOF UUVs [23]. Although
these results [23,28] provide some remedies on the event-triggered tracking problems of
underwater vehicles, they require the measurement of all state variables of underwater
vehicles. To the best of our observations, there is no systematic solution available for the
output-feedback event-triggered tracking of uncertain 6-DOF UUVs. The adaptive velocity
observer design problem of uncertain 6-DOF UUVs especially still remains unaddressed in
the control field of underwater vehicles.

In this work, we present an adaptive-nonlinear-observer-based design methodology
for event-driven output-feedback tracking with guaranteed performance of uncertain
6-DOF UUVs in three-dimensional space. Specifically, the term ‘output-feedback event-
triggered tracking’ means that the position information of the UUV is only measured to
design the controller of the UUV, which is intermittently updated when an event-triggering
condition is satisfied. Thus, the term ‘adaptive velocity observer design’ indicates that
the velocity observer using the adaptive neural network approximator is designed to
estimate the unmeasurable velocity information of the UUV. Our design consists of the
following steps. Firstly, to estimate velocity information in the presence of unknown
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nonlinear functions in the dynamics of UUVs, an adaptive velocity observer using state
transformation and neural networks is developed by deriving adaptive tuning laws based
on a scaling function. Secondly, by employing the error transformation technique using a
rotation matrix, a guaranteed-performance-based event-triggered output-feedback control
scheme and its triggering law are constructed to operate uncertain 6-DOF UUVs stably
within the pre-designated error region. Furthermore, the dynamics of auxiliary variables
are introduced to overcome the underactuated property of underwater vehicles in the
tracker design and stability analysis. Finally, simulation results are provided to verify the
effectiveness of the proposed theoretical result.

Compared with the related results in the literature, the proposed novelties are two-fold.

(i) Contrary to the existing output-feedback tracking methods for 5-DOF or 6-DOF
underwater vehicles [24–27], this study considers unknown system nonlinearities
of the 6-DOF UUV dynamics. Thus, an adaptive velocity observer design strategy
using state transformation and neural networks is proposed to estimate the velocity
information of UUVs while compensating for the unknown system nonlinearities,
where adaptive laws based on a scaling function are derived to learn weights of neural
networks.

(ii) Compared with the existing event-triggered control results for three-dimensional
tracking [23,28], this study establishes the design methodology of the guaranteed-
performance-based adaptive tracker and its event-triggering condition depending on
only the position measurement of 6-DOF UUVs. Then, the stability of the proposed
output-feedback event-triggered tracking system is analyzed in the Lyapunov sense.

The remaining part of this paper is structured as follows: The event-driven output-
feedback tracking problem is formulated in Section 2. In Section 3, the adaptive-nonlinear-
observer-based design methodology for event-driven output-feedback tracking with guar-
anteed performance and stability analysis is presented. In Section 4, simulation results are
provided. Finally, a conclusion is drawn in Section 5.

2. Problem Formulation

We consider the kinematic and dynamic equations of a 6-DOF UUV represented by

β̇ = R1(ζ)υ
ζ̇ = R2(ζ)ω

(1)

M
[

υ̇
ω̇

]
= D(υ, ω) + B(ζ) + η, (2)

where β = [x, y, z]> and ζ = [φ, θ, ψ]>; (x, y, z) and (φ, θ, ψ) denote the positions (i.e.,
surge, sway and heave displacements) and orientations (i.e., roll, pitch, and yaw angles)
of the UUV, respectively, υ = [u, v, w]> and ω = [p, q, r]>; (u, v, w) and (p, q, r) are the
position velocities (i.e., surge, sway, and heave velocities) and orientation velocities (i.e.,
roll, pitch, and yaw angular velocities) of the UUV, respectively, R1(ζ) and R2(ζ) are the
rotation matrix for the linear velocity and the transformation matrix for the angular velocity,
respectively, defined as

R1(ζ) =

 cθcψ sθcψsφ − sψcφ sθcψcφ + sψsφ

cθsψ sθsψsφ + cψcφ sθsψcφ − cψsφ

−sθ cθsφ cθcφ

,

R2(ζ) =

 1 tθsφ tθcφ

0 cφ −sφ

0 sφ/cθ cφ/cθ

,

with s(·) , sin(·), c(·) , cos(·), and t(·) , tan(·), M denotes the mass and inertial matrix,
D(υ, ω) ∈ R6 is a vector related to the Coriolis and damping matrices, B(ζ) ∈ R6 is



Mathematics 2021, 9, 1144 4 of 23

a hydrostatic vector of the UUV, and from the moving property of the torpedo-shaped
UUV [29], η is defined as the underacutated torque vector η = [ηX, 0, 0, 0, ηM, ηN ]. In
this work, the underacutated control vector η is intermittently updated according to the
triggering law to be derived later. The nonlinearities M, D, and B in the dynamics of the
UUV are taken from the definitions reported in [23,30,31]. The structure of the neutrally
buoyant UUV concerned in this study is depicted in Figure 1.

Figure 1. The UUV system.

Assumption 1. In three-dimensional space, the desired trajectory βd ∈ R3 and its time derivatives
β̇d ∈ R3 and β̈d ∈ R3 are bounded.

Assumption 2. The system nonlinearities D(υ, ω) and B(ζ) are assumed to be unknown.

Assumption 3. The positions β and orientations ζ are only measurable. That is, the velocity
vectors υ and ω are unmeasurable.

The primary objective of this paper is to design an adaptive-observer-based event-
driven output-feedback tracking law η without velocity measurements for the uncertain
6-DOF nonlinear UUV (i.e., (1) and (2)) while guaranteeing predesignated tracking perfor-
mance in three-dimensional space.

3. Nonlinear-Observer-Based Design Approach for Event-Driven Output-
Feedback Control
3.1. Adaptive Nonlinear Observer Design Using Neural Networks

In this section, the neural-network-based adaptive observer with state transformation
is developed to estimate the velocity information in the presence of unknown nonlinear
functions of the UUV dynamics. For our adaptive observer design, a state transformation
is presented as

χ2 = Ωχ2, (3)

where χ2 = [χ2,1, . . . , χ2,6]
>, χ2 = [χ2,1, . . . , χ2,6]

> = [υ>, ω>]> and a time-varying scaling

signal Ω ∈ R is provided by the differential equation Ω̇ = −(L2 + ‖R>‖2/4)Ω + L3
with Ω(0) > 0, constants L2 > 0 and L3 > 0, and R = diag[R1, R2]. By using (3), the
kinematics (1) and the dynamics (2) of the UUV are transformed as

χ̇1 =Ω−1Rχ2

χ̇2 =−
(

L2 +
‖R>‖2

4

)
χ2 + R>F(χ1, χ2) + ΩM−1η (4)
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where χ1 = [χ1,1, . . . , χ1,6]
> = [β>, ζ>]> and F = (R>)−1[L3Ω−1χ2 +ΩM−1(D(Ω−1χ2) +

B(χ1))].
By employing a universal function approximation technique using neural networks,

the unknown continuous function F can be approximated by radial basis function neural
networks as follows [32]:

F(x̄) = Φ>Θ(x̄) + ε(x̄), (5)

where x̄ = [χ>1 , χ>2 ]
> ∈ Ξ ⊂ R12 denotes the input vector, Φ = diag[Φ1, . . . , Φ6] is

the optimal weighting matrix satisfying ‖Φ‖F ≤ Φ̄ with an unknown positive constant
Φ̄, Φj = [Φj,1, . . . , Φj,n]

> with j = 1, . . . , 6, the Frobenius norm is defined as ‖ · ‖F, Θ
is the vector of the Gaussian function Θ = [Θ>1 , . . . , Θ>6 ]

>; Θj = [Θj,1, . . . , Θj,n]
> with

j = 1, . . . , 6, and ε ∈ R6 is a reconstruction error vector bounded as ‖ε‖ ≤ ε̄ with an
unknown positive constant ε̄.

Lemma 1 ([33]). For the Gaussian function vector Θ, there exists a constant Θ̄ > 0 such that
‖Θ‖ ≤ Θ̄.

The adaptive observer using radial basis function neural networks is designed as

˙̂χ1 =Ω−1Rχ̂2 + L1χ̃1

˙̂χ2 =−
(

L2 +
‖R>‖2

4

)
χ̂2 + R>Φ̂>Θ( ˆ̄x) + Ω−1R>χ̃1 + v + ΩM−1η, (6)

where χ̂1 and χ̂2 are the estimates of χ1 and χ2, respectively, ˆ̄x = [χ̂>1 , χ̂>2 ]
>, χ̃1 = χ1 − χ̂1,

L1 is the positive constant denoting the observer gain, v is an auxiliary term to be deter-
mined in the controller design procedure, and Φ̂ is the estimate of Φ and is tuned by the
following adaptation law:

Φ̂j =δj(ΩΘj( ˆ̄x)χ̃>1 + Γ)

Γ̇ =−ΩΘ̇j( ˆ̄x)χ̃>1 − Ω̇Θj( ˆ̄x)χ̃>1 + ΩL1Θj( ˆ̄x)χ̃>1 − σjΦ̂j, (7)

where j = 1, . . . , 6, δj = diag[δj,1, . . . , δj,n] > 0; δj,l > 0, l = 1, . . . , n, is a constant, and
0 < σj < 2 is a constant for σ-modification.

The observer error dynamics along (4)–(6) is obtained as

˙̃χ1 =Ω−1Rχ̃2 − L1χ̃1

˙̃χ2 =−
(

L2 +
‖R>‖2

4

)
χ̃2 + R>(Φ>Θ(x̄)− Φ̂>Θ( ˆ̄x) + ε)−Ω−1R>χ̃1 −v, (8)

where χ̃2 = χ2 − χ̂2.
For the adaptive observer, we define a Lyapunov function candidate as

Vo =
1
2
[χ̃>1 χ̃1 + χ̃>2 χ̃2 + tr(Φ̃>δ−1Φ̃)], (9)

where Vo is a positive definite function and Φ̃ = Φ− Φ̂.
In (8), we have that

Φ>Θ(x̄)− Φ̂>Θ( ˆ̄x) = Φ̃>Θ( ˆ̄x) + Φ>(Θ(x̄)−Θ( ˆ̄x)). (10)

By substituting (8) into V̇o and using (7) and (10), V̇o becomes

V̇o =− L1χ̃>1 χ̃1 −
(

L2 +
‖R>‖2

4

)
χ̃>2 χ̃2 + χ̃>2 R>{Φ>(Θ(x̄)−Θ( ˆ̄x)) + ε}

− χ̃>2 v + σjtr(Φ̃>Φ̂)
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≤− L1χ̃>1 χ̃1 −
(

L2 +
‖R>‖2

4

)
χ̃>2 χ̃2 − χ̃>2 v + σjtr(Φ̃>Φ̂) +

‖χ̃2‖
2‖R>‖2

4

+ ‖Φ>(Θ(x̄)−Θ( ˆ̄x)) + ε‖2. (11)

From Lemma 1, we have ‖Φ>(Θ(x̄)−Θ( ˆ̄x))‖ < 2Φ̄Θ̄. Then, owing to ‖ε‖ ≤ ε̄, there
exists a constant ι such that ‖Φ>(Θ(x̄)−Θ( ˆ̄x)) + ε‖2 ≤ ι.

In addition, the term σjtr(Φ̃>Φ̂) in (11) becomes

σjtr(Φ̃>Φ̂) =σjtr(Φ̃>(Φ− Φ̃))

≤− σjtr(Φ̃>Φ̃) +
σ2

j

2
‖Φ̃‖2

F +
Φ̄2

2

≤− σ̄j‖Φ̃‖2
F +

Φ̄2

2
, (12)

where σ̄j = σj(1− σj/2) is strictly positive because of 0 < σj < 2.
Substituting (12) into (11) gives

V̇o ≤− L1χ̃>1 χ̃1 − L2χ̃>2 χ̃2 − χ̃>2 v− σ̄j‖Φ̃‖F +
Φ̄2

2
+ ι2. (13)

Remark 1. Compared with the existing works [23–28], we design the neural-network-based adap-
tive observer (6) to estimate the unmeasurable velocities of the UUV. To this end, the transformed
velocity variable (3) is presented to derive the adaptive laws (7) dependent on the position error
χ̃1 in the presence of unknown nonlinearities of the dynamics. In addition, the term v in (6) is
designed to deal with the coupling term between the error dynamics of the observer and controller in
the Lyapunov-based stability analysis.

3.2. Output-Feedback Event-Driven Controller Design and Stability Analysis

Based on the estimated velocity information, a guaranteed-performance-based output-
feedback event-driven control methodology is established via a nonlinear error function
with a time-varying bounding function and some auxiliary signals. The dynamic surface
design technique [34] is employed for the recursive output-feedback control design. The
controller design is based on the Lyapunov stability theorem.

Step 1: The position error vector is defined as γ = [γ1, γ2, γ3]
> = β − βd. To

achieve the guaranteed performance of the position error vector, a nonlinear error function
Υ1 = [Υ1,1, Υ1,2, Υ1,3]

> is presented as

Υ1 = R−1
1 (ζ)Λ− µ, (14)

where µ = [µ1, 0, 0]> is a design constant denoting an acceptable radius of the error surface
and Λ = [Λ1, Λ2, Λ3]

>; the nonlinear functions Λi, i = 1, 2, 3, are defined as

Λi

(
γi
ρi

)
= ln

(
ϕ1,i ϕ2,i + ϕ2,i(γi/ρi)

ϕ1,i ϕ2,i − ϕ1,i(γi/ρi)

)
, (15)

where ρi(t) = (ρi,0 − ρi,∞)e−git + ρi,∞; gi, ρi,0, and ρi,∞ are positive design parameters
satisfying ρi,0 > ρi,∞ and −ϕ1,iρi(0) < γi(0) < ϕ2,iρi(0), and ϕ1,i and ϕ2,i are design
constants such that 0 < ϕ1,i, ϕ2,i ≤ 1.

Lemma 2 ([23]). It is satisfied that −ϕ1,iρi(t) < γi(t) < ϕ2,iρi(t), ∀t > 0 provided that
Υ1,i ∈ L∞ where i = 1, 2, 3.

Remark 2. The nonlinear error transformation (14) using the rotation matrix R−1
1 (ζ) and the

design constant is employed to guarantee that the three-dimensional trajectory error γ remains
within the predesignated time-varying bounds. Namely, the guaranteed performance of the proposed
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output-feedback event-driven tracking system (i.e., −ϕ1,iρi(t) < γi(t) < ϕ2,iρi(t), ∀t ≥ 0) is
obtained in three-dimensional space. Lemma 2 shows that the boundedness of the nonlinear error
function Y1 implies the guaranteed performance. To achieve our control objective, we design the
estimated-states-based underactuated control vector η to guarantee the boundedness of Υ1,i.

From (14) and β̇ = R1v, differentiating Υ1 with respect to time yields

Υ̇1 =− N(Υ1 + µ) + R−1
1 H(R1v− β̇d − ρ̇ρ−1γ), (16)

where H = diag[H1, H2, H3] with Hi = (1/(γi + ϕ1,iρi)) − (1/(γi − ϕ2,iρi)), i = 1, 2, 3,
ρ = diag[ρ1, ρ2, ρ3], diag[·] indicates the diagonal matrix, and

N = −Ṙ−1
1 R1 =

 0 −r q
r 0 −p
−q p 0.

. (17)

By defining Q = R−1
1 HR1 and using (17) and the definition [χ2,1, . . . , χ2,6]

> = [υ>, ω>]>,
Υ̇1 becomes

Υ̇1 = −NΥ1 −

 0 −χ2,6 χ2,5
χ2,6 0 −χ2,4
−χ2,5 χ2,4 0

 µ1
0
0

+ Q

 χ2,1
χ2,2
χ2,3

− R−1
1 H(β̇d + ρ̇ρ−1γ)

= −NΥ1 + K

 χ2,1
χ2,5
χ2,6

+ Q

 0
χ2,2
χ2,3

− R−1
1 H(β̇d + ρ̇ρ−1γ), (18)

where

K =

 Q1,1 0 0
Q2,1 0 −µ1
Q3,1 µ1 0.

.

Here, Q1,1, Q2,1, and Q3,1 are the (1,1), (2,1), and (3,1) components of Q.
Applying the state transformation (3) and the observer errors χ̃2,i = χ2,i − χ̂2,i,

i = 1, . . . , 6 to (18) gives

Υ̇1 =− NΥ1 + KΩ


 χ̂2,1

χ̂2,5
χ̂2,6

+

 χ̃2,1
χ̃2,5
χ̃2,6


+ QΩ


 0

χ̂2,2
χ̂2,3

+

 0
χ̃2,2
χ̃2,3




− R−1
1 H(β̇d + ρ̇ρ−1γ), (19)

where KΩ = Ω−1K and QΩ = Ω−1Q.
Then, the error surface s is defined as s = [su, sq, sr]> where su = χ̂2,1 − ς̄u,

sq = χ̂2,5 − ς̄q, and sr = χ̂2,6 − ς̄r. Here, ς̄u, ς̄q, and ς̄r are the filtered signals of the
virtual control laws ςu, ςq, and ςr, respectively, and are provided by the following first-
order low-pass filter

α ˙̄ς + ς̄ = ς, ς̄(0) = ς(0), (20)

where ς̄ = [ς̄u, ς̄q, ς̄r]>, ς = [ςu, ςq, ςr]>, and α > 0 is the small positive constant. Then, the
boundary layer error vector is defined as c = [c1, c2, c3] = ς̄− ς.

By applying the error vectors s and c to (19), Υ̇1 is represented by

Υ̇1 =− NΥ1 + KΩ


 χ̃2,1

χ̃2,5
χ̃2,6

+ s + ς + c

+ QΩ


 0

χ̂2,2
χ̂2,3

+

 0
χ̃2,2
χ̃2,3



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− R−1
1 H(β̇d + ρ̇ρ−1γ). (21)

We design the virtual control vector ς as

ς = K−1
Ω

(
− κ1Υ1 −QΩ

 0
χ̂2,2
χ̂2,3

+ R−1
1 H(β̇d + ρ̇ρ−1γ)

)
, (22)

where κ1 = diag[κ1,1 κ1,2 κ1,3] with constants κ1,i > 0, i = 1, 2, 3.
The Lyapunov function is considered as Vc,1 = Υ>1 Υ1/2 where Vc,1 is a positive definite

function. Using (22), V̇c,1 is obtained as

V̇c,1 = −Υ>1 κ1Υ1 + Υ>1 KΩ([χ̃2,1, χ̃2,5, χ̃2,6]
> + s + c) + Υ>1 QΩ[0, χ̃2,2, χ̃2,3]

>, (23)

where the skew symmetric property of the matrix N is used for Υ>1 NΥ1 = 0.
Step 2: In this step, the event-driven underactuated control law η = [ηX , 0, 0, 0, ηM, ηN ]

is designed to stabilize the error surface vector Υ2 = [Υ2,1, . . . , Υ2,6]
> = χ̂2 −U where

U = [ς̄u, τ1, τ2, τ3, ς̄q, ς̄r]>. Here, τ1, τ2, and τ3 denote the auxiliary variables to deal with
the underactuated property of η.

From (6), Υ̇2 is represented by

Υ̇2 = $ + ΩM−1η − U̇, (24)

where $ = −(L2 + (‖R>‖2/4))χ̂2 + R>Φ̂>Θ( ˆ̄x) + Ω−1R>χ̃1 + v. An adaptive output-
feedback event-driven tracker η(t) is designed as

η(t) =η̆(ta), ∀t ∈ [ta, ta+1) (25)

ta+1 =inf{t > ta|‖Eη(t)‖ ≥ A1‖s(t)‖+ A2}, (26)

where Eη(t) = Ω(η̆(t)− η(t)), a ∈ Z+, ta means the ath event time of the tracking law
η, and A1 > 0 and A2 > 0 are design constants. According to the triggering law (26),
the control law η is updated and set to η̆ = [η̆1, 0, 0, 0, η̆5, η̆6]

>. Here, η̆1, η̆5, and η̆6 are
selected as η̆1

η̆5
η̆6

 =
1
Ω

(
− κ̄2,1s−

 (M$)1
(M$)5
(M$)6

+

 (MU̇)1
(MU̇)5
(MU̇)6

− K>ΩΥ1 − A1

 Υ2,1
Υ2,5
Υ2,6

− A2 tanh
(

s
ϑ

))
, (27)

where κ̄2,1 = diag[κ2,1, κ2,5, κ2,6] with design constants κ2,1 > 0, κ2,5 > 0, and κ2,6 > 0,
(·)l is the lth row of (·), tanh(s/ϑ) = [tanh(Υ2,1/ϑ), tanh(Υ2,5/ϑ), tanh(Υ2,6/ϑ)]> with a
positive constant ϑ, and U̇ = [(ςu − ς̄u)/α, τ̇1, τ̇2, τ̇3, (ςq − ς̄q)/α, (ςr − ς̄r)/α]>. Here, τ1,
τ2, and τ3 are obtained by τ̇1

τ̇2
τ̇3

 =M̄−1
2

(
κ̄2,2

 Υ2,2
Υ2,3
Υ2,4

− M̄1

 (ςu − ς̄u)/α
(ςq − ς̄q)/α
(ςr − ς̄r)/α

+

 (M$)2
(M$)3
(M$)4

), (28)

where κ̄2,2 = diag[κ2,2, κ2,3, κ2,4] with design constants κ2,2 > 0, κ2,3 > 0, and κ2,4 > 0 and

M̄1 =

 0 0 mxg −Yṙ
0 −mxg − zq̇ 0
0 0 0


M̄2 =

 m−Yv̇ 0 −mzg
0 m− Zẇ myg
−mzg myg Ixx − K ṗ.

.
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The parameters in M̄1 and M̄2 are defined in the definition of M reported in [23].
The Lyapunov function candidate Vc,2 is selected as Vc,2 = Υ>2 MΥ2/2 where Vc,2 is a

positive definite function. Then, the time derivative of Vc,2 along (24) and the definition of
Eη is given by

V̇c,2 = Υ>2 (M$ + Ωη̆ − Eη)− Υ>2 MU̇. (29)

By defining Ēη = [η̆1− ηX , η̆5− ηM, η̆6− ηN ]
>, we have Υ>2 Eη = s>Ēη owing to ‖Eη‖ = ‖Ēη‖.

In addition, Υ>2 MU̇ is expressed by

Υ>2 MU̇ = Υ>2



(MU̇)1
0
0
0

(MU̇)5
(MU̇)6

+ Υ>2



0

M̄1

 (ςu − ς̄u)/α
(ςq − ς̄q)/α
(ςr − ς̄r)/α

+ M̄2

 τ̇1
τ̇2
τ̇3


0
0

. (30)

From the property Eη(ta) = 0 for a ∈ Z+ and the condition (26) for input triggering,
−Υ>2 Eη ≤ ‖s‖(A1‖s‖+ A2) is satisfied. Then, using (27) and (28) yields

V̇c,2 ≤− Υ>2 κ2Υ2 + ‖s‖A2 − A2s>tanh
(

s
ϑ

)
− s>K>ΩΥ1, (31)

where κ2 = diag[κ2,1, . . . , κ2,6]. Using the inequality 0 ≤ ‖s‖− s>tanh(s/ϑ) ≤ 0.8355ϑ, V̇c,2
is obtained as

V̇c,2 ≤− Υ>2 κ2Υ2 − s>K>ΩΥ1 + 0.8355A2ϑ. (32)

Differentiating the boundary layer error c with respect to time yields

ċ = − 1
α

c + O(Υ1, Υ2, c, Φ̂, β0), (33)

where β0 = [β>d , β̇>d , β̈>d ]
> and O = K̇−1

Ω {−κ1Υ1−QΩ[0, χ̂2,2, χ̂2,3]
>+R−1

1 H(β̇d + ρ−1ρ̇γ1)}
+ K−1

Ω {−κ1Υ̇− QΩ[0, ˙̂χ2,2, ˙̂χ2,2]
> − Q̇Ω[0, χ̂2,2, χ̂2,3]

> + Ṙ−1
1 H(β̇d + ρ−1ρ̇γ1) + R−1

1 Ḣ(β̇d +

ρ−1ρ̇γ1) + R−1
1 H(β̈d + ρ−1ρ̇γ̇1 + ρ̇−1ρ̇γ1 + ρ−1ρ̈γ1)}.

The comprehensive Lyapunov function is defined as

V = Vo + Vc,1 + Vc,2 + (c>c)/2, (34)

where V is a positive definite function and there exist initial conditions such that V(0) ≤ Ψ
with any constant Ψ > 0. Then, the time derivative of V along (13), (23), (31), and (33) is
obtained as

V̇ ≤− L1χ̃>1 χ̃1 − L2χ̃>2 χ̃2 − χ̃>2 v− σ̄j‖Φ̃>‖F +
Φ̄2

2
+ ι2

− Υ>1 κ1Υ1 − Υ>2 κ2Υ2 −
1
α

c>c + c>Ō + Υ>1 KΩ[χ̃2,1, χ̃2,5, χ̃2,6]
>

+ Υ>1 QΩ[0, χ̃2,2, χ̃2,3]
> + 0.8355A2ϑ, (35)

where Ō = O + K>ΩΥ1 is a continuous function.
By designing v = W>Υ1, we have

−χ̃>2 v + Υ>1 KΩ[χ̃2,1, χ̃2,5, χ̃2,6]
> + Υ>1 QΩ[0, χ̃2,2, χ̃2,3]

> = 0, (36)
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where

W =

 KΩ1,1 QΩ1,2 QΩ1,3 0 KΩ1,2 KΩ1,3
KΩ2,1 QΩ2,2 QΩ2,3 0 KΩ2,2 KΩ2,3
KΩ3,1 QΩ3,2 QΩ3,3 0 KΩ3,2 KΩ3,3

.

Here, KΩm,n and QΩm,n are the (m, n) element of the matrices KΩ and QΩ, respectively.
By applying c>Ō ≤ ‖Ō‖2‖c‖2 /(2ξ) + ξ/2 with a positive constant ξ and (36) to (35),

we obtain

V̇ ≤− L1χ̃>1 χ̃1 − L2χ̃>2 χ̃2 − σ̄j‖Φ̃>‖

− Υ>1 κ1Υ1 − Υ>2 κ2Υ2 −
‖c‖2

α
+
‖c‖2‖Ō‖2

2ξ
+ C, (37)

where C = ξ/2 + 0.8355A2ϑ + Φ̄2/2 + ι2.
We define compact sets Π = {χ̃>1 χ̃1 + χ̃>2 χ̃2 + tr(Φ̃>δ−1Φ̃) + Υ>1 Υ1 + Υ>2 MΥ2 +

c>c ≤ 2Ψ} and Ξ = {β>d βd + β̇>d β̇d + β̈>d β̈d ≤ β̄0} with a positive constant β̄0. Then, there
is a constant O∗ satisfying ‖Ō‖ ≤ O∗ on Π× Ξ. Choosing 1/α = α∗ + (O∗)2/(2ξ) + 1 with
a positive constant α∗, V̇ becomes

V̇ ≤ −∆V −
(

1− ‖Ō‖
2

(O∗)2

)
‖c‖2(O∗)2

2ξ
+ C, (38)

where ∆ = min[2L1, 2L2, σ̄jδm, 2κ1,m, 2κ2,m, 2α∗]; δm, κ1,m, and κ2,m denote the minimum
eigenvalues of δ, κ1, and κ2, respectively. It holds that ‖Ō‖ ≤ O∗ on V = Ψ. Thus, we
have V̇ ≤ −∆V + C on V = Ψ. This means that V̇ < 0 on V = Ψ if ∆ > C/Ψ, namely,
the semi-global uniform ultimate boundedness of all closed-loop signals is shown. From
the boundedness of Υ1 and Lemma 2, it is satisfied that −ϕ1,iρi(t) < γi(t) < ϕ2,iρi(t),
i = 1, 2, 3, for all t ≥ 0.

Then, we check that the Zeno behavior does not occur (i.e., there exists the minimum
inter-event time t̆ such that |ta+1 − ta| ≥ t̆ for a ∈ Z+). For all t ∈ [ta, ta+1), we consider

d
dt
‖Eη‖ =

E>η Ėη

‖Eη‖
≤
∥∥∥∥ d

dt
(Ωη̆)

∥∥∥∥, (39)

where d
dt (Ωη̆) = [ d

dt (Ωη̆1), 0, 0, 0, d
dt (Ωη̆5), d

dt (Ωη̆6)]
>. From the fact that all closed-loop

signals are semi-globally uniformly ultimately bounded, d
dt (Ωη̆1), d

dt (Ωη̆5), and d
dt (Ωη̆6)

are also bounded. Therefore, it holds that ‖ d
dt (Ωη̆)‖ ≤ d with a positive constant d, which

leads to d
dt‖Eη‖ ≤ d. By applying the triggering law (26), the integral of d

dt‖Eη‖ ≤ d during
t ∈ [ta, ta+1) results in |ta+1 − ta| ≥ (A1‖s(t)‖+ A2)/d ≥ A2/d. Thus, there exists the
minimum inter-event time t̆ = A2/d.

Remark 3. In the above analysis, we prove that all closed-loop signals are semi-globally uniformly
ultimately bounded for all initial conditions such that V(0) ≤ Ψ with any constant Ψ > 0.
Thus, the nonlinear error function Υ1 is bounded. Then, from Lemma 2, we can see that the three-
dimensional tracking error γ1 remains within the predefined performance bound (i.e.,−ϕ1,1ρ1(t) <
γ1(t) < ϕ2,1ρ1(t)), which can be adjusted by selecting the exponential decaying function ρ1(t)
and design constants ϕ1,1 and ϕ2,1 a priori. Here, V(0) denotes the initial errors of the closed-loop
system and Ψ, which can increase or decrease by arbitrarily choosing the initial conditions, denotes
the bound of the initial errors of the closed-loop system. That is, the condition V(0) ≤ Ψ, meaning
the boundedness of initial errors of the closed-loop system, causes the ‘semi-global’ concept. That is,
the stability analysis of the proposed control system is based on the semi-global, practical stability.

Based on the aforementioned design steps and analyses, the main result of this study
is summarized in the following theorem.
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Theorem 1. Let us consider the models (1) and (2) of the 6-DOF UUV controlled by the proposed
output-feedback event-driven tracking scheme (6), (7), and (27). Given initial conditions satisfying
V(0) ≤ Ψ with any constant Ψ > 0, it is ensured that the three-dimensional tracking error satisfies
−ϕ1,iρi(t) < γi(t) < ϕ2,iρi(t), ∀t ≥ 0 and the Zeno behavior is excluded while all the closed-loop
signals are semi-globally uniformly ultimately bounded.

Proof. From the aforementioned design steps and analyses, the desired results can be
easily obtained.

4. Simulation Examples

In this section, we simulate the proposed adaptive output-feedback event-driven
tracking strategy of the 6-DOF UUV in three-dimensional space. The values of system
parameters of the UUV are adopted from [30]. To show the effectiveness of the proposed
output-feedback event-driven tracking strategy, we compare our approach with the state-
feedback event-driven tracking strategy reported in [23]. Furthermore, we consider three
scenarios with various working conditions, as shown in Table 1. In Table 1, the three-
dimensional desired trajectory and the initial positions and velocities of the UUV are pre-
sented for each scenario. For all scenarios, the initial conditions of the neural-network-based
adaptive observer are set to χ̂1(0) = [0, 0, 0, 0, 0, 0]> and χ̂2(0) = [0, 0, 0, 0, 0, 0]>. The de-
sign parameters that are common for all scenarios are assigned as κ1 = diag[0.5, 0.05, 0.05],
κ2 = diag[50, 20, 10, 10, 20, 20], L1 = 35, L2 = 1.70, L3 = 0.1, δj,l = 10, ϑ = 0.8, σj = 0.5,
α = 0.005, µ1 = −0.1, A1 = 10, and A2 = 10 where l = 1, . . . , n and j = 1, . . . , 6.
The parameters for the performance functions are chosen as ϕ1,i = ϕ2,i = 1, g1 = 0.35,
g2 = g3 = 0.5, ρ1,0 = 25, ρ2,0 = ρ3,0 = 15, and ρi,∞ = 3 for Scenario 1, ϕ1,i = ϕ2,i = 1,
g1 = 0.35, g2 = g3 = 0.5, ρ1,0 = 25, ρ2,0 = ρ3,0 = 10, ρ1,∞ = 3, and ρ2,∞ = ρ3,∞ = 2 for
Scenario 2, and ϕ1,i = ϕ2,i = 1, gi = 0.5, ρ1,0 = 25, ρ2,0 = 15, ρ3,0 = 10, ρ1,∞ = 3, and
ρ2,∞ = ρ3,∞ = 2.5 for Scenario 3 where i = 1, 2, 3. For the simulation, we use Matlab
using a fourth-order Runge–Kutta integration method with 10-ms time step. Thus, the
event-triggering condition for the event-driven output-feedback control vector is checked
every 10-ms.

In Figures 2 and 3, the trajectory tracking results and errors of the proposed approach
and the previous approach [23] are compared for Scenario 1. The phase portrait of the
position errors of the proposed approach is shown in Figure 3d, where the square marker
represents the starting point and the position errors converge to nearly zero in three-
dimensional space. The mean square errors of the position tracking at the steady-state
response are compared in Table 2, where the position errors for t ≥ 10 s are defined for
the steady-state response. Although the proposed approach does not require the velocity
measurements of the UUV, the tracking performance of the proposed approach with
guaranteed performance is similar to that of the full-state-measurements-based tracking
approach [23]. The state estimation results and errors of the proposed approach for
Scenario 1 are displayed in Figures 4 and 5, respectively. The mean square errors for
the velocity estimation at the steady-state response are presented in Table 3 where the
velocity estimation performance of the proposed nonlinear observer is satisfactory. In
Figure 6, the compensation results of unknown nonlinearities of the proposed approach
for Scenario 1 are shown by the output signals of the radial basis neural networks. The
event-driven underactuated control inputs of the proposed approach for Scenario 1 are
presented in Figure 7a–c where the control inputs are intermittently updated using the
proposed event-triggered technique. In Figure 7d, the inter-event times and the cumulative
number of events are shown. Among the total sampled data 6000 during 60 s, the triggering
number of the designed event-driven control law is 1275 of the total data for Scenario 1.
Therefore, the proposed output-feedback control law is implemented using only 21.3% for
Scenario 1.

Figures 8 and 9 compare the trajectory tracking results and errors of the proposed
approach and the previous approach [23] for Scenario 2, respectively. We can see that the
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position errors of the proposed approach converge to nearly zero in three-dimensional space
and remain within the guaranteed performance bounds, as shown in Figure 9. The mean
square errors of the position tracking errors are compared in Table 2. Figures 10 and 11
display the state estimation results and errors of the proposed approach for Scenario 2,
respectively. The velocity estimation errors at the steady-state response are shown in
Table 3. The outputs of the radial basis neural networks are shown in Figure 12. Figure 13
shows the event-driven control inputs, inter-event times, and cumulative number of events
of the proposed approach for Scenario 2. The triggering number of the control law is 1462
for Scenario 2. Thus, the proposed control law is implemented using only 24.4% of the total
data for Scenario 2.

For Scenario 3, the tracking results are shown in Figures 14–19. From Figures 14 and 15,
we can see that the time responses of the position errors along with the predesignated
performance bounds−ϕ1,iρi and ϕ2,iρi are displayed for Scenario 3. Figures 16 and 17 show
state estimation results and errors, respectively, where the state observer errors rapidly
converge to nearly zero. The mean square errors of the position tracking errors and the
velocity estimation errors for Scenario 3 are presented in Tables 2 and 3, respectively. The
outputs of the radial basis neural networks are shown in Figure 18. Figure 19 shows the
event-driven control inputs, inter-event times, and cumulative number of events of the
proposed approach for Scenario 3. The triggering number of the control law is 1288 for
Scenario 3. Thus, the proposed control law is implemented using only 21.5% of the total
data for Scenario 3. As analyzed in the theoretical design, the adaptive output-feedback
three-dimensional tracking under guaranteed performance and estimated states is achieved
regardless of unmeasurable velocities and unknown nonlinearities of the UUV dynamics.

Table 1. Conditions of desired trajectory, initial positions and velocities of the UUVs.

Scenario 1 initial conditions : β(0) = [45, 5, 5]>, ζ(0) = [0, 0, 0]>, υ(0) = [5, 5, 5]>, ω(0) = [5, 5, 5]>,
desired trajectory : βd(t) = [30 cos(0.225t), 30 sin(0.15t), 3t]>,

Scenario 2 initial conditions : β(0) = [35, 4, 4]>, ζ(0) = [0, 0, 0]>, υ(0) = [4, 4, 4]>, ω(0) = [5, 5, 5]>,
desired trajectory : βd(t) = [20 cos(0.2t), 20 sin(0.2t), 3t]>,

Scenario 3 initial conditions : β(0) = [40, 10, 10]>, ζ(0) = [0, 0, 0]>, υ(0) = [5, 5, 5]>, ω(0) = [4, 4, 4]>,
desired trajectory : βd(t) = [30 cos(0.255t), 20 sin(−0.15t), t + 5]>,

Table 2. Mean square errors of γ1(t), γ2(t), and γ3(t) at the steady-state response.

Proposed [23]

Scenario γ1 γ2 γ3 γ1 γ2 γ3

Scenario 1 0.0048 0.003 0.0025 0.0326 0.0059 0.0039

Scenario 2 0.0043 0.0021 0.0020 0.0296 0.0098 0.0024

Scenario 3 0.0072 0.0019 4.13× 10−4 0.0262 0.0038 0.0023

Table 3. Mean square errors of velocity estimates of the proposed approach at the steady-state response.

Scenario χ̃
2,1

χ̃
2,2

χ̃
2,3

χ̃
2,4

χ̃
2,5

χ̃
2,6

Scenario 1 5.18× 10−5 5.26× 10−7 3.97× 10−5 3.06× 10−5 0.0019 1.07× 10−4

Scenario 2 1.17× 10−4 4.26× 10−6 1.87× 10−5 7.87× 10−5 0.0013 5.67× 10−5

Scenario 3 6.49× 10−5 2.14× 10−6 6.32× 10−5 1.01× 10−4 0.0041 1.14× 10−4
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Figure 2. Comparison of tracking results of the proposed approach and the previous approach [23]
in three-dimensional space for Scenario 1.
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Figure 3. Tracking errors and error phase portraits of the proposed approach for Scenario 1 (a) comparison of γ1 of the
proposed approach and the previous approach [23] (b) comparison of γ2 of the proposed approach and the previous
approach [23] (c) comparison of γ3 of the proposed approach and the previous approach [23] (d) phase portrait of γ1, γ2,
and γ3 of the proposed approach.
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Figure 4. State estimation results of the proposed approach for Scenario 1 (a) χ1,1, χ̂1,1, χ1,2, χ̂1,2, χ1,3 and χ̂1,3 (b) χ1,4, χ̂1,4,
χ1,5, χ̂1,5, χ1,6 and χ̂1,6 (c) χ2,1, χ̂2,1, χ2,2, χ̂2,2, χ2,3 and χ̂2,3 (d) χ2,4, χ̂2,4, χ2,5, χ̂2,5, χ2,6 and χ̂2,6.
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Figure 5. State estimation errors of the proposed approach for Scenario 1 (a) χ̃1,1, χ̃1,2, χ̃1,3, χ̃1,4, χ̃1,5, and χ̃1,6 (b) χ̃2,1, χ̃2,2,
χ̃2,3, χ̃2,4, χ̃2,5, and χ̃2,6.
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Figure 6. Outputs of radial basis function neural networks of the proposed approach for Scenario 1 (a) Φ1Θ1, Φ2Θ2, and
Φ3Θ3 (b) Φ4Θ4, Φ5Θ5, and Φ6Θ6.
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Figure 7. Event-driven control laws, inter-event times, and the cumulative number of events of the proposed approach for
Scenario 1 (a) ηX (b) ηM (c) ηN (d) inter-event times and the cumulative number of events.
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Figure 8. Comparison of tracking results of the proposed approach and the previous approach [23]
in three-dimensional space for Scenario 2.
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Figure 9. Tracking errors and error phase portraits of the proposed approach for Scenario 2 (a) comparison of γ1 of the
proposed approach and the previous approach [23] (b) comparison of γ2 of the proposed approach and the previous
approach [23] (c) comparison of γ3 of the proposed approach and the previous approach [23] (d) phase portrait of γ1, γ2,
and γ3 of the proposed approach.
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Figure 10. State estimation results of the proposed approach for Scenario 2 (a) χ1,1, χ̂1,1, χ1,2, χ̂1,2, χ1,3 and χ̂1,3 (b) χ1,4, χ̂1,4,
χ1,5, χ̂1,5, χ1,6 and χ̂1,6 (c) χ2,1, χ̂2,1, χ2,2, χ̂2,2, χ2,3 and χ̂2,3 (d) χ2,4, χ̂2,4, χ2,5, χ̂2,5, χ2,6 and χ̂2,6.
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Figure 11. State estimation errors for Scenario 2 (a) χ̃1,1, χ̃1,2, χ̃1,3, χ̃1,4, χ̃1,5, and χ̃1,6 (b) χ̃2,1, χ̃2,2, χ̃2,3, χ̃2,4, χ̃2,5, and χ̃2,6.
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Figure 12. Outputs of radial basis function neural networks for Scenario 2 (a) Φ1Θ1, Φ2Θ2, and Φ3Θ3 (b) Φ4Θ4, Φ5Θ5,
and Φ6Θ6.
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Figure 13. Event-driven control laws, inter-event times, and the cumulative number of events of the proposed approach for
Scenario 2 (a) ηX (b) ηM (c) ηN (d) inter-event times and the cumulative number of events.
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Figure 14. Comparison of tracking results of the proposed approach and the previous approach [23]
in three-dimensional space for Scenario 3.
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Figure 15. Tracking errors and error phase portraits of the proposed approach for Scenario 3 (a) comparison of γ1 of
the proposed approach and the previous approach [23] (b) comparison of γ2 of the proposed approach and the previous
approach [23] (c) comparison of γ3 of the proposed approach and the previous approach [23] (d) phase portrait of γ1, γ2,
and γ3 of the proposed approach.
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Figure 16. State estimation results of the proposed approach for Scenario 3 (a) χ1,1, χ̂1,1, χ1,2, χ̂1,2, χ1,3 and χ̂1,3 (b) χ1,4, χ̂1,4,
χ1,5, χ̂1,5, χ1,6 and χ̂1,6 (c) χ2,1, χ̂2,1, χ2,2, χ̂2,2, χ2,3 and χ̂2,3 (d) χ2,4, χ̂2,4, χ2,5, χ̂2,5, χ2,6 and χ̂2,6.
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Figure 17. State estimation errors for Scenario 3 (a) χ̃1,1, χ̃1,2, χ̃1,3, χ̃1,4, χ̃1,5, and χ̃1,6 (b) χ̃2,1, χ̃2,2, χ̃2,3, χ̃2,4, χ̃2,5, and χ̃2,6.
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Figure 18. Outputs of radial basis function neural networks for Scenario 3 (a) Φ1Θ1, Φ2Θ2, and Φ3Θ3 (b) Φ4Θ4, Φ5Θ5,
and Φ6Θ6.
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Figure 19. Event-driven control laws, inter-event times, and the cumulative number of events of the proposed approach for
Scenario 3 (a) ηX (b) ηM (c) ηN (d) inter-event times and the cumulative number of events.
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5. Conclusions

This paper has proposed a nonlinear-observer design approach for the adaptive
output-feedback event-driven tracking of uncertain nonlinear 6-DOF UUVs with un-
measurable velocities. Our primary contribution lies in the development of the state-
transformation-based neural network observer to estimate unmeasurable velocities of
6-DOF UUVs. Based on the neural-network-based adaptive observer and the predesig-
nated performance bounds, we have designed an output-feedback event-driven tracker
with guaranteed tracking performance in three-dimensional space. Some auxiliary vari-
ables have been presented for dealing with the coupling term between the error dynamics
of the observer and controller and the underactuated property of the control vector of
UUVs. The stability of the proposed output-feedback event-driven tracking scheme has
been analyzed using Lyapunov stability theorem. Finally, a simulation result has suc-
cessfully verified the proposed theoretical design approach. Further extensions to the
output-feedback motion control problem using deterministic artificial intelligence reported
in [35] can be investigated as a recommendation for future research.
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