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Abstract: Oscillatory systems arise in the different biological and medical fields. Mathematical and
statistical approaches are fundamental to deal with these processes. The Frequency Modulated
Mobiüs approach (FMM), reviewed in this paper, is one of these approaches. Little known as it has
been recently developed, it solves a variety of exciting questions with real data; some of them, such as
the decomposition of the signal into components and their multiple uses, are of general application,
others are specific. Among the exciting specific applications is the automatic interpretation of the
electrocardiogram signal. In this paper, a summary of the theoretical, statistical and computational
properties of the FMM approach are revised. Additionally, as a novelty, the FMM approach’s
usefulness for the analysis of blood pressure signals is shown. For the latter, a new robust estimation
algorithm is proposed using FMM models with restrictions. The paper ends with a view about
challenges for the future.

Keywords: oscillatory signal; frequency modulation; non-linear models; FMM model

1. Introduction

The biological variables following the circadian rhythm or the electrocardiogram
(ECG) are examples of oscillatory signals. Questions such as which genes are activated by
the circadian rhythms or how to detect heart rhythm failures by automatically interpreting
the ECG are only two examples of relevant advances in biomedical signal analysis, a field
that is in continuous advance, mainly due to the basic statistics and mathematics research.

Oscillations are encountered in all areas of science, physics, and biology, and also in
human society as the business cycle indicators. Therefore, their processing and analysis
is carried out from many different perspectives. On the one hand, the focus of the signal
analyst emphasizes the time-frequency approach. A recommended reference is the book
Boashash (2016) [1]. On the other hand, a dynamic system is described primarily by
a set of differential equations for a physicist or mathematician. See Wigren (2015) [2],
Ashwin et al. (2016) [3] and Pikovsky and Rosenblum (2015) [4] for details of mathematical
tools to address the dynamics of oscillatory systems. Finally, there is the statistical approach,
which is suitable when real signals are observed and is the focus of this paper.

Moreover, depending on the application, the purpose of the analysis differs. Some of
the popular purposes are: the detection of periodicity, the extraction of features, locating
fiducial marks, generating synthetic data, or denoising signals. Among those, extracting
features from an observed signal is perhaps the most widely studied data analysis problem.
Consequently, to define a reduced set of interpretable features and an efficient algorithm
to accurately extract these features from the recorded signal are the top requirements
of an efficient signal analysis method. The number of oscillatory components and the
amplitude and peak time of each oscillation are among the main features to be extracted,
which in the case of physiological signals, contain interesting information about a person’s
health condition.
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Although different and specific approaches have been developed in each area of
science, there are also universal approaches. Fourier Decomposition (FD) is a traditional
approach to analyze such signals. However, there are many situations where the signal is
not suitable. For example, a sinusoidal function does not accurately describe respiratory
signals, as inspiration is usually shorter than expiration. Additionally, neuronal oscillations
are commonly non-sinusoidal, and the features measuring deviations from a sinusoidal
shape may contain crucial physiological information about the neuronal systems and
dynamics that generate them [5]. Several other decomposition approaches have been
considered in the literature. Kowalski et al. (2018) [6] gives a useful review of methods
and revises several requirements a time series analysis method for an oscillatory signal
should satisfy.

The Frequency Modulated Möbius (FMM) approach is a universal procedure that
combines a physically meaningful formulation with good statistical and computational
properties. It has recently been presented in a series of papers, listed in Table 1, where,
besides the theory and computational properties, diverse applications in different fields
have been shown.

Table 1. Brief description of FMM related papers.

Reference Description

Rueda et al. (2019) [7] The single-component FMM model
Rueda et al. (2021a) [8] The multi-component FMM model

Rueda et al. (2021b) [9] The FMM approach for describing ECG
signals

Rodríguez-Collado & Rueda (2021a) [10] The FMM representation of the Hodgkin-
Huxley model

Rodríguez-Collado & Rueda (2021b) [11] The potential of FMM features to classify neu-
rons

Larriba & Rueda (2021) [12] The potential of FMM to solve problems in
chronobiology

Fernández et al. (2021) [13] The R package that allows implementing the
model

In brief, the FMM is a multi-purpose approach with reliable mathematical and sta-
tistical support. The underlying statistical model is a signal plus error model where the
signal is described parametrically and is decomposed into several additive components.
The parametric formulation facilitates the interpretability and the derivation of essential
elements. Each component is a single FMM oscillator [7]. Two distinguishing features of
the single FMM component are that it is formulated in terms of the phase, which is the
angular variable representing the periodic oscillation movement, and that it is the solution
of a simple Ordinary Differential Equation (ODE).

The main virtues that make the FMM approach preferable to other approaches, such
as FD, can be summarized below. First, the components describe specific physiological
processes, and the parameters can characterize, reproduce, and identify the variety of
morphologies observed in each wave that compose the signal. In addition, other interesting
features, such as the peak wave location or the distances between peak waves, are easily
derived from these main parameters. Second, the fitting algorithm provides accurate
and robust model parameter estimates, discarding overfitting problems. Furthermore,
by assuming simple restrictions, the parameters are identifiable.

In this paper, a review of the main theoretical and computational properties is given,
the most significant advances that the method has yielded in the various disciplines are
reviewed, and new applications are shown. Moreover, the paper ends with a discussion
about the challenges for the future. For the theoretical properties alone, the proposal
is interesting and advantageous when compared to alternatives. Combining it with the
solutions given to the real problems, makes it a very promising methodology.
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2. The FMM Approach
2.1. Model Description

Let assume that the time points are in [0, 2π). In any other case, transform the time
points t′ ∈ [t0, T + t0] by t = (t′−t0)2π

T . In the following, oscillations are also referred to
as waves.

Let, υ = (A, α, β, ω)′ be the four-dimensional parameters describing a single FMM
signal, defined as the following wave: W(t, υ) = A cos(φ(t, α, β, ω)), where A is the wave
amplitude and,

φ(t, α, β, ω) = β + 2 arctan(ω tan(
t− α

2
)) (1)

is the wave phase. The additive FMMm model is defined as a parametric additive m-
component signal plus error model as follows.

Definition 1. FMMm model.
For the observations t1 < . . . < tn,

X(ti) = µ(ti, θ) + e(ti); (2)

where µ(ti, θ) = M + ∑m
J=1 W(ti, υJ), and,

• θ = (M, υ1, . . . , υm) verifying:

– M ∈ <; υJ ∈ ΘJ = <+ × [0, 2π)× [0, 2π)× [0, 1]; J = 1, . . . , m,
– α1 ≤ α2 ≤ . . . ≤ αm ≤ α1
– A1 = max1≤J≤m AJ

• (e(t1), . . . , e(tn))′ ∼ Nn(0, σ2 I).

Other important parameters of practical use are peak and trough times, denoted by
tU and tL, respectively, which are defined as follows:

tU = α + 2 arctan(
1
ω

tan(
−β

2
))

tL = α + 2 arctan(
1
ω

tan(
π − β

2
))

W(ti, υ) is suitable for describing oscillatory patterns, as is well justified in
Rueda et al. (2019) [7]. The parameters characterize various aspects of a rhythmic pat-
tern. A is measuring the signal’s amplitude, α is a phase location parameter, while ω and β
are parameters describing the shape. ω measures the sharpness, and β measures skewness
and indicates upward and/or downward peak direction. Specifically, a sinusoidal curve
corresponds to ω = 1.

FMM models where restrictions on the parameters are imposed are also useful to
model signals with similar repetitive spikes as the action potential (AP) neuronal series
(see [10]). In this paper, a specific FMM restricted model is designed for the analysis of
blood pressure (BP) signals.

2.2. Mathematical and Statistical Properties
2.2.1. Maximum Likelihood (ML) Inferences

The ML estimates of the FMMm model parameter are the solutions to the optimization
problem:

θ̂ = arg min
θ∈Θ

n

∑
i=1

(X(ti)− µ(ti, θ))2, (3)

where Θ refers to the parameter space for θ, a subset of <×Θ1 × . . .×Θm defined by the
restrictions. The consistency and asymptotic normality of the ML estimators are guaranteed
by recognized results in non-linear regression analysis, when αJ ∈ [0, 2π), β J ∈ [0, 2π),
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wJ > 0; J = 1, . . . , m, as the FMMm verifies the standard regularity conditions. The
identifiability of the model parameters is guaranteed by including the restrictions on the αs
and As above. The papers by Rueda et al. (2019) [7] and Rueda et al. (2021a) [8] present
different signals that the model describes accurately, and provide interesting properties.

Occasionally, different parameter configurations of an FMMm model can represent
a given signal equally well. The inclusion of additional restrictions on the parameters is
advisable to guarantee the solution with more biological interpretation (see [10]).

Interesting hypothesis testing problems can be defined depending on the problem at
hand. For example, assuming the FMM1 model, hypothesis tests on arrhythmicity and on
sinusoidal shape are described in Rueda et al. (2019) [7]. In addition, likelihood ratio test
and confidence intervals can be derived using such standard methods as bootstrap.

2.2.2. The Complex Signal Associated with the FMMm Signal

Researchers often assume that there exists an underlying complex signal associated
with an oscillatory process. The analytic signal (AS) is defined as such a complex signal,
S(t) = µ(t) + iν(t), underlying the real signal µ(t), where ν(t) is derived from µ(t) using
the Hilbert transform. See Picinbono (1997) [14], Sandoval and De Leon (2015) [15] for
details and the properties of the AS. Furthermore, the AS can be expressed as: S(t) =
A(t)eiφ(t) where

φ(t) = arctan
(

ν(t)
µ(t)

)
; A(t) =

√
µ(t)2 + ν(t)2. (4)

A(t) and φ(t) are called the signal’s Instantaneous Amplitude and Instantaneous Phase,
respectively. The derivative of φ(t) is known as the Instantaneous Frequency (IF), which
is expected to be positive in applications. Hence, the AS is not always interpretable as a
meaningful physical phenomenon.

In general, given a real signal µ(t), the associated AS does not have a closed expression.
However, for FMMm signals, ν(t) can easily be derived analytically from µ(t) as follows,

ν(t) =
m

∑
J=1

AJ sin(φJ(t)),

as well as the IF,

φ̇(t) =
1

µ2(t) + υ2(t)
(υ̇(t)µ(t)− υ(t)µ̇(t)),

where µ̇(t) = −∑m
J=1 φ̇J(t)AJ sin(φJ(t)), υ̇(t) = ∑m

J=1 φ̇J(t)AJ cos(φJ(t)) and φ̇J(t) =
ωJ

1+(ω2
J−1)sin2(

t−αJ
2 )

.

Using the expression above, it is not difficult to characterize a situation with positive IF.
Alternatively, using the same expression for individual components, specific and positive
IFs can be derived. In particular, it is interesting in the case of signals where there exists a
dominant component. For more details see Rueda et al. (2021a) [8].

2.2.3. The FMM Signal as the Solution of a System of ODEs

Many dynamic processes, with biological, physical, or chemical foundation, have been
described by ODEs in the literature (see Teeter et al. (2018) [16] and references therein).
In many cases, the differential equations representing the system are known a priori.
The opposite happens in other cases, where the ODEs governing the system are entirely
unknown and must be reconstructed from the data, as is the case of the FMM signal.

The ODE representation of the FMM signal, obtained in Rueda et al. (2021a) [8]
and reproduced here in Theorem 1 below, describes how the underlying system evolves
dynamically over time, and is related to the phase space where a signal is a trajectory or
an orbit.

Theorem 1. Let µ(t) be an FMM1 signal with ω1 > 0 and z(t) = tan(Φ(t)
2 ), then
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1. µ(t) is the solution to the following equation:

ẍ(t) = −x(t)φ̇1(t) + ẋ(t) φ̈1(t)
φ̇1(t)

2. z(t) is the solution to the following equation:
ẋ(t) = ω1

2 + 1
2ω1

x2(t)

The representation of a system using ODEs is interesting to discover physiological
relationships and to generate or validate hypotheses and to represent noisy signals.

2.3. Estimation Algorithm and Software

A backfitting algorithm solves the optimizing problem (3) fitting an FMM1 model to
the residue at each step. This is repeated until a stop criterion is attained (see Rueda et al.
(2021a) [8] for details).

Success, in terms of convergence to the ML estimate, is not initially guaranteed,
although the solution converges in probability to a local minimum. Our experience fitting
FMMm to real and simulated data indicates that converging failure is not likely.

An R package called FMM [17], has recently been included in the Comprehensive R
Archive Network (CRAN) repository (https://cran.r-project.org/web/packages/FMM
(accessed on 8 March 2021)). The package incorporates real-world datasets and reproduces
signal processing analysis for the three crucial areas where oscillatory processes commonly
appear: chronobiology, neuroscience and ECGs, as is seen Section 3.1, and implements all
the required functions for fitting FMM models. The option of imposing restrictions on the
omega and beta parameters is also considered. The paper Fernández et al. (2021) [13] gives
an overview of the package.

3. Applications

In this section, several analyses presented in previous papers are revised which
evidence the wide range of FMM applications. Moreover, the analysis of BP signals with
the FMM approach is presented as a novelty.

3.1. A Review of Known Applications
3.1.1. Chronobiology

Many biological variables, such as gene expression, body temperature or hormonal
levels, exhibit periodic patterns following the circadian time. The chronobiology analyses
the effects of time and rhythmic phenomena on life processes.

In the analysis of these biological rhythms, it would seem physically plausible that the
underlying signals display up-down-up, non-necessary sinusoidal patterns in these cases.
Moreover, the data are generally noisy, the number of observation periods is generally low,
and the sampling density is rarely higher than 1 observation per hour. These features make
the FMM model more adequate than standard time series approaches, such as the FD or the
simple Cosinor model (COS) [18], which are widely adopted to analyze these phenomena.
See Figure 1, where the patterns of observed gene expressions and hormonal levels are rep-
resented, together with the fitted values from the COS model, the FD with two harmonics
and the FMM model. These two datasets are freely available in the Gene Expression Om-
nibus (GEO) repository, accession number GSE11923 (http://www.ncbi.nlm.nih.gov/geo/
(accessed on 20 October 2020)), and in the paper [19], respectively.

The FMM approach has been proved to be useful for data analysis in chronobiology,
including from an accurate and simple representation of the signal, to the detection of
rhythmicity or important marks, such as minimum or maximum, and to the extraction of
useful features for classification goals. The papers Rueda et al. (2019) [7], and Larriba et al.
(2021) [12] give more details of the contributions of the FMM analysis in this field.

https://cran.r-project.org/web/packages/FMM
http://www.ncbi.nlm.nih.gov/geo/
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(A) Iqgap2 (B) Rps6kb1

(C) Control (D) Npmd

Model COS FMM

Figure 1. Top: (A) Iqgap2 and (B) Rps6kb1 circadian gene expressions from mouse liver along two
periods of 24 h. Bottom: Mean Corticoptropin levels in (C) control and in (D) nonpsychotic major
depression (Npmd) along 24 h. Observed data (grey open circles) and fitted values from COS model
(green line) and FMM model (red line).

3.1.2. ECG Signal

The importance of the ECG signal in the diagnosis and prediction of cardiovascular
diseases is worth noting. The process recorded in the ECG is the periodic electrical activity
of the heart. This activity represents the contraction and relaxation of the atria and ventricle,
processes related to the crests and troughs of the ECG waveforms, labelled as P, Q, R, S and
T (see Figure 2A). The main features used in medical practice are related to the location and
amplitudes of these waves. A standard ECG signal is registered using 12 leads calculated
from different electrode locations, lead II being the reference one.

Although made by a consolidated expert, the mere visual observation of the ECG sig-
nals is not enough to discover the diversity of abnormalities and the specific characteristics
of the morphology of each ECG. Moreover, it requires an enormous amount of human
expertise resources. Therefore, a rigorous automatic analysis of digitalized ECG signals
can be of great help. However, although it has been a question that has received much
attention in the literature over the last few decades, there is still no suitable mathematical
model or computational approach that accurately describes the spectrum of morphologies
in ECG signals.

The literature addressing the problem of the automatic interpretation of the ECG is
quite extensive. Researchers have recently focused on using machine learning approaches,
some of the relevant references are cited in Rueda et al. (2021b) [9]. In general, the success
of machine learning approaches is very dependent on the training set, the selection of
diagnostic groups, the preprocessing, and the database. Furthermore, they are rigid and
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black-box procedures that are not so useful in real practice to analyze any given, or at least
singular ECG signals, and neither are they useful for solving the variety of clinical questions
where the ECG automatic analysis could help. The FMM approach does the opposite.

Specifically, the FMMecg model, presented in Rueda et al. 2021b [9], is defined as
the combination of precisely five oscillatory components, which correspond to the fun-
damental waves in a heartbeat, plus an error term that accounts for artifacts in the data.
Figure 2 illustrates the accuracy of the FMMecg model to predict the ECG signal for a
regular heartbeat.

P Wave Q Wave R Wave S Wave T Wave

(A)

(B)

Figure 2. A typical heartbeat of the patient sel 230 from QT database in Physionet ATM Bank. (A): the
five individual waves. (B): the predicted FMMecg signal.

Four clinically interpretable parameters are used to describe the morphology of each
of the five primary waves in the ECG, as well as inter-wave features. A maximization-
Identification (MI) algorithm is designed to estimate them. This algorithm alternates,
iteratively, between a maximization, M-step, and a wave-identification, I-step. Although
the model proposed is valid for signals registered elsewhere, the I-step is lead-specific.
Nevertheless, the I-step can be easily adapted to signals registered in other regions. As a
result, we can identify which part of the system is working in a correct or incorrect way, so
the proposal goes beyond the other ECG analysis methods.
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A quick look at the figures in the paper Rueda et al. (2021b) [9] reveals the methodol-
ogy’s potential to describe a variety of noisy and pathological patterns.

3.1.3. Neuroscience

Neuroscience is a multidisciplinary field whose purpose is the study of the nervous
system. It combines molecular biology, mathematical modelling, anatomy and physiology.
Mathematical modelling has been one of the central problems in computational neuro-
science, its roots being in the theory of ODEs. For a survey, we refer the reader to the book
by Ermentrout and Terman (2010) [20].

We deal here with AP signals that are generated by measuring the electrical potential
in the cell. The analysis of AP curves allows the extraction of features that describe the
spike generation of individual neurons and the determination of the cell type and their
functions, see Mensi et al. (2012) [21] or Trainito et al. (2019) [22], among others.

The analysis of APs for in vitro data has been traditionally done using ODE models.
In particular, the well-known Hodgking and Huxley model [23]. However, for experimental
or in vivo data, these models are not so useful (the exposition in Naundorf et al. (2006) [24]
clarifies this point).

AP signals have been analyzed using the FMM approach in a series of papers [8,10,11],
and we have proved that the FMM model represents Hodgking-Huxley signals accurately
and achieves a quasi-perfect fit for different real AP patterns.

Figure 3A shows a train of AP obtained from the Squid Giant axon membrane potential
and the FMM prediction. Data are freely downloadable at https://physionet.org (accessed
on 23 March 2021) from the Physionet database [25]. In this case, it is assumed that the
shape of the four observed spikes is equal. The FMM model takes into account these
assumptions by adding restrictions in the ω, β, and A parameters. The final model is
described with an intercept plus 14 parameters, eight of them corresponding to the wave
location parameters, and six parameters describing the spike shape. The accuracy of the
prediction is very high. Similar accurate predictions are also obtained when other signals of
the data set are analyzed. The wave decomposition of the signal is illustrated in Figure 3B.

3.2. The Arterial BP Signal

BP is one of the physical variables most frequently measured for medical diagnostics
purposes. High BP is a factor that increases the risk of cardiovascular diseases, and its
detection is crucial for appropriate treatments. The BP cycle is the cardiac cycle that
includes two phases. The first is the systolic BP phase, representing the pressure during the
contraction of the heart. The second one is the diastolic BP phase, representing the pressure
while the heart rests.

The systolic and diastolic BPs are, respectively, associated with the higher and lower
BP values reached during any given cardiac cycle. These values and the waveform shape
can change substantially depending on the activity, internal processes, and several other
factors. Thus, the interest in extracting feature measurements from the observed signal to
characterize the different conditions is on the increase.

Many researchers have analyzed BP and related signals, for a recent review see
Aguirre et al. (2021) [26]. In particular, feature extraction and signal estimation are
interesting and challenging problems that have not been satisfactorily resolved yet.

https://physionet.org
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Model FD7 FMMST*

(A)

Components Wave 1 Wave 2 Wave 3 Wave 4 Wave 5 Wave 6 Wave 7 Wave 8

(B)

Figure 3. AP train from Squid Giant with experiment number a1t182. (A): Observed data (grey open
circles), FD (blue lines) and FMM (red lines) model prediction. (B): FMM wave decomposition.

The FMM approach can be useful in this task as parameters have a clear morphological
and mathematical meaning and the signal is estimated accurately, as we illustrate below
with the analysis of data from the Fantasia database included in Physionet (https://
physionet.org/content/fantasia (accessed on 11 January 2021)). Fantasia provides data
from BP, and other physiological signals, of 10 healthy young and 10 healthy old subjects
while watching the Disney movie Fantasia. Half of them are female, and the other half
are males. The signal length was 120 min. The proposal here is to analyze three-cycle
segments using the multi-component model with the restrictions proposed here. The model
is defined as follows:

Definition 2. FMMBP signal

µ(ti, θ) = M +
3

∑
J=1

W(ti, υAJ ) +
3

∑
J=1

W(ti, υBJ ),

where

• AA1 < AB1 ; AA2 < AB2 ; AA3 < AB3

• αA1 ≤ αB1 ≤ αA2 ≤ αB2 ≤ αA3 ≤ αB3 ≤ αA1
• ωA1 = ωA2 = ωA3 ; ωB1 = ωB2 = ωB3

• βA1 = βA2 = βA3 ; βB1 = βB2 = βB3

The restrictions represent the assumption that the shapes of the consecutive waves
are the same. It is expected that the estimators of the shape parameters are more efficient
than those obtained from individual waves. The distance between components A and

https://physionet.org/content/fantasia
https://physionet.org/content/fantasia
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B is defined using d(αAJ , αBJ ) = (1− cos(αAJ − αBJ )); J = 1, 2, 3. Additionally, cos(βB)
and sin(βB) are considered instead of βB, which is more suitable. Let us also define,

AA =
AA1

+AA2+AA3
3 and AB =

AB1+AB2+AB3
3 .

Twenty signal segments have been analyzed as being representative of each subject.
Table 2 shows the mean and the standard deviation of selecting features for young and
old subjects. It is interesting to note that these two groups are fully discriminated by
d(αA1 , αB1). Furthermore, differences in other parameters are also significant between age
groups, particularly in ωA. On the contrary, no significant differences between male and
female parameters have been found. Figure 4 illustrates the FMMBP and FD8 models
performance on two of the 20 signal segments analyzed.

Table 2. Mean (SD) for a selection of FMM parameters for old and young subjects.

AA AB ωA ωB

Old 101.979 (19.944) 21.125 (9.951) 0.067 (0.011) 0.075 (0.027)
Young 99.961 (27.294) 20.756 (8.842) 0.098 (0.018) 0.057 (0.022)

βA cos(βB) sin(βB) d(αA1 , αB1)

Old 2.222 (0.881) −0.728 (0.490) 0.88 (0.436) 0.371 (0.090)
Young 1.945 (0.212) −0.385 (0.396) −0.200 (0.863) 0.097 (0.057)

(A)

(B)

Model FD8 FMMBP

Figure 4. Fantasia BP signals and fittings. (A): BP signal (grey open circles), FMMBP (blue line) and
FD8 (red line) predictions, for a female of 27 years old. (B): BP signal (grey open circles), FMMBP

(blue line) and FD8 (red line) predictions, for a male of 70 years old.
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4. Challenges for the Future
4.1. Signals

Almost all life on Earth is affected by the circadian clock that manifests itself at
biochemical, physiological, psychological levels. Beyond those analyzed in the paper, other
biological signals follow 24-h periodic patterns, such as many locomotor activity, body
temperature, or the feed intake in animals. Besides biological signals, the FMM approach
would be useful to analyze periodic signals from different disciplines. It is not the first time
that bio-inspired predictive algorithms have been applied to data analysis in other fields.
Refractive and luminance indexes in optics, spectrophotometry curves in experimental
chemistry, traffic in a website, or atmospheric pressure are more examples, to mention a few
from different disciplines. Furthermore, even in less scientific fields, we can find examples
of 24-h oscillatory signals such as electricity demand profiles or the diurnal pattern of water
consumption. In particular, in the latter case, a bi-component FMM model is suitable as the
curve contains two spikes in the flow, one in the morning and one in the evening, reflecting
the higher levels of activity and water use as people start their day and end. The complete
list of signal analysis problems that could benefit from the novel FMM approach would be
much longer.

4.2. Theoretical, Computational and Methodological Advances

There are different lines of work for the future. On the one hand, theoretical models
to describe multiple correlated signals should be developed. These results will be ap-
plied, in particular, to the analysis of multiple leads in the ECG or to the simultaneous
analysis of different physiologically related signals such as the ECG and BP. Addition-
ally, the development of synchronization and correlation measures would be interesting,
mostly in neuroscience. Another interesting theoretical question to research in the future
is the relationship between the parameter values attained from the analysis of single vs.
multiple cycles.

From the computational point of view, several questions remain to be addressed, such
as implementing other parameter restrictions, the inclusion of weights, or the reduction of
the execution time by reformulating the fitting algorithm.

Finally, the topics of the supervised and unsupervised classification of waveforms
are of great interest in many disciplines. Specifically in neuroscience, where the cluster
of cells by their waveforms, called Spike Sorting, is one of the problems to which more
attention is devoted. A catalogue of parameter configurations which derives from typical
waveforms can be elaborated. The question of how to deal with the circular parameters in
the classification algorithms should also be investigated.

4.3. Contributions to Medical Advances

The most interesting, by far, that the future of research in this field holds is contributing
to solving relevant medical problems. Among the most important ones are the detection
of hypertension and other cardiology pathologies, and the determination of factors that
influence the course of neurological disease such as Parkinson. Many exciting questions in
chronobiology remain open, such as the relation of rhythmicity patterns with such diseases
as cancer, how the hormonal level fluctuations affect such physiological processes as sleep,
or the lack of a well-established core clock gene activation time across human organs, which
is critical to enhance treatment efficiency in circadian medicine.
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Abbreviations
The following abbreviations are used in this manuscript:

AP Action Potential
AS Analytic Signal
BP Blood Pressure
COS Cosinor model
CRAN Comprehensive R Archive Network
ECG Electrocardiogram
FD Fourier Decomposition
FMM Frequency Modulated Mobiüs
GEO Gene Expression Omnibus
IF Instantaneous Frequency
MI Maximization-Identification
ML Maximum Likelihood
Npmd Nonpsychotic major depression
ODE Ordinary Differential Equation
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