
mathematics

Article

Some Properties Involving q-Hermite Polynomials Arising
from Differential Equations and Location of Their Zeros

Cheon-Seoung Ryoo 1 and Jungyoog Kang 2,*

����������
�������

Citation: Ryoo, C.-S.; Kang, J. Some

Properties Involving q-Hermite

Polynomials Arising from Differential

Equations and Location of Their

Zeros. Mathematics 2021, 9, 1168.

https://doi.org/10.3390/math9111168

Academic Editor: Arsen Palestini

Received: 21 April 2021

Accepted: 19 May 2021

Published: 22 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mathematics, Hannam University, Daejeon 34430, Korea; ryoocs@hnu.kr
2 Department of Mathematics Education, Silla University, Busan 46958, Korea
* Correspondence: jykang@silla.ac.kr

Abstract: Hermite polynomials are one of the Apell polynomials and various results were found by
the researchers. Using Hermit polynomials combined with q-numbers, we derive different types
of differential equations and study these equations. From these equations, we investigate some
identities and properties of q-Hermite polynomials. We also find the position of the roots of these
polynomials under certain conditions and their stacked structures. Furthermore, we locate the roots
of various forms of q-Hermite polynomials according to the conditions of q-numbers, and look for
values which have approximate roots that are real numbers.
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1. Introduction

There is a special case in the Sturm–Liouville boundary value problem the called
Hermite differential equation that arises when dealing with harmonic oscillator in quantum
mechanics. The ordinary Hermite differential equation is defined as

d2y
dx2 − 2x

dy
dx

+ (ρ− 1)y = 0, (1)

where ρ is a constant. When ρ = 2n + 1, n = 0, 1, 2, . . . , then one of the solutions of
Equation (1) becomes a polynomial. These polynomial solutions are known as Hermite
polynomials Hn(x), which are defined by means of the generating function

e(2x−t)t =
∞

∑
n=0

Hn(x)
tn

n!
, |t| < ∞. (2)

The numbers Hn := Hn(0) are the Hermite numbers. Hermite polynomials, first
defined by Laplace, are one of the classic orthogonal polynomials and many studies
have been conducted by mathematicians. These Hermite polynomials also have many
mathematical applications, such as quantum mechanics, physics, and probability theory;
see [1–6].

We define the q-numbers also referred by Jackson as follows; see [7–9]

[x]q =
1− qx

1− q
, 0 < q < 1, (3)

Note that limq→1[x]q = x. In [8], we recall that the q-Hermite polynomials Hn,q(x)
defined by

∞

∑
n=0

Hn,q(x)
tn

n!
= e2[x]qt−t2

= G(t, [x]q), (4)

where 0 < q < 1. In the definition of q-Hermite polynomials, we can observe that if q→ 1 ,
then Hn,q(x)→ Hn(x).
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In [10], authors defined the two-variable partially degenerate Hermite polynomials
Hn(x, y, λ) as

∞

∑
n=0

Hn(x, y, λ)
tn

n!
= (1 + λt)

x
λ eyt2

, λ 6= 0, (5)

and we can see some useful properties of these polynomials. Representatively, we can
confirm the following theorems in [10].

(i) amHm(bx, b2y,
λ

a
) = bmHm(ax, a2y,

λ

b
)

(ii) Hn(x1 + x2, y, λ) =
n

∑
l=0

(
n
l

)
(x2|λ)Hn−l(x1, y, λ).

(6)

The differential equations derived from the generating functions of special numbers
and polynomials have been studied by many mathematicians; see [11–21].

Based on the results to date, in the present work, we can investigate the differential
equations generated from the generating function of q-Hermite polynomials Hn,q(x). The
rest of the paper is organized as follows. In Section 2, we obtain the basic properties of
the q-Hermite polynomials. In Section 3, we construct the differential equations generated
from the definition of q-Hermite polynomials:(

∂

∂t

)N
G(t, [x]q)− a0(N, [x]q)G(t, [x]q)− · · · − aN(N, [x]q)tNG(t, [x]q) = 0. (7)

We also consider explicit identities for Hn,q(x) using the coefficients of this differential
equation. In Section 4, we find the zeros of the q-Hermite polynomials using numerical
methods and observe the scattering phenomenon of the zeros of these polynomials. Finally,
in Section 5, conclusions and discussions on this work are provided.

2. Basic Properties for the q-Hermite Polynomials

To derive various properties of Hn,q(x), the generating function (4) is an useful func-
tion. The following basic properties of polynomials Hn,q(x) are derived from (4). Hence,
we choose to omit the details involved.

Theorem 1. Let n be any positive integer. Then, we have

(1) Hn,q(x) =
n

∑
k=0

(
n
k

)
2n−k[x]n−k

q Hk.

(2) Hn,q(x) = n!
[ n

2 ]

∑
k=0

(−1)k2n−2k[x]n−2k
q

k!(n− 2k)!
.

(3) Hn,q(x1 + x2) =
n

∑
k=0

(
n
k

)
Hk,q(x1)2n−kqx1(n−k)[x2]

n−k
q ,

(8)

where [x] is the greatest integer not exceeding x.

Theorem 2. The q-Hermite polynomials are the solutions of equation((
d

d[x]q

)2
− 2[x]q

(
d

d[x]q

)
+ 2n

)
Hn,q(x) = 0,

Hn,q(0) =

(−1)k (2k)!
k!

, if n = 2k,

0, otherwise

(9)
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Proof. From Equation (4), we can note that

G(t, [x]q) = e2[x]qt−t2
(10)

which is satisfied as
∂G(t, [x]q)

∂t
−
(
2[x]q − 2t

)
G(t, [x]q) = 0. (11)

By substituting the series in (11) for G(t, [x]q), we find

Hn+1,q(x)− 2[x]qHn,q(x) + 2nHn−1,q(x) = 0, n = 1, 2, . . . , (12)

which is the recurrence relation for q-Hermite polynomials. Another recurrence relation
comes from (

d
d[x]q

)
G(t, [x]q)− 2tG(t, [x]q) = 0. (13)

The following equation implies(
d

d[x]q

)
Hn,q(x)− 2nHn−1,q(x) = 0, n = 1, 2, . . . . (14)

Remove Hn−1,q(x) from Equations (12) and (13) to obtain

Hn+1,q(x)− 2[x]qHn,q(x) +
(

d
d[x]q

)
Hn,q(x) = 0. (15)

By differentiating the following equation and using Equations (12) and (13) again, we
can obtain(

d
d[x]q

)2
Hn,q(x)− 2[x]q

(
d

d[x]q

)
Hn,q(x) + 2nHn,q(x) = 0, n = 0, 1, 2, . . . . (16)

From the above equation, we complete the proof of Theorem 2.

Theorem 3. Hn,q(x) in the Equation (4) is the solution of equation(
q− 1

qx log q
d2

dx2 +

(
1− q

qx − 2(1− qx)

1− q

)
d

dx
+ 2n

log q
q− 1

qx
)

Hn,q(x) = 0,

Hn,q(0) =

(−1)k (2k)!
k!

, if n = 2k,

0, otherwise.

(17)

Proof. We consider another form of the differential equation for Hn,q(x). We consider

G(t, [x]q) = e2[x]qt−t2
, (18)

which satisfies
dG(t, [x]q)

dx
− log q

q− 1
qx2tG(t, [x]q) = 0. (19)

Substitute the series in Equation (19) for G(t, [x]q), in order to find

dHn,q(x)
dx

− 2n log q
q− 1

qxHn−1,q(x) = 0, n = 1, 2, . . . . (20)
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To use Equation (15), we note

d
dx

(
q− 1

qx log q
d

dx
Hn,q(x)

)
=

1− q
qx

d
dx

Hn,q(x) +
q− 1

qx log q

(
d

dx

)2
Hn,q(x). (21)

By differentiating Equation (15) and using the above Equation (21), we derive

2n
log q
q− 1

qxHn,q(x) +
(

1− q
qx − 2(1− qx)

1− q

)
dHn,q(x)

dx

+
q− 1

qx log q
d2Hn,q(x)

dx2 = 0,
(22)

where the equation is obtained as the required result immediately.

3. Differential Equations Associated with q-Hermite Polynomials

In this section, we introduce differential equations arising from the generating func-
tions of q-Hermite polynomials. By using these differential equations, we can obtain the
explicit identities for these polynomials. Many authors studied differential equations de-
rived in the generating functions of special polynomials in order to derive explicit identities
for special polynomials, see [11–20].

Let

G := G(t, [x]q) = e2[x]qt−t2
=

∞

∑
n=0

Hn,q(x)
tn

n!
, x, t ∈ R. (23)

Then, we obtain the following equations using mathematical induction:

G(1) = ∂

∂t
G(t, [x]q) =

∂

∂t

(
e2[x]qt−t2

)
= e2[x]qt−t2

(2[x]q − 2t)

= (2[x]q − 2t)G(t, [x]q)
= (2[x]q)G(t, [x]q)
+ (−2)tG(t, [x]q),

(24)

G(2) = ∂

∂t
G(1)(t, [x]q) = −2G(t, [x]q) + (2x− 2t)G(1)(t, [x]q)

= (−2 + 4[x]2q)G(t, [x]q)
+ (−8[x]q)tG(t, [x]q)
+ (−2)2t2G(t, [x]q),

(25)

and
G(3) = ∂

∂t
G(2)(t, [x]q)

= (−8[x]q + 8t)G(t, [x]q) + (−2 + 4[x]2q − 8[x]qt + 4t2)G(1)(t, [x]q)

= (−12[x]q + 8[x]3q)G(t, [x]q)

+ (12− 24[x]2q)tG(t, [x]q)

+ (24[x]q)t2G(t, [x]q)
+ (−2)3t3G(t, [x]q).

(26)

If we continue this process N-times, we can conjecture as follows.

G(N) =

(
∂

∂t

)N
G(t, [x]q) =

N

∑
i=0

ai(N, [x]q)tiG(t, [x]q), (N = 0, 1, 2, . . .). (27)
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By differentiating G(N) with respect to t in Equation (27), we find

G(N+1) =
∂G(N)

∂t

=
N

∑
i=0

ai(N, [x]q)iti−1G(t, [x]q) +
N

∑
i=0

ai(N, [x]q)tiG(1)(t, [x]q)

=
N

∑
i=0

ai(N, [x]q)iti−1G(t, [x]q) +
N

∑
i=0

ai(N, [x]q)ti(2[x]q − 2t)G(t, [x]q)

=
N

∑
i=0

iai(N, [x]q)ti−1G(t, [x]q) +
N

∑
i=0

(2[x]q)ai(N, [x]q)tiG(t, [x]q)

+
N

∑
i=0

(−2)ai(N, [x]q)ti+1G(t, [x]q)

=
N−1

∑
i=0

(i + 1)ai+1(N, [x]q)tiG(t, [x]q) +
N

∑
i=0

(2[x]q)ai(N, [x]q)tiG(t, [x]q)

+
N+1

∑
i=1

(−2)ai−1(N, [x]q)tiG(t, [x]q).

(28)

Replace N by N + 1 in (27), and we obtain

G(N+1) =
N+1

∑
i=0

ai(N + 1, [x]q)tiG(t, [x]q). (29)

Theorem 4. For N = 0, 1, 2, . . . , the differential equation

G(N) =

(
∂

∂t

)N
G(t, [x]q) =

(
N

∑
i=0

ai(N, [x]q)ti

)
G(t, [x]q) (30)

has a solution
G = G(t, [x]q) = e2[x]qt−t2

, (31)

where

a0(N, [x]q) =
N−1

∑
k=0

[x]iqa1(N − 1− k, [x]q) + (2[x]q)N ,

aN−1(N, [x]q) = (−2)N−1N(2[x]q),

aN(N, [x]q) = (−2)N ,

ai(N + 1, [x]q)

= (i + 1)
N

∑
k=0

2k[x]kqai+1(N − k, [x]q) + (−2)
N

∑
k=0

2k[x]kqai−1(N − k, [x]q),

(1 ≤ i ≤ N − 2).

(32)

Proof. Comparing the coefficients on both sides of (28) and (29), we obtain

a0(N + 1, [x]q) = a1(N, [x]q) + (2[x]q)a0(N, [x]q),

aN(N + 1, [x]q) = (2[x]q)aN(N, [x]q) + (−2)aN−1(N, [x]q),

aN+1(N + 1, [x]q) = (−2)aN(N, [x]q),

(33)

and
ai(N + 1, [x]q) = (i + 1)ai+1(N, [x]q)

+ (2[x]q)ai(N, [x]q) + (−2)ai−1(N, [x]q), (1 ≤ i ≤ N − 1).
(34)



Mathematics 2021, 9, 1168 6 of 12

In addition, from Equation (27), we get

G(t, [x]q) = G(0)(t, [x]q) = a0(0, [x]q)G(t, [x]q), (35)

which gives
a0(0, [x]q) = 1. (36)

It is not difficult to show that

(2[x]q)G(t, [x]q) + (−2)tG(t, [x]q)

= G(1)(t, [x]q)

=
1

∑
i=0

ai(1, [x]q)G(t, [x]q)

= a0(1, [x]q)G(t, [x]q) + a1(1, [x]q)tG(t, [x]q).

(37)

By using Equation (29), we can present the following as

a0(1, [x]q) = 2[x]q, a1(1, [x]q) = −2. (38)

From the Equation (33), we express

a0(N + 1, [x]q) = a1(N, [x]q) + (2[x]q)a0(N, [x]q),

a0(N, [x]q) = a1(N − 1, [x]q) + (2x)a0(N − 1, [x]q), . . .

a0(N + 1, [x]q) =
N

∑
i=0

(2[x]q)ia1(N − i, [x]q) + (2[x]q)N+1,

(39)

aN(N + 1, [x]q) = (2[x]q)aN(N, [x]q) + (−2)aN−1(N, [x]q),

aN−1(N, [x]q) = (2[x]q)aN−1(N − 1, [x]q) + (−2)aN−2(N − 1, [x]q), . . .

aN(N + 1, [x]q) = (−2)N(N + 1)(2[x]q),

(40)

and
aN+1(N + 1, [x]q) = (−2)aN(N, [x]q),

aN(N, [x]q) = (−2)aN−1(N − 1, [x]q), . . .

aN+1(N + 1, [x]q) = (−2)N+1.

(41)

Choose i = 1 in (34). Then, we can find

a1(N + 1, [x]q) = 2
N

∑
k=0

(2[x]q)ka2(N − k, [x]q) + (−2)
N

∑
k=0

(2[x]q)ka0(N − k, [x]q). (42)

For 1 ≤ i ≤ N − 1, by containing this process, we can deduce

ai(N + 1, [x]q) = (i + 1)
N

∑
k=0

(2[x]q)kai+1(N − k, [x]q)

+ (−2)
N

∑
k=0

(2[x]q)kai−1(N − k, [x]q).

(43)
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Here, notice that the matrix ai(j, [x]q)0≤i,j≤N+1 is given by

1 2[x]q −2 + 4[x]2q −12[x]q + 8[x]3q · · · ·

0 (−2) (−2)2(2[x]q) 12− 24[x]2q · · · ·

0 0 (−2)2 (−2)23(2[x]q) · · · ·

0 0 0 (−2)3 . . . ·

...
...

...
...

. . . (−2)N(N + 1)(2[x]q)

0 0 0 0 · · · (−2)N+1



(44)

From (33) to (43), we investigate the desired result immediately.

Theorem 5. For N = 0, 1, 2, . . . , we have

Hm+N,q(x) =
m

∑
i=0

Hm−i,q(x)ai(N, [x]q)m!
(m− i)!

, (45)

where

a0(N, [x]q) =
N−1

∑
k=0

2k[x]kqa1(N − 1− k, [x]q) + (2[x]q)N ,

aN−1(N, [x]q) = (−2)N−1N(2[x]q),

aN(N, [x]q) = (−2)N ,

ai(N + 1, [x]q)

= (i + 1)
N

∑
k=0

2k[x]kqai+1(N − k, [x]q) + (−2)
N

∑
k=0

2k[x]kqai−1(N − k, [x]q),

(1 ≤ i ≤ N − 2).

(46)

Proof. By making the N-times derivative for (4) with respect to t, we get(
∂

∂t

)N
G(t, [x]q) =

(
∂

∂t

)N
e2[x]qt−t2

=
∞

∑
m=0

Hm+N,q(x)
tm

m!
. (47)

From (46) and (47), we obtain

a0(N, [x]q)G(t, [x]q) + · · ·+ a1(N, [x]q)tNG(t, [x]q) =
∞

∑
m=0

Hm+N,q(x)
tm

m!
, (48)

which makes the required result.

Corollary 1. For N = 0, 1, 2, . . . , if we take m = 0 in (45), then, the following holds

HN,q(x) = a0(N, [x]q),



Mathematics 2021, 9, 1168 8 of 12

where,

a0(N, [x]q) =
N−1

∑
k=0

2k[x]kqa1(N − 1− k, [x]q) + (2[x]q)N ,

a1(N, [x]q)

= 2
N−1

∑
k=0

(2[x]q)ka2(N − k− 1, [x]q) + (−2)
N−1

∑
k=0

(2[x]q)ka0(N − k− 1, [x]q).

(49)

For N = 0, 1, 2, . . . , the differential equation

G(N) =

(
∂

∂t

)N
G(t, [x]q) =

(
N

∑
i=0

ai(N, [x]q)ti

)
G(t, [x]q) (50)

has a solution
G = G(t, [x]q) = e2[x]qt−t2

. (51)

The following Figure 1 is the graph representation for this solution by using MATHE-
MATICA.

Figure 1. The surface for the solution G(t, [x]q).

We can find the left surface of Figure 1 when we choose −1 ≤ x ≤ 1, q = 1/10, and
0 ≤ t ≤ 1. Additionally, we can see the right surface of Figure 1 when we choose a condition
such as −1 ≤ x ≤ 1, q = 1/3, and 0 ≤ t ≤ 1. It particularly shows a higher-resolution
density of the plots in the right surface of Figure 1.

4. Distribution and Pattern of Zeros of q-Hermite Polynomials

In this section, we examine the distribution and pattern of zeros of q-Hermite poly-
nomials Hn,q(x) according to the change in degree n. Based on these results, we present
a problem that needs to be approached theoretically. Many mathematicians now explore
concepts more easily than in the past by using software. These experiments allow them to
quickly create and visualize new ideas, review properties of various figures, as well as find
and guess patterns. This numerical survey is particularly interesting since it helps them un-
derstand the basic concepts and solve numerous problems. Here, we use MATHEMATICA
to find Figures 2–4 and approximate roots for q-Hermite polynomials.
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The q-Hermite polynomials Hn,q(x) can be explicitly determined; see [21,22]. First,
several examples are given, as follows.

H0,q(x) = 1,

H1,q(x) = − 2
−1 + q

+
2qx

−1 + q
,

H2,q(x) = −2 +
4

(−1 + q)2 −
8qx

(−1 + q)2 +
4q2x

(−1 + q)2 ,

H3,q(x) =
4

(−1 + q)3 −
24q

(−1 + q)3 +
12q2

(−1 + q)3 +
12qx

(−1 + q)3 −
24q2x

(−1 + q)3

+
8q3x

(−1 + q)3 +
24q1+x

(−1 + q)3 −
12q2+x

(−1 + q)3 .

(52)

We observe the distribution of zeros of the q-Hermite polynomials Hn,q(x) = 0. In
Figure 2, plots for the zeros of the q-Hermite polynomials Hn,q(x) for n = 20 and x ∈ R
are as follows.

-4 -2 0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

Re(x)

Im(x)

-4 -2 0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

Re(x)

Im(x)

-4 -2 0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

Re(x)

Im(x)

-4 -2 0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

Re(x)

Im(x)

Figure 2. Zeros of Hn,q(x).

In the top-left picture of Figure 2, we choose n = 20 and q = 3/10. In the top-right
picture of Figure 2, we consider conditions which are n = 20 and q = 5/10. We can find
the bottom-left picture of Figure 2, when we consider n = 20 and q = 7/10. If we consider
n = 20 and q = 9/10, then we can observe the bottom-right picture of Figure 2.

Stacks of zeros of the q-Hermite polynomials, Hn,q(x), for 1 ≤ n ≤ 20 from a 3-D
structure are presented as Figure 3.
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Figure 3. Stacks of zeros of Hn,q(x), 1 ≤ n ≤ 20.

It is the left picture of Figure 3, when we consider q = 1/2. Additionally, if we consider
q = 9/10, we can obtains the right picture of Figure 3.

Our numerical results for the approximate solutions of real zeros of the q-Hermite
polynomials, Hn,q(x), with q = 1/2 and x ∈ R are displayed in Tables 1 and 2.

Table 1. Numbers of real and complex zeros of Hn, 1
2
(x) .

Degree n Real Zeros

1 1
2 2
3 3
4 4
5 4
6 5
7 6
8 7
9 7
10 8
11 8
12 9
13 10
14 10

The plot structures of real zeros of the q-Hermite polynomials, Hn,q(x), for 1 ≤ n ≤ 20
are presented in Figure 4.

Figure 4. Stacks of zeros of Hn,q(x), 1 ≤ n ≤ 20.

In the left picture of Figure 4, we choose q = 5/10. For q = 9/10, the right side of
Figure 4 is presented. Next, we calculated an approximate solution that satisfies Hn,q(x) =
0, x ∈ R. The results are shown in Table 2.
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Table 2. Approximate solutions of Hn,q(x) = 0, x ∈ R .

Degree n x

1 0
2 −0.436752, 0.629397
3 −0.689185, 0, 1.36726
4 −0.868165, −0.336082, 0.43894, 2.51738
5 −1.12122, −0.738054, −0.28456, 0.354831, 1.59042
6 −1.12122, −0.738054, −0.28456, 0.354831, 1.59042
7 −1.21784, −0.877176, −0.493795, 0, 0.756682, 2.61507
8 −1.30177, −0.993369, −0.658643, −0.251681, 0.305064,

1.24673, 6.76861

5. Conclusions and Discussion

In this paper, we derive a few solutions of special forms containing q-Hermit polynomi-
als and find several properties of differential equations for these polynomials. Moreover, we
find approximate values of real zeros for q-Hermit polynomials and analyze the structure
of roots for these polynomials in a special condition from 3D.

We also identified the structure of q-Hermit polynomials under special several condi-
tions. These conditions change the structure of the roots and the form of polynomials, and
further research needs to be done on finding various properties. In addition, by simulating
the structure of roots for Hermit polynomials through various methods using the results
of this paper and multiple software, it is also thought that the characteristics of the roots’
structure for higher-order equations will evolve into one area.
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