
mathematics

Article

Maximizing the Chaotic Behavior of Fractional Order Chen
System by Evolutionary Algorithms

Jose-Cruz Nuñez-Perez 1,*,† , Vincent-Ademola Adeyemi 1,† , Yuma Sandoval-Ibarra 2,† ,
Francisco-Javier Perez-Pinal 3,† and Esteban Tlelo-Cuautle 4,*,†

����������
�������

Citation: Nuñez-Perez, J.-C.;

Adeyemi, V.-A.; Sandoval-Ibarra, Y.;

Perez-Pinal, F.-J.; Tlelo-Cuautle, E.

Maximizing the Chaotic Behavior of

Fractional Order Chen System by

Evolutionary Algorithms.

Mathematics 2021, 9, 1194. https:/

/doi.org/10.3390/math9111194

Academic Editors: Árpád Bűrmen
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Abstract: This paper presents the application of three optimization algorithms to increase the chaotic
behavior of the fractional order chaotic Chen system. This is achieved by optimizing the maximum
Lyapunov exponent (MLE). The applied optimization techniques are evolutionary algorithms (EAs),
namely: differential evolution (DE), particle swarm optimization (PSO), and invasive weed opti-
mization (IWO). In each algorithm, the optimization process is performed using 100 individuals and
generations from 50 to 500, with a step of 50, which makes a total of ten independent runs. The results
show that the optimized fractional order chaotic Chen systems have higher maximum Lyapunov
exponents than the non-optimized system, with the DE giving the highest MLE. Additionally, the
results indicate that the chaotic behavior of the fractional order Chen system is multifaceted with
respect to the parameter and fractional order values. The dynamical behavior and complexity of the
optimized systems are verified using properties, such as bifurcation, LE spectrum, equilibrium point,
eigenvalue, and sample entropy. Moreover, the optimized systems are compared with a hyper-chaotic
Chen system on the basis of their prediction times. The results show that the optimized systems
have a shorter prediction time than the hyper-chaotic system. The optimized results are suitable for
developing a secure communication system and a random number generator. Finally, the Halstead
parameters measure the complexity of the three optimization algorithms that were implemented in
MATLAB. The results reveal that the invasive weed optimization has the simplest implementation.

Keywords: Chen system; evolutionary algorithm; fractional order system; global optimization;
Maximum Lyapunov exponent

1. Introduction

The nonlinear dynamical system is a branch in science, especially physics and mathe-
matics, which is fundamental in the modelling of physical systems. Because of groudbreak-
ing researches by pinoneering scientists in nonlinear dynamical system, a concept called
chaos theory has emerged and, in the last few decades, the subject of chaos has attracted
great interest from researchers. Initial studies on chaos have shown that the phenomenon
has some unique properties in terms of sensitivity to initial conditions, complexity, er-
godicity, transitivity, and determinism, which have been exploited in crucial areas, such
as telecommunication [1–3], robotics [4–6], medicine [7–9], and so on. Therefore, inves-
tigations have led to the development of many chaotic systems, and there are several
activities in areas, such as electronic realization, stability, synchronization, and chaos-based
communication [10–12].
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The level of unpredictability is of great importance in chaotic oscillators [13], which
can be measured by computing the Lyapunov exponents (LEs) [14–16]. The LE is a quantity
that measures the average rate of divergence or convergence of nearby trajectories in phase
space. The number of state variables in a chaotic system determines the number of LEs
that it possesses. For chaos to exist, at least one of the LEs must be positive. The largest
positive LE is often called a Maximum Lyapunov exponent (MLE) and, the higher the MLE,
the more chaotic the oscillator is.

However, there are not many researches in the literature regarding optimizing the MLE
of chaotic oscillators. In the articles that are listed in [13,17–19], evolutionary algorithms
(EAs) were used for global optimization of the MLE. In [13], the authors were able to
maximize the MLE of multi-scroll chaotic oscillator based on saturated nonlinear function
(SNLF) series (two to nine scrolls) by using differential evolution. Feasible solutions
were found for the coefficients of the equations describing the SNLF-based oscillator.
These optimized solutions produced higher MLEs than their original values. The work
in [17] shows the comparison of the differential evolution and particle swarm optimization
algorithms used to maximize the MLE of a multi-scroll chaotic oscillator that is based on
SNLF series, from two to six scrolls. Although both algorithms gave similar results in terms
of the optimized MLEs and execution times, it was discovered that the chaotic behavior
is multimodal, in that different coefficient values maximized the MLEs. Additionally,
differential evolution was applied in [18] and compared with a simple genetic algorithm
to maximize the MLE of a 4-scroll chaotic oscillator of SNLF type. Differential evolution
produced a slightly higher optimized MLE than the genetic algorithm. A multi-objective
problem was solved in [19] by applying a non-dominated sorting genetic algorithm to
simultaneously maximize the MLE and minimize the dispersion of the phase space portrait
(PSP) of two multi-scroll chaotic oscillators based on piecewise-linear functions (PWLs),
namely: SNLF and Chua’s diode (two to six scrolls were considered). In each case, the final
chosen solutions were selected on the Pareto front, where the two objectives were traded.
Because the two objectives are in conflict, the highest MLE (HMLE) could not be selected
as the chosen solution. The investigations that are described above show the effectiveness
of EAs in optimizing the dynamical behavior of integer order multi-scroll chaotic systems.
Additionally, in a related investigation presented in [20], the authors proposed a two-
dimensional (2D) modular chaotification system (2D-MCS) to improve the chaos complexity
of any 2D chaotic map. The proposed system was applied to improve the complexity of
chaos in Hénon Map, Zeraoulia-Sprott Map, and Duffing Map. The quantitative evaluation
of the chaotic behaviors of the chaotic maps after the application of the 2D-MCS revealed
improved complexity in the generated chaos. Likewise, in [21], time-delay linear feedback
was combined with parameter perturbation to improve the complexity of a 1D logistic map
and 2D Baker map, and was verified by numerical experiments. As a matter of fact, more
effort is needed to optimize the MLE of other chaotic oscillators, especially of the recent
ones having a fractional order, in order to guarantee the more chaotic regime in them.

Fractional calculus is a mathematical subject that has been widely applied in engineering
and physics for centuries [22,23]. For instance, it is customary to describe physical systems
or phenomena by fractional order differential equations. Many systems in aerodynamics,
mechatronics, electrical circuits, biology, fluid flows, chemistry, electromagnetic waves, dielectric
polarization, and many more are modeled as fractional order systems [24–28]. In this manner,
fractional order chaotic systems have been investigated in recent times [29–33]. In [29], fractional
order tangent systems were introduced to detect chaos in a fractional order simplified Lorenz
system and fractional order Hénon map. A novel fuzzy-adaptive controller was applied in [30]
to achieve a generalized projective synchronization of two incommensurate fractional modified
coupled dynamic systems. The work in [31] was done to study the dynamical behavior and
synchronization of a fractional order Genesio–Tesi system. The dynamics of the system was
analyzed by LEs while synchronization was achieved by active control and sliding mode
control. In [32], an active control technique was applied to stabilize the unstable equilibria of
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discontinuous fractional order Shimizu–Morioka system, while the dynamical behavior of a
new hyperchaotic fractional order Rabinovich system was studied in [33].

Moreover, some more recent works on fractional order chaotic systems, their appli-
cations, and implementations are contained in [34–40]. The authors in [34] presented an
analog approach towards implementing the fractional order derivates of a chaotic system,
utilizing amplifiers and other passive circuit elements. In addition, the analog method
includes the use of field-programmable analog arrays (FPAAs) to minimize the mismatch
that may arise when using discrete devices. The work presented in [35] shows the applica-
tion of a fractional order chaotic oscillator for secure communication systems based on the
synchronization of two fractional order chaotic systems in a master–slave configuration.
The secure communication system was applied to encrypt RGB and grayscale images.
The work further shows fractional order chaotic systems as reliable for implementing
random number generators for cryptographic applications. The authors presented the ex-
perimental field-programmable gate arrays (FPGAs) realization of four different fractional
order chaotic systems in [36]. In the work, the Grünwald–Letnikov (GL) method was
applied to solve the fractional order derivatives, while, in [37], the authors presented a
work on numerical analysis of the Chen oscillator, whereby the computation of the LEs was
a part of the results. The authors introduced an encryption, compression, and transmission
scheme in [38], based on a fractional order chaotic system in conjunction with discrete
wavelet transform (DWT) and quadrature phase shift keying (QPSK). The encrypted image
file was wirelessly transmitted through a very small distance (7 cm). A novel multistable
fractional order chaotic system, having an unstable equilibrium point of self-excited at-
tractor and hidden attractors with no equilibrium point, was proposed in [39] with its
digital signal processor (DSP) implementation, while the synchronization of two variable
fractional orders chaotic systems using fuzzy modeling were considered in [40] with appli-
cation in secure communications. In [41], the authors included a work on the optimization
of the positive LE and Kaplan–Yorke Dimension of fractional order chaotic systems by
differential evolution and particle swarm optimization. Here, the fractional order was
fixed, while the system parameter values were varied within the search space, looking
for the combination of values that increase MLE. This is probably the first attempt in this
regard, because a rigorous search of the literature did not yield other works.

In the present investigation, the fractional order Chen system is considered with
the primary objective of maximizing its MLE using EAs [42–44]. This effort will add to
the pool of literatures that are available in the research area of optimizing the MLEs of
fractional order chaotic systems. Specifically, the global optimization procedure presented
in this work employs meta-heuristics to search for the values of the system parameters
and fractional order that maximize the MLE. The dynamic properties and complexity
of the optimized fractional order Chen chaotic system are theoretically and numerically
verified. Bifurcation, LE spectrum, equilibrium point, eigenvalue, and sample entropy
are the properties considered. The behavior of a system can change dramatically with a
change in the values of its parameters. This is called bifurcation. The parameter values at
which these changes occur are called bifurcation points. The spectrum of the LEs is a set
of real numbers that are sorted in non-increasing order and equal to the dimension of the
phase space. Knowledge of the complete LE spectrum gives more detailed analysis of a
dynamical system. Geometrically, the equilibria are points in a system’s phase space that
are calculated by solving the function f (x) = 0. The stability of a dynamical system can be
verified through the evaluation of the eigenvalues of the system. For instance, a saddle
point is an equilibrium point in which at least one eigenvalue is located in the stable region
and one eigenvalue is in the unstable region. An index 1 saddle point is the one in which
only one eigenvalue is unstable and the others are stable. A saddle point of index 2 has one
stable eigenvalue and two unstable eigenvalues.

The need to develop a more unpredictable and reliable fractional order chaotic Chen
system for secure communication systems is the motivation behind this work [45–49].
The global optimization in this work is carried out using three single objective EAs, namely:
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differential evolution (DE), particle swarm optimization (PSO), and invasive weed op-
timization (IWO), and the results are then compared. In the light of this, the following
contributions to the state of the art are hereby highlighted:

(i) the optimization of the MLE of the fractional order chaotic Chen system by DE, PSO,
and IWO, whereby the system’s fractional order q is not fixed, but it is considered
to be a design variable and optimized alongside the conventional design variables,
which are the system parameters. This was done because a slight change in the value
of the fractional order q can also lead to a big change in the LEs; and,

(ii) optimizing the system parameters and fractional order q gives up to an 80% increase
in the value of the MLE over the non-optimized system. The highest optimized
MLE is obtained from the DE optimization. Consequently, the optimized fractional
order chaotic Chen systems are more complex and unpredictable, which makes
them suitable for developing random number generators and secure communication
systems for cryptographic applications.

This article is organized, as follows: Section 2 presents the theoretical framework,
describing the fractional order chaotic Chen oscillator, the computation of the LEs, the ap-
plied EAs, and the complexity and instability analyses. Section 3 shows the results that
were obtained in this work. The discussion of the results can be found in Section 4. Finally,
the conclusion that is derived from the investigation is given in Section 5.

2. Theoretical Framework

This section describes some concepts and techniques that are relevant to this investigation.
The following concepts are analyzed: fractional order chaotic Chen oscillator, LEs, the EAs
under consideration, and time series complexity and instability of nonlinear systems.

In modeling fractional order systems, there are several definitions for the fractional
derivative of order q > 0, but the Caputo’s definition is the most commonly used. Ca-
puto’s definition includes initial conditions for the function f as well as its integer order
derivatives. Therefore, using the Caputo’s derivative, the initial value problem (IVP) of a
fractional order system is defined, as follows:

Dq
∗x(t) = f (x(t)), x(0) = x0, t ∈ [0, T], (1)

where Dq
∗ is the Caputo’s differential operator of order 0 < q ≤ 1 and q = [q1, q2, q3, . . .

, qn]T , f : Rn → Rn is a Lipschitz continuous nonlinear function, x0 ∈ Rn is the initial
condition, and T > 0. If q1 = q2 = q3 = . . . = qn, then system (1) is called to have
commensurate order; otherwise, non-commensurate order. Dq

∗ is defined by:

Dq
∗x(t) =

1
Γ(m− q)

∫ t

0

x(m)(τ)

(t− τ)q+1−m dτ, m− 1 < q < m, (2)

where m has the smallest integer that is larger than q, x(m)(t) is the m-order derivative in the
usual sense, and Γ is the Euler’s Gamma function. Numerical approximation methods, such
as the Grünwald–Letnikov, Riemmann–Liouville, predictor-corrector Adams–Bashforth–
Moulton (ABM), and optimized predictor-corrector ABM can be applied to evaluate the
fractional differential equation in (1).

2.1. Fractional Order Chaotic Chen Oscillator

The Chen oscillator is a continuous nonlinear and autonomous dynamical system,
and it is an initial value problem, either in integer or fractional order. Guanrong Chen and
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Tetsushi Ueta proposed the oscillator [50,51], and its fractional order version is modeled by
Caputo’s fractional derivative, as follows:

Dq
∗x = a(y− x)

Dq
∗y = (c− a)x− xz + cy (3)

Dq
∗z = xy− bz

where Dq
∗ is the Caputo’s differential operator of order 0 < q ≤ 1; x, y, and z are the system

dependent variables; and, a, b, and c are the system parameters with traditional values
of 35, 3, and 28, respectively. We considered commensurate order in our work, hence,
q = q1 = q2 = q3. The fractional order Chen system (3) has the same equilibrium points as
its equivalent integer order. Hence, the three equilibria are [37]:

EP0 = [0, 0, 0] (4)

EP1 =

[√
b(2c− a),

√
(b(2c− a), 2c− a

]
(5)

EP2 =

[
−
√
(b(2c− a),−

√
(b(2c− a), 2c− a

]
(6)

The Jacobian matrix of the fractional order Chen system (3) is:

J =

 −a a 0
(c− a)− z c −x

y x −b

 (7)

2.2. Computation of Lyapunov Exponents

The LEs of continuous dynamical systems provide the most quantitative descrip-
tion of the presence of a deterministic non-periodic flow. The computation begins with
determining their variational equation.

Definition 1. Given a three-dimensional continuous fractional order system of the form:

Dq
∗x = f1(x, y, z)

Dq
∗y = f2(x, y, z) (8)

Dq
∗z = f3(x, y, z)

where Dq
∗ is the Caputo’s differential operator. If e0 = (x0, y0, z0) is the initial condition, a small

perturbation to e0 in x, y, and z directions will lead to the evolution of the initial perturbed condition
vector in the direction of a different point, say, x

′
, y
′
, and z

′
, respectively.

The slopes of system (8) in each direction, which are described by the Jacobian matrix
J, provide an indication of the evolution of the perturbation after a finite time t. The
variation or perturbation in the three directions is defined by:

[β] =

βxx βyx βzx
βxy βyy βzy
βxz βyz βzz

, (9)

Generally, the variational equation in (9) can be written in the form:

Dq
∗β(t) = Dv f (x)β(t), β(0) = I (10)

where β represents the matrix solution of system (8), β ∈ Rn×n, Dv is the n× n Jacobian of
f , and I is the n× n identity matrix. Because β(0) is non-singular, β(t) is non-singular for
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t ≥ 0. The MLE is computed following the algorithm that is described in [45]. The method-
ology is based on the work shown in [52,53], in which a Gram–Schmidt orthogonalization
procedure for computing LEs was proposed.

Definition 2. Given j linearly independent set of vectors {α1, α2, . . . , αj} in Rn, the Gram–
Schmidt orthogonalization procedure generates an orthonormal set {ζ1, ζ2, . . . , ζ j} of vectors
spanning the same subspace as {α1, α2, . . . , αj}. The volume of the parallelepiped that is covered by
{α1, α2, . . . , αj} is:

Vol{α1, α2, . . . , αj} = ‖ω1‖‖ω2‖ . . . ‖ωj‖ (11)

The variational Equation (10) is integrated from {e0, Z0}, until a period T is reached,
to obtain:

e1 = f T(e0) (12)

A1 ≡ [α1
1, α1

2, . . . , α1
n] = De0 f T(A0) = βT(e0)[α

0
1, α0

2, . . . , α0
n]. (13)

The corresponding matrix of orthonormal vectors Z1 is calculated, the variational
equation is integrated, and e2 and A2 are computed. The integration and orthonormal-
ization continue until K is reached. A, Z, and e are the n× n matrix, orthonormal vectors
matrix, and initial condition, respectively. At k-th step of the process, the set of orthonormal
vectors is {ωk

1, ωk
2, . . . , ωk

j }. For a suitable value of T, the LEs are obtained by evaluating:

Ln ≈
1
T

K

∑
i=1

ln‖ωi
n‖, (14)

until a maximum iteration is attained or when convergence occurs.

2.3. Description of the Evolutionary Algorithms

In optimization, the function that is to be optimized is generally of the form: g(X) :
RD → R. The global optimization problem of maximizing (or minimizing) the objective
function g(X) is by optimizing the values of parameters X = {x1, x2, . . . , xD}, X ∈ RD,
where X is a vector comprising D objective function parameters. The parameters are
bounded by lower and upper boundary constraints, i.e., xL

i ≤ xi ≤ xU
i ∀ i ∈ [1, D].

Most of the EAs use mechanisms that are inspired by biological evolution, such as
reproduction, mutation, recombination, and selection. The use of meta-heuristics search is
a norm in global optimization problems because of the huge search space that is usually
involved. The optimization algorithms that are applied in this investigation, DE, PSO,
and IWO, are evolutionary and based on a meta-heuristic. An initialization of population is
the first of the main activities of every EA. The others are random variation of individuals,
evaluation of cost function, and selection. The last three activities are normally conducted
in an iterative manner. Equation (15) shows the initialization of population of N individuals
and V decision variables,

xi(j) = lj + (uj − lj) ∗ rand(·) (15)

where l and u are the lower and upper bounds of the decision variables, respectively,
i = 1, 2, . . . , N and j = 1, 2, . . . , V.

2.3.1. Differential Evolution

The DE was introduced and described in detail by the authors in [54,55]. It uses a
set of vectors N called individuals as a population for each generation G. Each vector
represents the potential solution for the global optimization problem. Currently, there exist
several variants of DE, but the one used in this investigation is rand/1/bin. DE uses the
difference of solution vectors to create new candidate solutions, whereby the distribution
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of the population and its orientation are hidden in the differences in population members.
As the population size increases, the distribution behind the DE sampling technique
tends to a multi-variable Gaussian (normal) distribution, which is very common in the
context of EAs. Specifically, the population of randomly created N solution vectors is
successfully improved by applying genetic operators in the following order: mutation,
crossover, and, finally, selection. Mutation is the main novelty of DE. This operation enables
DE to explore the search space and maintain diversity. The mutation is explained in the
following definition.

Definition 3. For a given parameter vector Xi,G, i.e., an individual i and a generation G, three
vectors (Xr1,G Xr2,G Xr3,G) are randomly selected, and a mutant vector Vi,G is then created,
such that:

Vi,G = Xr1,G + F · (Xr2,G − Xr3,G) (16)

where random indexes r1, r2, r3 ε {1, 2, . . . , N}, r1 6= r2 6= r3 6= i, and F ∈ [0, 1] is the scaling
factor that controls the amplification of the differential variation (Xr2,G − Xr3,G).

The crossover operator is applied to the parent vector Xi,G and mutant vector Vi,G,
in order to increase the diversity of the perturbed parameter vectors. Two crossover
techniques are available, namely, binomial and exponential crossover. In binomial crossover,
which is used in this investigation, the trial vector Ui,j,G is formed, as follows:

Ui,j,G =

{
Vi,G, if (rand ≤ pCR or j = jrand)
Xi,G, otherwise.

(17)

where j = [1, 2, . . . , D], rand is a random number within [0, 1], jrand ∈ [1, 2, . . . , D],
pCR ∈ [0 1] is the crossover probability, and D is the number of decision variables.
jrand is randomly chosen in order to ensure that Ui,G obtains a minimum of one parameter
from Vi,G. The selection operator shown in Equation (18), for maximization problem, works
by comparing the parent vector with the trial vector. The vector with the better fitness
value is admitted to the next generation.

Xi,G+1 =

{
Ui,G, if f (Ui,G > f (Xi,G)).
Xi,G, otherwise.

(18)

2.3.2. Particle Swarm Optimization

The PSO was developed by James Kennedy and Russel Eberhart, and described in [56,57].
PSO was inspired by the social behavior of birds and fish to solve optimization problems in a
cooperative and intelligent framework. Unlike other EAs, PSO has no evolution operators, such
as crossover and mutation. PSO uses a set of vectors N (that are called particles) as a population
for each generation G. Potential solutions (particles) fly through the problem space by following
the current optimum particles. Each particle keeps track of its coordinates in the problem space
that are associated with the best solution (fitness) that it has achieved so far. The stored fitness
value is called pbest. When a particle takes all the population as its topological neighbours,
the best value is a global best and it is called gbest. The velocity of each particle, weighted by a
random term, changes at each time step toward its pbest and best location. The core of the PSO
is the particle’s velocity and position update.

Definition 4. Given a swarm of N dimensional population and D dimensional particles, the
position and velocity of the j-th particle are represented by xj = xj1, xj2, . . . , xjD and vj =
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vj1, vj2, . . . , vjD, where j = 1, 2, . . . , N, the following equations give the velocity update and
position update of the particle, respectively:

vj,k+1 = wkvj,k + c1r1(Pbj,k − xj,k) + c2r2(Pg,k − xj,k) (19)

xj,k+1 = xj,k + vj,k+1 (20)

where k is the current generation, w is the inertia weight, c1 and c2 are the cognitive and social
coefficients, r1 and r2 are uniformly distributed random numbers in [0, 1], Pbj is the personal best of
a particle (the coordinates of the best solution obtained so far by a specific particle), and Pg represents
the global best, which is the overall best solution that was obtained in the swarm at generation k.

2.3.3. Invasive Weed Optimization

IWO is inspired by the spreading and colonizing strategy of weeds and it is described
in [58]. Weeds represent the feasible solutions for the problem and population is the set of
all weeds. A finite number of seeds (initial solutions) are randomly spread over the search
area. This is the initialization stage. The reproduction stage follows, whereby the seeds
grow to become flowering plants and produce seeds depending on their fitness obtained
from the objective function [50]. Equation (21) represents the number of seeds Ns to be
produced by the plants,

Ns =
fi − fwst

fbst − fwst
(Smax − Smin) + Smin (21)

where fi is the fitness of the i-th weed, fwst and fbst are the worst and best fitness in the weed
population, and Smin and Smax represent the minimum and maximum number of seeds.
The spatial dispersal stage is next, during which the seeds produced are randomly dis-
persed over the search space by normally distributed random numbers with a mean equal
to zero, but with a varying standard deviation σitr. This is achieved by the following
Equation (22):

σitr =

(
itrmax − itr

itrmax

)n
(σin − σf n) + σf n (22)

where itrmax is the maximum number of iterations (generations), itr is the current iteration,
σin and σf n are the previously defined standard deviations, and n is the nonlinear modula-
tion index. When the maximum number of plants is reached, the competitive exclusion
technique is applied, whereby only the plants with high fitness can survive and produce
seeds, and others are eliminated. The process continues until the maximum number of
iterations is reached. The plant with the best fitness value is the optimized solution.

2.4. Complexity Analysis and Instability of Equilibria

The field of information theory studies the complexity in data series by analyzing its
entropy. The entropy is a quantity that measures the degree of randomness in a system
or data series to ascertain not only whether it is random or not, but also how random it
is. As the level of randomness in a system increases, so does its complexity and unpre-
dictability. There are several algorithms for measuring the randomness that exist in data
series, chaotic time series inclusive. Examples of such algorithms incude approximate
entropy, sample entropy, and permutation entropy. In this work, sample entropy [59,60] is
applied to measure the time series complexity of the fractional order chaotic Chen system.
Sample entropy measures the probability of generating new patterns in signals. The sample
entropy is computed, as follows:

SampEn(m, r, N) = − log
(

Am(r)
Bm(r)

)
(23)

where m is the embedded dimension, r is the tolerance, N is the time series data, and A
and B are template vector pairs.
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The instability of an autonomous system, as in (1), is examined from the eigenvalues
λ1, λ2, . . . , λn of the Jacobian matrix J = ∂ f

∂x evaluated at each equilibrium point according
to the following theorem [61]:

Theorem 1. The equilibrium points of the autonomous fractional order system (1) are asymptoti-
cally stable if and only if

σ = q− 2| arg(λ)min|/π (24)

is strictly negative.

Remark 1. If σ ≤ 0 and the critical eigenvalues satisfying τ = 0 have a geometric multiplicity of
one, then the equilibrium point is stable.

Remark 2. If σ > 0, then the equilibrium point is unstable and the system may exhibit chaotic
behavior.

As a matter of fact, the system parameters that are used in the computation of the LE
are the primary component for computing the eigenvalues upon which Theorem 1 is based.
It is also safe to deduce that, if σ > 0, then there may be a positive LE and chaotic attractor.

3. Results

The DE and PSO algorithms were randomly populated with 100 individuals, while
IWO has an initial population size of 10 and maximum of 100. The number of generations
was arbitrarily set from 50 to 500 with a step of 50. The values of the system parameters a, b,
and c, as well as fractional order q in the search space, were kept within four decimal places.
The initial condition is chosen in the basin of attraction of the system. For the step-size
value, some tests were carried out on the simulation program, starting with a trial value and
continuing to reduce the value until convergence occurs. The underlying numerical method
adopted is the fast optimized ABM predictor-corrector [62]. The numerical evaluation
of the LEs is by the Continuous Gram–Schmidt orthogonalization (CGSO) procedure, as
justified in [62]. The configuration of the computer that was employed in the simulations
and the specific parameters of each algorithm are given next:

(i) Computer configuration: Intel(R) Core(TM) i7-4790, 3.60GHz; RAM: 12 GB; Operat-
ing System: Windows 10;

(ii) DE: Crossover probability = 0.3;
(iii) PSO: Constriction coefficient K = 2/Φ − 2 +

√
Φ2 − 4Φ; Φ = c1 + c2; c1 = 2.05;

c2 = 2.05; Damping ratio = 1;
(iv) IWO: Minimum number of seeds = 0; Maximum number of seeds = 5; Variance

reduction exponent = 4; Initial value of standard deviation = 0.75; Final value of
standard deviation = 1× 10−6.

The chosen initial condition is x0 = [4.246, 4.728, 13.470], while the search spaces of
the parameters are 0.0001 ≤ a ≤ 45.0000, 0.0001 ≤ b ≤ 20.0000, 0.0001 ≤ c ≤ 40.0000 and
0.0001 < q ≤ 1.0000. This investigation gives the best results at 400 to 500 generations
for DE, and 450 to 500 generations for both PSO and IWO. Henceforth, any reference to
the fractional order Chen oscillator DE, PSO, and IWO optimized results in the rest of
the article refers to the best results obtained. Table 1 presents the optimized parameters
and fractional order by the DE, PSO, and IWO, as well as the optimized LEs, against the
non-optimized system. In addition, the table shows the equilibrium points, eigenvalues,
sample entropy, and the asymptotic results applying Theorem 1. We note that the MLE
of the non-optimized system that is computed in this work when q = 0.9800 is almost the
same as the 2.0192 reported in [63] for integer order when q = 1 using the same parameters.
It can be seen that the slight difference of 0.0101 is caused by the q value. Generally, the LEs
can be altered if there is a change in the value of a parameter or the fractional order.
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Table 1. The optimization results showing the optimized fractional order chaotic Chen system by DE, PSO, and IWO against
the non-optimized system.

Parameter LEs Equilibrium Point Eigenvalue Sample Entropy Instability
(λ1, λ2, λ3)

Non-optimized Chen {2.0293, [0, 0, 0] {−30.83, 23.83,−3} ∀ q ε (0, 1)
a = 35.0000, b = 3.0000, 0, [7.9373, 7.9373, 21] {−18.42, 4.21 + 14.88i, 4.21− 14.88i} 0.00943 q > 0.8244
c = 28.0000, q = 0.9800 −1.3973} [−7.9373,−7.9373, 21] {−18.42, 4.21 + 14.88i, 4.21− 14.88i} q > 0.8244

DE-Chen {3.6451, [0, 0, 0] {−31.83, 27.74,−3.90} ∀ q ε (0, 1)
a = 34.0919, b = 3.9072, 0, [10.0612, 10.0612, 25.9081] {−19.75, 5.87 + 17.74i, 5.87− 17.74i} 0.01938 q > 0.7964
c = 30.0000, q = 0.7923 −0.2569} [−10.0612,−10.0612, 25.9081] {−19.75, 5.87 + 17.74i, 5.87− 17.74i} q > 0.7964

PSO-Chen {3.6381, [0, 0, 0] {−31.880, 27.67,−3.99} ∀ q ε (0, 1)
a = 34.2041, b = 3.9948, 0, [10.1513, 10.1513, 25.7959] {−19.93, 5.86 + 17.86i, 5.86− 17.86i} 0.01937 q > 0.7981
c = 30.0000, q = 0.7939 −0.4457} [−10.1513,−10.1513, 25.7959] {−19.93, 5.86 + 17.86i, 5.86− 17.86i} q > 0.7981

IWO-Chen {3.6070, [0, 0, 0] {−31.841, 27.736,−3.919} ∀ q ε (0, 1)
a = 34.1050, b = 3.9198, 0, [10.0749, 10.0749, 25.8950] {−19.77, 5.87 + 17.76i, 5.87− 17.76i} 0.01935 q > 0.7966
c = 30.0000, q = 0.7933 −0.9951} [−10.0749,−10.0749, 25.8950] {−19.77, 5.87 + 17.76i, 5.87− 17.76i} q > 0.7966

Figure 1 presents the evolution of the phase diagram in 3D planes of the best MLE
obtained from DE, PSO, and IWO, respectively, which were simulated with a time-step
h = 0.001 and integration period T = 75 s. Additionally, the chaos in the optimized system
by each EA is compared in the time series presented in Figure 2.

0

10

50 -50

20z

30

40

x y

0 0

-50 50

EP
1

EP
2

EP
0

(a)

0

10

50 -50

20z

30

40

x y

0 0

-50 50

EP
1

EP
2

EP
0

(b)

0

10

50 -50

20z

30

40

x y

0 0

-50 50

EP
0

EP
1

EP
2

(c)

Figure 1. Phase diagrams in 3D plane for the optimized fractional order Chen system for each EA. (a) DE: equilib-
rium points (EP0, EP1, EP2) = ([0, 0, 0], [10.0612, 10.0612, 25.9081], [−10.0612,−10.0612, 25.9081]), (b) PSO: equilibrium
points (EP0, EP1, EP2) = ([0, 0, 0], [10.1513, 10.1513, 25.7959], [−10.1513,−10.1513, 25.7959]), and (c) IWO: equilibrium points
(EP0, EP1, EP2) = ([0, 0, 0], [10.0749, 10.0749, 25.8950], [−10.0749,−10.0749, 25.8950]).
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Figure 2. Timeseries of the optimized fractional order chaotic Chen systems. Each state of the optimized system is
superimposed in the respective graph, as indicated by the legend. (a) State x (b) State y (c) State z.

Furthermore, the dynamics of the non-optimized and optimized systems are examined
with bifurcation diagrams of state x as well as the LE spectra against the varied values of
parameters a, b, and c, and fractional order q. Figures 3–6 display the results. The corre-
sponding LE spectra in the figures show good agreement with the bifurcation diagrams.
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Figure 3. Bifurcation diagram and LE spectra of non-optimized fractional order Chen system. For the
LE spectra, L1 is in blue color, L2 in red, and L3 in yellow. a = 35, b = 3, c = 28, q = 0.9800 and
MLE= 2.0293. (a) Parameter a (b) Parameter b (c) Parameter c (d) Fractional order q.
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Figure 4. Bifurcation diagram and LE spectra of fractional order Chen system for DE best result at
400 to 500 generations. For the LE spectra, L1 is in blue color, L2 in red, and L3 in yellow. a = 34.0919,
b = 3.9072, c = 30.0000, q = 0.7923 and MLE= 3.6451. (a) Parameter a (b) Parameter b (c) Parameter c
(d) Fractional order q.
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Figure 5. Bifurcation diagram and LE spectra of fractional order Chen system for PSO best result
at 450 and 500 generations. For the LE spectra, L1 is in blue color, L2 in red, and L3 in yellow.
a = 34.2041, b = 3.9948, c = 30.0000, q = 0.7939 and MLE= 3.6381. (a) Parameter a (b) Parameter b
(c) Parameter c (d) Fractional order q.
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Figure 6. Bifurcation diagram and LE spectra of fractional order Chen system for IWO best result
at 450 and 500 generations. For the LE spectra, L1 is in blue color, L2 in red, and L3 in yellow.
a = 34.1050, b = 3.9198, c = 30.0000, q = 0.7933 and MLE= 3.6070. (a) Parameter a (b) Parameter b
(c) Parameter c (d) Fractional order q.
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3.1. Comparison with Hyper-Chaotic Fractional Order System

The optimized parameters of Chen system that were obtained in this investigation
are compared with a hyper-chaotic Chen system on the basis of their prediction times [64].
The hyper-chaotic system is a class of dynamical system with more than one positive
Lyapunov exponent. They are usually more complicated than the traditional chaotic
systems. The integer order of the compared hyper-chaotic Chen oscillator was described
in [65] and the fractional order equivalent is represented, as follows:

Dq
∗x = a(y− x)

Dq
∗y = (c− a)x− xz + cy + r sin (cos (w)) (25)

Dq
∗z = xy− bz

Dq
∗w = ϕr

where x, y, z, and w are the system dependent variables, a, b, c, and r are the system
parameters with conventional values of 35, 3, 28, and 35 respectively, Dq

∗ is the Caputo’s
differential operator of order 0 < q ≤ 1, and φ is a variable parameter that determines the
chaotic attractor.

Figure 7 presents the LE spectrum of model (25), while the LEs of some selected states
of the hyper-chaotic system are listed in Table 2. Generally, because hyper-chaotic system
has two positive LEs, its prediction time is expected to be shorter than the original chaotic
system [66]. The prediction time is given by:

µp =
ln2
K1

(26)

where K1 is the Kolmogorov–Sinai entropy (KS-Entropy). The sum of the positive LEs is
the upper bound of the KS-Entropy [67]. The KS-Entropy is calculated, as follows [67]:

K1 = ∑
n:Ln>0

Ln (27)

where Ln are the LEs.
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L
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Figure 7. The LE spectrum of hyper-chaotic fractional order Chen system. L1 is in blue color, L2 in
purple, L3 in red, and L4 yellow color.

In this work, the prediction time of the hyper-chaotic system is computed for the
best hyper-chaotic state, where φ = 71.2. The computed Kolmogorov–Sinai entropies
and prediction times of the chaotic and hyper-chaotic systems are: (1) non-optimized
K1 = 2.0293, µp = 0.3416; (2) DE-optimized K1 = 3.6451, µp = 0.1902; (3) PSO-optimized
K1 = 3.6381, µp = 0.1905; (4) IWO-optimized K1 = 3.6070, µp = 0.1922; and, (5) hyper-
chaotic K1 = 2.3682, µp = 0.2927. The results show that the optimized systems have
a shorter prediction time than the non-optimized system and the hyper-chaotic system.
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The prediction time of the hyper-chaotic system is only shorter than the non-optimized
system. Overall, DE-optimized system have the shortest prediction time.

Table 2. LEs of selected states of hyper-chaotic fractional order Chen system (the best hyper-chaotic
state is italicized).

Parameter φ Chaotic State L1 L2 L3 L4

6.5 Chaotic 1.5055 −0.3146 0 −11.8294
14 Periodic −1.4284 −1.4618 0 −7.8273

17.3 Periodic −0.8201 −4.8448 0 −5.0879
25.8 Chaotic 3.3441 −1.3321 0 −12.6013
71.2 Hyper-chaotic 2.346 0.0222 0 −12.953
90 Hyper-chaotic 2.0407 0.0016 0 −12.6229

3.2. Complexity of Optimization Codes

The complexity of the implemented algorithms in MATLAB were measured using the
Halstead metrics, and the results are compared in Table 3. The procedure for determining
the complexity begins with the counting of the distinct operators and operands that make
up the software, where n1 is the number of distinct operators, n2 is the number of distinct
operands, N1 is the total number of operators, and N2 is the total number of operands.
Other parameters are derived from these four primary parameters. It should be noted that
the metrics only measure the optimization algorithm, not including the numerical method
to solve the fractional order system and numerical computation of the LEs.

Table 3. Halstead complexity metrics for DE, PSO, and IWO.

Parameters DE PSO IWO

n1 44 43 39

n2 60 67 69

N1 392 660 355

N2 236 420 223

Program 104 110 108vocabulary (n)

Program length (N) 628 1080 578

Volume (V) 4207.8512 7323.9120 3904.3322

Calculated 594.6276 639.7596 627.6171
program length (N̂)

Difficulty (D) 86.5333 134.7761 63.0221

Effort (E) 364,119.25023 987,088.2961 246,059.2143

Time (T) secs 20,229 54,838 13,670

Bugs (B) 1.4026 2.4413 1.3014

IWO implementation is the least complex of the three algorithms, while PSO is the
most complex, as shown, most importantly, by the program length, which is N1 + N2,
and volume, which is a measure of the amount of codes written, based on the vocabulary
(n1 + n2) and length N. Other Halstead parameters in the table that show IWO to be the
simplest are the values of the difficulty involved in writing and maintaining the codes,
mental effort required to implement the algorithm in MATLAB, and the estimated time
that is required to fully implement the algorithm, which is less than 4 h, as compared to
DE of over 5 h. Additionally, the IWO’s estimated amount of delivered bugs is the least.
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4. Discussion

The highest MLEs are obtained with optimized fractional order values that are above
0.7900 (Table 1). Although the three algorithms produce optimized MLEs within the
same range of values (3.6000 ≤ MLE ≤ 3.6500), DE gives the overall best MLE. While
the optimized parameters a, b, and q are slightly different in the three optimized results,
the values of parameter c are the same. In the asymptotic analysis results shown in Table 1,
it is seen that the equilibrium points EP0, EP1, and EP2 of the DE, PSO, and IWO optimized
systems are saddle points, just like the non-optimized system. For each of them, EP0 is a
saddle point of index 1, while EP1 and EP2 are the saddle points of index 2. According to the
instability measure shown in Equation (24), at the saddle point of index 1 the systems are
unstable for all the values of fractional order q, while the saddle points of index 2 become
asymptotically stable below the following q values: 0.7964 for DE-optimized, 0.7981 for
PSO-optimized, 0.7966 for IWO-optimized, and 0.8244 for non-optimized. Additionally,
the measured complexity of the chaotic time series of the optimized systems and the
non-optimized one shows consistency with the MLEs, with the DE-optimized system
having the highest sample entropy and the non-optimized the lowest. This means that the
DE-optimized system exhibits the most randomness in it. The improved randomness in the
optimized systems makes them more suitable for developing a random number generator.

Table 4 compares this investigation with some other works in [13,18,19,68,69], which
have been carried out for the global optimization of dynamical behavior and parameter
estimation in chaotic systems. It could be seen that our investigation is the only one
that measures the complexity of the implemented optimization algorithms. It uses more
algorithms than the others to compare their performance in the optimization problem.
Additionally, unlike others, the work is based on a chaotic system of fractional order.

Table 4. A comparison of this investigation with some other works in chaotic behavior optimization.

Reference Maximum Maximum Implementation Algorithms Chaotic Complexity
Measurement

Population Iteration System Method

[13] 40 80 MATLAB DE SNLF None

[14] 25 50 N/A MVO, New
Nonechaotic

WOA oscillator

[18] 40 60 N/A DE,GA SNLF None

[19] 100 N/A N/A NSGA-II SNLF, Chua None

[68] 40 100 MATLAB OSOA Lorenz, Chen None

[69] 120 100 MATLAB TLBO Lorenz None

This
investigation 100 500 MATLAB DE, PSO,

IWO
Fractional

order Chen
Halstead

Metric

N/A–Not available, MVO–Multi-verse optimizer, WOA–Whale optimization algorithm, GA–Genetic algo-
rithm, NSGA-II–Nondominated sorting genetic algorithm II, OSOA–Oppositional seeker optimization algorithm,
TLBO–Teaching-learning-based optimization.

In our work, the fractional order is a part of the design variables, making a total of four.
Furthermore, we use wider search spaces for the design variables. Hence, the higher MLEs
in the present investigation can be mostly accredited to the higher population size, higher
number of generations, and wider search spaces. The bifurcation and LE spectra are studied
while separately varying each of the parameters, including the fractional order, unlike the
compared works presented in Table 4. The maximization of the MLE in this investigation
further shows the effectiveness of EAs as a global optimization algorithm [13,18,19,68,69].
Our work shows that the three algorithms obtain system parameter and fractional order
values that produced better MLE than the non-optimized fractional order Chen system.
The higher MLEs obtained is an indication that the optimized fractional order Chen oscil-
lators have greater unpredictability than the non-optimized one. In addition, the smaller
prediction times obtained for the optimized systems are credited to the increased MLE
value. A system with shorter prediction time is regarded as safer for designing security
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systems [66,70]. Therefore, an improved secure communication system is guaranteed in
the optimized fractional order Chen system.

5. Conclusions

This work demonstrates the application of DE, PSO, and IWO evolutionary algorithms
in optimizing the values of parameters a, b, and c, and fractional order q of the chaotic
Chen system. The meta-heuristics produce optimized MLEs that fall with a range of values
(3.6000 ≤ MLE ≤ 3.6500), but with completely different parameter and fractional order
values. This underlines the fact that chaotic behavior in a fractional order Chen system
is multifaceted with respect to the parameter and fractional order values. The dynamics
and complexity of the optimized systems were verified with bifurcation, LE spectrum,
asymptotic, and sample entropy analyses of the results. The optimized MLEs in this
investigation are higher than the non-optimized system, which is an indication of greater
unpredictability in the optimized systems, with the DE giving the best optimal MLE.
Therefore, the most reliable secure communication system is guaranteed with the DE-
optimized system. The optimized systems are compared with a Chen hyper-chaotic
system using the prediction time. The optimized systems were found to have a shorter
prediction time than the hyper-chaotic system, which is also promising for improved secure
communication system. Additionally, the complexity of the three implemented algorithms
is determined and the Halstead metrics reveal that IWO has the simplest implementation.
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