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Abstract: In this paper, a class of systems of linear and non-linear delay differential equations
(DDEs) of first order with time-varying delay is considered. We obtain new sufficient conditions for
uniform asymptotic stability of zero solution, integrability of solutions of an unperturbed system
and boundedness of solutions of a perturbed system. We construct two appropriate Lyapunov–
Krasovskiı̆ functionals (LKFs) as the main tools in proofs. The technique of the proofs depends upon
the Lyapunov–Krasovskiı̆ method. For illustration, two examples are provided in particular cases.
An advantage of the new LKFs used here is that they allow to eliminate using Gronwall’s inequality.
When we compare our results with recent results in the literature, the established conditions are more
general, less restrictive and optimal for applications.

Keywords: system of non-linear DDEs; uniformly asymptotically stability; integrability; boundedness
at infinity; Lyapunov–Krasovskiı̆ approach; time-varying delay

MSC: 34D05; 34K20; 45J05

1. Introduction

From the relevant literature, it can be observed that numerous processes, both nat-
ural and human-made, in biology, interaction of species, population dynamics, micro-
biology, distributed networks, learning models, mechanics, medicine, nuclear reactors,
chemistry, distributed networks, epidemiology, physics, engineering, economics, physiol-
ogy, viscoelasticity, as well as many others, involve time delays. Hence, many applications
in sciences, engineering and so on can be modeled as differential equations with time-
varying delays (see the books of Burton [1], Hale and Verduyn Lunel [2], Kolmanovski and
Nosov [3], Krasovskiı̆ [4], Kuang [5], Lakshmikantham et al. [6], Smith [7] and bibliogra-
phies therein).

The interest of applied mathematicians, engineers, etc., to investigate qualitative
properties of solutions for such numerous problems with time-varying delays has increased
considerably in the last decades. In particular, see the mentioned books, the papers of
Arino et al. [8], Azbelev et al. [9], Berezansky and Braverman [10], Du [11], Gil [12], Graef
and Tunç [13], Slyn’ko and Tunç [14], Tian and Ren [15], Tunç [16–18], Tunç and Erdur [19],
Tunç and Golmankhaneh [20], Tunç and Tunç [21–23], Zevin [24] and bibliographies therein.

It is worth mentioning that especially DDEs of first and second order with constant
and time-varying delays can be encountered intensively during investigations and applica-
tions. For those reasons, during the investigations and applications, it is required to get
information about various qualitative behaviors of solutions of those kind of equations
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such as stability, instability, convergence, etc., of solutions of DDEs. To the best of available
information, it should be noted that from the theory of DDEs, we know that analytically
solving DDEs with time-varying delays is a very difficult mathematical task. Therefore,
over the past decades, some methods have been developed to get information about the
qualitative properties of solutions of DDEs without solving them. Among the developed
methods, the Lyapunov’s second method, Lyapunov–Krasovskiı̆ method, Razumikhin
method and fixed point method can be effectively used to investigate the stability and
some other properties of solutions of ODEs, DDEs, neutral and advanced functional differ-
ential equations. In general, the Lyapunov’s second method is used to discuss numerous
qualitative properties of ODEs of first and higher order. Next, the Razumikhin method is
only used to study qualitative properties of a few certain forms of DDEs and impulsive
differential equations. As for the fixed point method, it can be used to study stability,
existence of periodic solutions, etc., of various kind of those equations of first order. How-
ever, this method is rarely used in the equations of second order and those of higher order.
Meanwhile, during the last 50 years, the theory of functional differential equations (FDEs)
has been developed extensively. Krasovskiı̆ [4] firstly investigated the stability of equilibria
and wanted to make sure that all of the results for ODE using LKFs could be carried over to
DDEs. It should be noted Krasovskiı̆ [4] suggested the use of functional defined on DDEs’
trajectories instead of Lyapunov functions. Later, this functional method is very effectively
used to get information on the mentioned properties of solutions of DDEs without having
any prior information of solutions. When Lyapunov–Krasovskiı̆ method is used during
the investigations, it is needed to define or construct a suitable LKF, which is positive
definite, and its time derivative along the considered DDEs is negative or negative-semi
definite. From this point of view, finding a suitable Lyapunov–Krasovskiı̆ functional for a
problem under study is difficult and an open problem in the literature by this time. Next,
most of researches on DDEs focus on linear differential equations with constant delay and
preservation of stability; however, the number of available researches on scalar nonlinear
DDEs and nonlinear system of DDEs with time-varying delays are less. From this point,
it deserves to investigate the properties of solutions of systems of nonlinear DDEs with
time-varying delays.

The motivation of this paper was inspired by a recent work of Tian and Ren [15].
From this point of view, we mention a related work of Tian and Ren [15]. In 2020, Tian and
Ren [15] considered the following system of linear DDEs with time-varying delay,

ẋ(t) = Ax(t) + Bx(t− h(t)), (1)

where x(t) ∈ Rn, A, B ∈ Rn×n and h(t) ∈ C1(R+, (0, ∞)) is the time-varying delay,
and it satisfies

0 ≤ h1 ≤ h(t) ≤ h2, h12 = h2 − h1, 0 ≤ h′(t) ≤ h0 < 1. (2)

Tian and Ren [15] defined an LKF for the system of DDEs (1). Based on that LKF, Tian
and Ren [15] proved a theorem, ([15], Theorem 1), on the asymptotically stability of the
system of DDEs (1).

In this paper, motivated by the system of DDEs (1), the result of Tian and Ren ([15],
Theorem 1) and those in the bibliography of this paper, as an alternative to the linear system
of DDEs (1), we consider a nonlinear system of DDEs with time-varying delay as follows:

ẋ(t) = A(t)x(t) + BF(x(t− h(t))) + E(t, x(t), x(t− h(t))) (3)

with the continuous initial function

x(t) = φ(t), t ∈ [−h2, 0],
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where x ∈ Rn, t ∈ R+, R+ = [0, ∞), h(t) ∈ C1(R+, (0, ∞)) is the time-varying delay, which
satisfies the condition (2), A(t) ∈ C(R+,Rn×n), B ∈ Rn×n, F ∈ C(Rn,Rn), F(0) = 0 and
E ∈ C(R+ ×Rn ×Rn,Rn).

We now summarize the aim of this paper by the following items, respectively:

(1) We investigate the uniformly asymptotically stability of zero solution of the system of
DDEs (1), see Theorem 3. To investigate this problem, we define a very different LKF
from that in Tian and Ren [15].

(2) We study the uniformly asymptotically stability of zero solution and the integrability
of the norm of solutions of the following unperturbed nonlinear system of DDEs by
Theorem 4 and Theorem 5, respectively:

ẋ(t) = A(t)x(t) + BF(x(t− h(t))). (4)

(3) We investigate the boundedness of solutions of the perturbed system of nonlinear
DDEs (3), see Theorem 6.

(4) In particular cases, two new examples and graphs of their solutions are provided to
show applications of Theorems 3–6.

2. Basic Result

Consider the system of the DDEs:

dx
dt

= H(t, xt), (5)

where H ∈ C(R×C0,Rn), H(t, 0) = 0 and takes bounded sets into bounded sets. For some
τ > 0, C0 = C0([−τ, 0], Rn) denotes the space of continuous functions φ : [−τ, 0] → Rn.
For any a ≥ 0, ∀t0 ≥ 0 and x ∈ C0([t0 − τ, t0 + a], Rn), we have xt = x(t + θ) for
−τ ≤ θ ≤ 0 and t ≥ t0.

Let x ∈ Rn. The norm ‖.‖ is defined by ‖x‖ =
n
∑

i=1
|xi|. Next, let A ∈ Rn×n. For this

case, the matrix norm, ‖A‖ is defined by ‖A‖ = max
1≤j≤n

(
n
∑

i=1

∣∣aij
∣∣).

In this article, without loss of generality, sometimes instead of x(t), we will simply
write x.

For any φ ∈ C0, let

‖φ‖C0
= sup

θ∈[−r,0]
‖φ(θ)‖ = ‖φ(θ)‖[−r,0]

and
CH = {φ : φ ∈ C0 and ‖φ‖C0

≤ H < ∞}.

We suppose that the function H satisfies the conditions of the uniqueness of solutions
of the system of DDEs (5). We note that the system of DDEs (3) is a particular case of the
system of DDEs (5).

Let x(t) = x(t, t0, φ) be a solution of the system of DDEs (5) such that x(t) = φ(t) on
[t0 − τ, t0], where φ ∈ C([t0 − τ, t0],Rn) is an initial function.

Let
V1(t, φ) : R+ × CH → R+,R+ = [0, ∞),

be a continuous functional in t and φ with V1(t, 0) = 0. Further, let d
dt V1(t, x) denote the

derivative of V1(t, x) on the right through any solution x(t) of the system of DDEs (5).

Theorem 1 (Burton [1], Theorem 4.2.9). Assume that the following conditions hold:



Mathematics 2021, 9, 1196 4 of 20

(A1) The function V1(t, x) satisfies the locally Lipschitz in x, i.e., for every compact S ⊂ Rn and
γ > t0, there exists a Kγs ∈ R with Kγs > 0 such that

|V1(t, x)−V1(t, y)| ≤ Kγs‖x− y‖[t0−τ,t]

for all t ∈ [t0, γ] and x, y ∈ C0([t0 − τ, t0], S).
(A2) Let Z(t, φ) be a functional such that it satisfies the one side locally Lipschitz in t:

Z(t2, φ)− Z(t1, φ) ≤ K(t2 − t1), 0 < t1 < t2 < ∞, K > 0, K ∈ R,

whenever φ ∈ CH , where Z : R+ × CH → R+ is continuous.
(A3) There are four strictly increasing functions ω, ω1, ω2, ω3 : R+ → R+ with value 0 at 0

such that
ω(‖φ(0)‖) + Z(t, φ) ≤ V1(t, φ) ≤ ω1(‖φ(0)‖) + Z(t, φ),

Z(t, φ) ≤ ω2(‖φ‖C)

and
d
dt

V1(t, x(.)) ≤ −ω3(‖x(t)‖)

whenever t ∈ R+ and x ∈ CH . Then, the solution x(t) = 0 of the system of DDEs (5) is
uniformly asymptotically stable.

3. Asymptotic Stability

Firstly, we introduce the main result of Tian and Ren ([15], Theorem 1).

Theorem 2 (Tian and Ren [15], Theorem 1). For given scalars h1, h2, system (1) is asymp-
totically stable if there exist matrices P ∈ S6n

+ , Q1, Q2, Q3, Q4 ∈ Sn
+, N1, N2 ∈ R16n×5n,

such that

Φ(α) =

[
φ1(α) + φ2(α) ∗

αMT
1 + (1− α)MT

2 −Θ

]
< 0

holds for α = {0, 1}, where

φ1(α) = He(
T

∑
1

P∑2) + εT
1 Q1ε1 − εT

2 Q1ε2 + εT
2 Q2ε2

− εT
4 Q2ε4 + h2

1εT
0 Q3ε0 + h2

12εT
0 Q4ε0 −

4

∑
i=0

(2i + 1)ΣT
i+3Q3Σi+3,

φ2(α) = −ΥT ∑(α)Υ− He
(

ΥT
[

(1− α)MT
1

αMT
2

])
,

Σ1 = [εT
1 h1εT

5 αh12εT
6 + (1− α)h12εT

7 h2
1εT

8
h2

1
2

h3
1εT

11 h4
1εT

14],

Σ2 =

[
εT

0 εT
1 − εT

2 εT
2 − εT

4 h1εT
1 − h1εT

5
h2

1
2

εT
1 − h2

1εT
8

h3
1

6
εT

1 − h3
1εT

11

]
,

Σ3 = ε1 − ε2,

Σ4 = ε1 + ε2 − 2ε5,

Σ5 = ε1 − ε2 + 6ε5 − 12ε8,

Σ6 = ε1 − ε2 − 12ε5 + 60ε8 − 120ε11,

Σ7 = ε1 − ε2 + 20ε5 − 180ε8 + 840ε11 − 1680ε14,

Σ8 = ε2 − ε3,

Σ9 = ε2 + ε3 − 2ε6,
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Σ10 = ε2 − ε3 + 6ε6 − 12ε9,

Σ11 = ε2 + ε3 − 12ε6 + 60ε9 − 120ε12,

Σ12 = ε2 − ε3 + 20ε6 − 180ε9 + 840ε12 − 1680ε15,

Σ13 = ε3 − ε4,

Σ14 = ε3 + ε4 − 2ε7,

Σ15 = ε3 − ε4 + 6ε7 − 12ε10,

Σ16 = ε3 + ε4 − 12ε7 + 60ε10 − 120ε13,

Σ17 = ε3 − ε4 + 12ε17 − 60ε10 + 120ε13 − 1680ε16,

ε0 = Aε1 + Bε3,

Γ =
[
ΣT

8 ΣT
9 ΣT

10 ΣT
11 ΣT

12 ΣT
13 ΣT

14 ΣT
15 ΣT

16 ΣT
17

]
,

Q = diag(Q4, 3Q4, 5Q4, 7Q4, 9Q4),

and
εi ∈ Rn×16n

is defined as
εi =

[
0n×(i−1)n In 0n×(16−i)n

]
for i = 1, 2, . . . , 16.

We now give our first result.

Theorem 3. We suppose that the following conditions (C1) and (C2) hold:

(C1) There exist constants h0 from (2) and a0 > 0, α > 0 such that

a0(1− h0)− ‖B‖ ≥ α.

(C2) There exist a constant a0 from (C1) such that

aii +
n

∑
j=1,j 6=i

∣∣aji
∣∣ ≤ −a0 for all t ∈ R+.

Then, the zero solution of the system of DDEs (1) is uniformly asymptotically stable

Proof. Define a new LKF V := V(t, xt) by

V(t, xt) := ‖x(t)‖+ λ

t∫
t−h(t)

‖x(s)‖ds, (6)

where λ is an arbitrary positive constant which will be chosen later in the proof.
This functional, the LKF (6), can be expressed as the following:

V(t, xt) := |x1(t)|+ . . . + |xn(t)|+ λ

t∫
t−h(t)

|x1(s)|ds + . . . + λ

t∫
t−h(t)

|xn(s)|ds.

Then, we see that the functional V(t, xt) satisfies the following relations:

V(t, 0) = 0, β1‖x‖ ≤ V(t, xt), β1 ∈ (0, 1), β1 ∈ R .

Thus, it is obvious that the LKF V(t, xt) is positive definite.
Let

β2 ≥ 1, β2 ∈ R.
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In the light of Burton ([1], Theorem 4.2.9), we define the functional Z(t, x) as follows:

Z(t, x) :=
t∫

t−h(t)

‖x(s)‖ds.

From this point of view, we have

β1‖x‖+ λZ(t, x) ≤ V(t, xt) ≤ β2‖x‖+ λZ(t, x).

Next, it follows that

|V(t, xt)−V(t, yt)| ≤ | ‖x(t)‖ − ‖y(t)‖ |+ λ

t∫
t−h(t)

| ‖x(s)‖ − ‖y(s)‖ |ds

≤
n

∑
i=1
|xi(t)− yi(t)|+ λ

t∫
t−h(t)

‖x(s)− y(s)‖ds

≤ ‖x(t)− y(t)‖+ λh(t) sup
t−h(t)≤s≤t

‖x(s)− y(s))‖

≤ ‖x(t)− y(t)‖+ λh2 sup
t−h(t)≤s≤t

‖x(s)− y(s))‖

≤ (1 + λh2) sup
t−h(t)≤s≤t

‖x(s)− y(s)‖

= K0 sup
t−h(t)≤s≤t

‖x(s)− y(s)‖,

where
K0 := 1 + λh2.

Hence, we arrive at the inequality:

|V(t, xt)−V(t, yt)| ≤ K0‖x(s)− y(s)‖[t−h(t),t].

This inequality proves that the functional V(t, xt) satisfies the locally Lipschitz condi-
tion in x, i.e., the condition (A1) of Theorem 1 holds.

For the next step, in view of the definition of Z(t, x), it follows that

Z(t, x) =
t∫

t−h(t)

‖x(s)‖ds ≤ h(t) sup
t−h(t)≤s≤t

‖x(s)‖ ≤ h2 sup
t−h(t)≤s≤t

‖x(s)‖.

Thus,
Z(t, x) ≤ h2‖x(s)‖[t−h(t),t].
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For the next step, via some simple calculations, we get

Z(t2, x)− Z(t1, x) =
t2∫

t2−h(t2)

‖x(s)‖ds−
t1∫

t1−h(t1)

‖x(s)‖ds

=

t2∫
t2−h(t2)

‖x(s)‖ds−
t1∫

t1−h(t1)

‖x(s)‖ds

+

t2−h(t2)∫
t1−h(t1)

‖x(s)‖ds−
t2−h(t2)∫

t1−h(t1)

‖x(s)‖ds

=

t2∫
t1

‖x(s)‖ds−
t2−h(t2)∫

t1−h(t1)

‖x(s)‖ds

≤
t2∫

t1

‖x(s)‖ds

≤ sup
t1≤s≤t2

‖x(s)‖(t2 − t1) = M(t2 − t1),

where
M = sup

t1≤s≤t2

‖x(s)‖, 0 < t1 < t2 < ∞.

This result proves that the condition (A2) of Theorem 1 holds.
The derivative of V(t, xt) in (6) with respect to the system of DDEs (1) is given by

d
dt

V(t, xt) =
n

∑
i=1

x′ i(t)xi(t + 0) + λ‖x(t)‖ − λ‖x(t− h(t))‖ × (1− h′(t)). (7)

Using the condition (C2), we obtain

n

∑
i=1

xi(t + 0)x′ i(t) ≤
n

∑
i=1

aii|xi(t)|+
n

∑
i=1

n

∑
j=1,j 6=i

∣∣aji
∣∣ |xi(t)|

+
n

∑
i=1

n

∑
j=1

∣∣bij
∣∣ ∣∣xj(t− h(t))

∣∣
=

n

∑
i=1

(
aii(t) +

n

∑
j=1,j 6=i

∣∣aji(t)
∣∣)|xi(t)|+ ‖B‖ ‖x(t− h(t))‖

≤− a0‖x(t)‖+ ‖B‖ ‖x(t− h(t))‖. (8)

Thereby, gathering the relations (7) and (8) and using the condition 0 ≤ h′(t) ≤ h0 < 1,
we find

d
dt

V(t, xt) ≤− a0‖x(t)‖+ ‖B‖ ‖x(t− h(t))‖

+ λ‖x(t)‖ − λ‖x(t− h(t))‖ × (1− h′(t))

≤− a0‖x(t)‖+ ‖B‖ ‖x(t− h(t))‖
+ λ‖x(t)‖ − λ(1− h0)‖x(t− h(t))‖.

Let λ = ‖B‖
1−h0

.
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Then, we have

d
dt

V(t, xt) ≤ −
[

a0 −
‖B‖

1− h0

]
‖x(t)‖ = − 1

1− h0
[a0(1− h0)− ‖B‖]‖x(t)‖.

Using the condition (C1), we have

d
dt

V(t, xt) ≤ −
α

1− h0
‖x(t)‖ = −K‖x(t)‖ ≤ 0, (9)

where, K = α
1−h0

> 0.

Thus, we discover that the time derivative of the LKF V(t, xt) is negative definite. This
is a desirable and necessary result for the investigation of uniform asymptotic stability.
From the inequality (9), it follows that the condition (A3) of Theorem 1 is satisfied. From the
whole discussion, we see that the conditions of (A1)–(A3) of Theorem 1 hold (see Burton
([1], Theorem 4.2.9). Therefore, the zero solution of the nonlinear system of DDEs (4) is
uniformly asymptotically stable.

4. Uniformly Asymptotic Stability and Integrability

In the nonlinear system of DDEs (3), we take E(t, x(t), x(t − h(t))) = 0. Then, we
consider the unperturbed nonlinear system of DDEs (4). We now generalize and optimize
the main result of Tian and Ren ([15], Theorem 1) under less restrictive conditions and also
give one more result for the non-linear system of DDEs (4). These results are proved by the
Lyapunov–Krasovskiı̆ functional approach.

Theorem 4. We suppose that the following conditions (H1) and (H2) hold:

(H1) There exist a constant a0 such that

aii(t) +
n

∑
j=1,j 6=i

∣∣aji(t)
∣∣ ≤ −a0 for all t ∈ R+.

(H2) There exist constants h0 and a0 from (2) and (H1), respectively, and f0 > 0, α1 > 0, such that

F(0) = 0, ‖F(u)− F(v)‖ ≤ f0‖u− v‖ for all u, v ∈ Rn,

and
a0(1− h0)− f0‖B‖ ≥ α1.

Then, the zero solution of the system of DDEs (4) is uniformly asymptotically stable.

Proof. Define a new LKF V1 := V1(t, xt) by

V1(t, xt) := ‖x(t)‖+ µ

t∫
t−h(t)

‖F(x(s))‖ds, (10)

where µ is an arbitrary positive constant, which will be chosen in the proof.
This functional can be expressed as the following:

V1(t, xt) := |x1(t)|+ . . . + |xn(t)|+ µ

t∫
t−h(t)

| f1(x(s))|ds + . . . + µ

t∫
t−h(t)

| fn(x(s))|ds.

Then, we see that the functional V1(t, xt) satisfies the following relations:

V1(t, 0) = 0, β1‖x‖ ≤ V1(t, xt), β1 ∈ (0, 1), β1 ∈ R .
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Let
β2 ≥ 1, β2 ∈ R

and define

Z1(t, x) :=
t∫

t−h(t)

‖F(x(s))‖ds.

Hence, it follows that

β1‖x‖+ µZ1(t, x) ≤ V1(t, xt) ≤ β2‖x‖+ µZ1(t, x).

Next, using the condition (H2) and following some simple calculations, we get

|V1(t, xt)−V1(t, yt)| ≤ | ‖x(t)‖ − ‖y(t)‖ |+ µ

t∫
t−h(t)

| ‖F(x(s))‖ − ‖F(y(s))‖ |ds

≤
n

∑
i=1
|xi(t)− yi(t)|+ µ

t∫
t−h(t)

‖F(x(s))− F(y(s))‖ds

≤ ‖x(t)− y(t)‖+ µ f0h2 sup
t−h(t)≤s≤t

‖x(s)− y(s))‖

≤ (1 + µ f0h2) sup
t−h(t)≤s≤t

‖x(s)− y(s)‖

= L0 sup
t−h(t)≤s≤t

‖x(s)− y(s)‖,

where
L0 := 1 + µ f0h2.

Hence, we conclude the inequality

|V1(t, xt)−V1(t, yt)| ≤ L0‖x(s)− y(s)‖[t−h(t),t].

This inequality proves that the functional V1(t, xt) satisfies the local Lipschitz condition
in x. Thus, the condition (A1) of Theorem 1 holds.

For the next step, from the definition of Z1(t, x) and the condition (H2), it follows that

Z1(t, x) =
t∫

t−h(t)

‖F(x(s))‖ds ≤ f0h(t) sup
t−h(t)≤s≤t

‖x(s)‖ ≤ f0h2 sup
t−h(t)≤s≤t

‖x(s)‖.

Thus, it follows that
Z1(t, x) ≤ f0h2‖x(s)‖[t−h(t),t].



Mathematics 2021, 9, 1196 10 of 20

As the following step, using some simple calculations and the condition (H2), we have

Z1(t2, x)− Z1(t1, x) =
t2∫

t2−h(t2)

‖F(x(s))‖ds−
t1∫

t1−h(t1)

‖F(x(s))‖ds

=

t2∫
t2−h(t2)

‖F(x(s))‖ds−
t1∫

t1−h(t1)

‖F(x(s))‖ds

+

t2−h(t2)∫
t1−h(t1)

‖F(x(s))‖ds−
t2−h(t2)∫

t1−h(t1)

‖F(x(s))‖ds

=

t2∫
t1

‖F(x(s))‖ds−
t2−h(t2)∫

t1−h(t1)

‖F(x(s))‖ds

≤ f0

t2∫
t1

‖x(s)‖ds

≤ f0 sup
t1≤s≤t2

‖x(s)‖(t2 − t1) = M(t2 − t1),

where
M1 = f0 sup

t1≤s≤t2

‖x(s)‖, 0 < t1 < t2 < ∞.

The last inequality shows that the condition (A2) of Theorem 1 holds.
The derivative of V1(t, xt) in (10) along the system of DDEs (4) is given by

d
dt

V1(t, xt) =
n

∑
i=1

x′ i(t)xi(t + 0) + µ‖F(x(t))‖

− µ‖F(x(t− h(t)))‖ × (1− h′(t)). (11)

Consider the first term on the right hand side of the equality (11). Using the condition
(H1), we obtain

n

∑
i=1

xi(t + 0)x′ i(t) ≤
n

∑
i=1

(
aii(t) +

n

∑
j=1,j 6=i

∣∣aji(t)
∣∣)|xi(t)|

+ ‖B‖ ‖F(x(t− h(t)))‖
≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h(t)))‖. (12)

Thereby, gathering the inequalities (11), (12) and using the condition 0 ≤ h′(t) ≤ h0 < 1,
we have

d
dt

V1(t, xt) ≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h(t)))‖

+ µ‖F(x(t))‖ − µ‖F(x(t− h(t)))‖ × (1− h′(t))

≤− a0‖x(t)‖+ ‖B‖ ‖F(x(t− h(t)))‖
+ µ f0‖x(t)‖ − µ(1− h0)‖F(x(t− h(t)))‖.

Choosing µ as µ = ‖B‖
1−h0

, we have

d
dt

V1(t, xt) ≤ −
[

a0 −
f0‖B‖
1− h0

]
‖x(t)‖ = − 1

1− h0
[a0(1− h0)− f0‖B‖]‖x(t)‖.
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Using the condition (H2), we conclude that

d
dt

V1(t, xt) ≤
−α1

1− h0
‖x(t)‖ = −K1‖t‖ ≤ 0, (13)

where K1 = α1
1−h0

.

As in the proof of Theorem 3, we find that the time derivative of the LKF V1(t, xt) is
negative definite. From the inequality (13), it follows that the condition (A3) of Theorem 1 is
satisfied. From the whole discussion of this proof, it can be followed that the conditions of
(A1)–(A3) of Theorem 1 hold (see Burton ([1], Theorem 4.2.9)). Therefore, the zero solution
of the nonlinear system of DDEs (4) is uniformly asymptotically stable.

Theorem 5. If the conditions (H1) and (H2) of Theorem 4 hold, then the norm of solutions of the
system of DDEs (4) is integrable in the sense of Lebesgue on R+ = [0, ∞).

Proof. As in the proof of Theorem 4, the main tool in this proof is the LKF V1(t, xt). It is
clear that the conditions (H1) and (H2) yield that

d
dt

V1(t, xt) ≤ −K1‖x(t)‖.

This result verifies that the LKF V1(t, xt) is decreasing. That is, the LKF V1(t, xt)
satisfies that

V1(t, xt) ≤ V(t0, φ(t0)) for all t ≥ t0.

Then, integrating this inequality from t0 to t, we obtain

K1

t∫
t0

‖x(s)‖ds ≤ V1(t0, φ(t0))−V1(t, xt) ≤ V1(t0, φ(t0)) ≡ a positive constant, say D0,

for all t ≥ t0.
Then, we find that

t∫
t0

‖x(s)‖ds ≤ K1
−1V(t0, φ(t0)) ≡ K1

−1D0.

If t→ +∞, then the last inequality clearly implies that

∞∫
t0

‖x(s)‖ds ≤ K1
−1D0 < ∞.

Therefore, we can conclude that the norm of solutions of the system of DDEs (4)
is integrable in the sense of Lebesgue on R+ = [0, ∞). Thus, the proof of Theorem 5
is completed.

Example 1. Consider the following two dimensional system of non-linear DDEs:(
x′1
x′2

)
=

(
−19− 1

1+exp(t)
1

1+exp(t)
1

1+exp(t) −19− 1
1+exp(t)

)(
x1
x2

)
+

(
2 1
1 2

)(
sin x1(t− 1

2 |arctan(t)|)
sin x2(t− 1

2 |arctan(t)|)

)
, (14)

where h(t) = 1
2 |arctan(t)| is time-varying delay, t ≥ 1.
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Then, comparing both the systems of DDEs (14) and DDEs (4), it follows that

A(t) =

(
−19− 1

1+exp(t)
1

1+exp(t)
1

1+exp(t) −19− 1
1+exp(t)

)
,

B =

(
2 1
1 2

)
,

F(x(t− 1
2
|arctg(t)|)) =

(
sin x1(t− 1

2 |arctan(t)|)
sin x2(t− 1

2 |arctan(t)|)

)
, F(0) = 0, x ∈ R2,

h(t) =
1
2
|arctan(t)|.

Let

u = x(t− 1
2
|arctan(t)|), u1 = x1(t−

1
2
|arctan(t)|), u2 = x2(t−

1
2
|arctan(t)|)

and

v = y(t− 1
2
|arctan(t)|), v1 = y1(t−

1
2
|arctan(t)|), v2 = y2(t−

1
2
|arctan(t)|).

In view of the matrix A(t), we have

aii(t) +
n

∑
j=1,j 6=i

∣∣aji(t)
∣∣ = −19 < −18 = −a0

since

a11(t) + |a21(t)| = −19− 1
1 + exp(t)

+
1

1 + exp(t)
= −19 < −18 = −a0,

a22(t) + |a12(t)| = −
1

1 + exp(t)
− 19 +

1
1 + exp(t)

− 19 < −18 = −a0.

Hence, we derive

aii(t) +
2

∑
j=1,j 6=i

∣∣aji(t)
∣∣ < −a0 = −18 for all t ∈ R+.

Next, some simple calculations give

‖B‖ = 3
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and

‖F(u)− F(v)‖ =
∥∥∥∥( sin u1 − sin v1

sin u2 − sin v2

)∥∥∥∥
=|sin u1 − sin v1|+ |sin u2 − sin v2|

=2
∣∣∣∣cos

(
u1 + v1

2

)
sin
(

u1 − v1

2

)∣∣∣∣
+ 2
∣∣∣∣cos

(
u2 + v2

2

)
sin
(

u2 − v2

2

)∣∣∣∣
≤2
∣∣∣∣sin

(
u1 − v1

2

)∣∣∣∣+ 2
∣∣∣∣sin

(
u2 − v2

2

)∣∣∣∣
≤2
∣∣∣∣u1 − v1

2

∣∣∣∣+ 2
∣∣∣∣u2 − u2

2

∣∣∣∣
=‖u− v‖, f0 = 1.

h(t) =
1
2
|arctan(t)|, 0 < 0.001 = h1 =

1
2
|arctan(t)| ≤ π

4
= h2,

h12 =h2 − h1 =
π

4
− 0.001,

h′(t) =
1

2 + 2t2 , 0 ≤ h′(t) ≤ 1
2
= h0 < 1,

a0(1− h0)− f0‖B‖ = 18
(

1− 1
2

)
− 3 = 6 ≥ α.

It follows that the conditions (C1), (C2) of Theorem 3 and (H1) and (H2) of Theorems 4 and 5
hold. So, the solution (x1(t), x2(t)) = (0, 0) of the system of DDEs (14) is uniformly asymptotic
stable. Furthermore, the norm of solutions of the system of DDEs (14) is integrable.

In Figures 1 and 2, the two dimensional system of non-linear DDEs (14) was solved by
MATLAB software.

1 2 3 4 5 6 7 8 9 10 11

t(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1
(t

)

x1(0)=1

x1(0)=0.5

x1(0)=-1

Figure 1. This figure shows that the solution x1(t) of the system of DDEs (14) is uniformly asymptot-
ically stable and the norm of this solution is integrable for h(t) = 1

2 |arctan(t)|, t ≥ 1 and different
initial values.
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1 2 3 4 5 6 7 8 9 10 11

t(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2

(t
)

x2(0)=1

x2(0)=0.5

x2(0)=-1

Figure 2. This figure shows that the solution x2(t) of the system of DDEs (14) is uniformly asymptot-
ically stable and the norm of this solution is integrable for h(t) = 1

2 |arctan(t)|, t ≥ 1 and different
initial values.

5. Boundedness

For the boundedness of the solutions of the system of nonlinear DDEs (3), we need
the following condition in addition to some of those above, (H1):

(H3) There exist positive constants h0, a0, f0 from (H2) and a function e0 ∈ C(R,R)
such that

F(0) = 0, ‖F(u)− F(v)‖ ≤ f0‖u− v‖ for all u, v ∈ Rn,

‖E(t, x(t), x(t− h(t)))‖ ≤ |e0(t)| ‖x(t)‖ for all t ∈ R+, x, x(t− h(t)) ∈ Rn,

[a0(1− h0)− f0‖B‖ − (1− h0)|e0(t)|] ≥ 0.

Theorem 6. If the conditions (H1) and (H3) hold, then the solutions of the system of DDEs (3) are
bounded as t→ +∞.

Proof. As in the proofs of the former theorems, the main tool in this proof is the LKF
V1(t, xt). From the conditions (H2) and (H3), we can arrive at

d
dt

V1(t, xt) ≤ −
1

1− h0
[a0(1− h0)− f0‖B‖]‖x(t)‖+ ‖E(t, x(t), x(t− h(t)))‖

≤ − 1
1− h0

[a0(1− h0)− f0‖B‖ − (1− h0)|e0(t)|]‖x(t)‖.

Hence, using condition (H3), we derived that

d
dt

V1(t, xt) ≤ 0.

Integrating this inequality, we obtain

V1(t, xt) ≤ V1(t0, φ(t0)) ≡ D0 > 0. (15)
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Using (15) and the definition the definition of the LKF V1(t, xt), we derive that

‖x(t)‖ ≤ ‖x(t)‖+ µ

t∫
t−h(t)

‖F(x(s))‖ds = V1(t, xt) ≤ V1(t0, φ(t0)) ≡ D0 > 0. (16)

From the first and last terms of (16), we derive

‖x(t)‖ ≤ D0.

By the calculating the limit as t→ +∞, it is derived from the last inequality that

lim
t→+∞

‖|x(t)|‖ ≤ lim
t→+∞

D0 = D0.

Then, we conclude that the solutions of the system of nonlinear DDEs (3) are bounded
as t→ +∞. The proof of Theorem 6 is now completed.

Example 2. Consider the following perturbed system of DDEs:(
x′1
x′2

)
=

(
−19− 1

1+exp(t)
1

1+exp(t)
1

1+exp(t) −19− 1
1+exp(t)

)(
x1
x2

)
+

(
2 1
1 2

)(
sin x1(t− 1

2 |arctan(t)|)
sin x2(t− 1

2 |arctan(t)|)

)

+

 x1
exp(t)+x2

1(t−
1
2 |arctan(t)|)

x2
exp(t)+x2

2(t−
1
2 |arctan(t)|)

, (17)

where h(t) = 1
2 |arctan t| is time-varying delay, t ≥ 1.

When the non-linear systems of DDEs (17) and DDEs (3) are compared here, we do not need to
show the satisfaction of the conditions related to the matrix A(t), the function F(x(t− 1

2 |arctg(t)|)
and the time-varying delay function h(t) = 1

2 |arctan(t)|, which have been shown in Example 1.
In this case, we first consider the function

E(t, x(t), x(t− 1
2
|arctan(t)|)) =

 x1
exp(t)+x2

1(t−
1
2 |arctan(t)|)

x2
exp(t)+x2

2(t−
1
2 |arctan(t)|)

.

For the next step, for all t ≥ 1, we have:

‖E(t, x(t), x(t− 1
2
|arctan(t)|))‖ =

∥∥∥∥∥∥
 x1

exp(t)+x2
1(t−

1
2 |arctan(t)|)

x2
exp(t)+x2

2(t−
1
2 |arctan(t)|)

∥∥∥∥∥∥
=

|x1|
exp(t) + x2

1(t−
1
2 |arctan(t)|)

+
|x2|

exp(t) + x2
2(t−

1
2 |arctan(t)|)

≤ 1
exp(t)

[|x1|+ |x2|] = |e0(t)|‖x‖,

where
|e0(t)| =

1
exp(t)

, ‖x‖ = |x1|+ |x2|.

Next, we have
[a0(1− h0)− f0‖B‖ − (1− h0)|e0(t)|]
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= 18
(

1− 1
2

)
− 3−

(
1− 1

2

)
1

exp(t)

= 9− 3− 1
2 exp(t)

≥ 11
2

.

Thus, all the conditions of Theorem 6 hold. In view of the above discussion, we can conclude
that all the solutions of the system of DDEs (17) are bounded as t→ ∞.

In Figures 3 and 4, the two dimensional system of non-linear DDEs (17) was solved by
MATLAB software.

1 2 3 4 5 6 7 8 9 10 11

t(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
1

(t
)

x1(0)=1

x1(0)=0.5

x1(0)=-1

Figure 3. This figure shows that the solution x1(t) of the system of DDEs (17) is bounded for
h(t) = 1

2 |arctan(t)|, t ≥ 1 and different initial values.

1 2 3 4 5 6 7 8 9 10 11

t(s)

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

x
2
(t

)

x2(0)=1

x1(0)=0.5

x1(0)=-1

Figure 4. This figure shows that the solution x2(t) of the system of DDEs (17) is bounded for
h(t) = 1

2 |arctan(t)|, t ≥ 1 and different initial values.

6. Discussion and Contribution

We now outline the contributions of Theorems 3–6 to the topic of the paper and the
available related literature.
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(1) It follows that the systems of DDEs (3) and DDEs (4) extend and improve the system
of DDEs (1) of Tian and Ren ([15], Theorem 1) from linear case to the non-linear case.

(2) Tian and Ren ([15], Theorem 1) defined the following LKF:

V(xt) =ηT(t)Pη(t) +
t∫

t−h1

xT(s)Q1x(s)ds +
t−h1∫

t−h2

xT(s)Q2x(s)ds

+ h1

t∫
t−h1

t∫
u

ẋT(s)Q3 ẋ(s)dsdu + h12

t−h1∫
t−h2

t∫
u

ẋT(s)Q4 ẋ(s)dsdu, (18)

where

η(t) =

xT(t)
t∫

t−h1

xT(s)ds
t−h1∫

t−h2

xT(s)ds vT
1 (t) vT

2 (t) vT
3 (t)

T

,

v1(t) =
t∫

t−h1

t∫
u

x(s)dsdu,

v2(t) =
t∫

t−h

t∫
u1

t∫
u2

yT(s)dsdu2du1,

v3(t) =
t∫

t−h

t∫
u1

t∫
u2

t∫
u3

yT(s)dsdu3du2du1.

This LKF was used as a main tool to prove Theorem 2 in Section 3 by the authors.
At the next step, Tian and Ren ([15], Theorem1) calculated the derivative of this LKF
along the system of DDEs (1) and obtained the following relations:

V̇(xt) =2ηT(t)Pη̇(t) + xT(t)Q1x(t)− xT(t− h1)Q1x(t− h1)

+ xT(t− h1)Q2x(t− h1)− xT(t− h2)Q2x(t− h2)

+ h2
1 ẋT(t)Q3 ẋ(t) + h2

12 ẋT(t)Q4 ẋ(t)

− h1

t∫
t−h1

ẋT(s)Q3 ẋ(s)ds− h12

t∫
t−h1

ẋT(s)Q4 ẋ(s)ds

=ξT(t)

[
He(

T

∑
1

P∑2) + εT
1 Q1ε1 − εT

2 Q1ε2 + εT
2 Q2ε2

− εT
4 Q2ε4 + h2

1εT
0 Q3ε0 + h2

12εT
0 Q4ε0

]
ξ(t)

− h1

t∫
t−h1

ẋT(s)Q3 ẋ(s)ds−
t−h1∫

t−h2

ẋT(s)Q4 ẋ(s)ds, (19)

where
ξ(t) =

[
xT(t) xT(t− h1) xT(t− h(t)) xT(t− h2) ϕT

1 (t) ϕT
2 (t) ϕT

3 (t) ϕT
4 (t)

]T ,
ρ1(t) = h(t)− h1,
ρ2(t) = h2 − h(t),

ϕ1(t) =

[
1
h1

t∫
t−h1

xT(s)ds 1
ρ1(t)

t−h1∫
t−h(t)

xT(s)ds 1
ρ2(t)

t−h(t)∫
t−h2

xT(s)ds

]T

,
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ϕ2(t) =

[
1
h2

1

t∫
t−h1

t∫
u

xT(s)dsdu 1
ρ2

1(t)

t−h1∫
t−h(t)

t−h1∫
u

xT(s)dsdu 1
ρ2

2(t)

t−h(t)∫
t−h2

t−h(t)∫
u

xT(s)dsdu

]T

,

ϕ3(t) =

[
1
h3

1

t∫
t−h1

t∫
u

t∫
v

xT(s)dsdvdu 1
ρ3

1(t)

t−h1∫
t−h(t)

t−h1∫
u

t−h1∫
v

xT(s)dsdvdu

1
ρ3

2(t)

t−h(t)∫
t−h2

t−h(t)∫
u

t−h(t)∫
v

xT(s)dsdvdu

]T

,

ϕ4(t) =

[
1
h4

1

t∫
t−h1

t∫
u

t∫
v

t∫
w

yT(s)dsdwdvdu 1
ρ4

1(t)

t−h1∫
t−h(t)

t−h1∫
u

t−h1∫
v

t−h1∫
w

xT(s)dsdwdvdu

1
ρ4

2(t)

t−h(t)∫
t−h2

t−h(t)∫
u

t−h(t)∫
v

t−h(t)∫
w

xT(s)dsdwdvdu

]T

.

Based upon the results of Lemmas 1–4 (see [15]), Tian and Ren (cite15, Theorem 1)
proved a result on the asymptotic stability of the linear system of DDEs (1) utilizing the LKF
(18) and its time derivative in (19). In fact, the LKF (18) and its time derivative (19) satisfy
the conditions of Lyapunov-Krasovskiı̆’s asymptotic stability theorem (see [1,2]). From this
result, i.e., Theorem 2 of Section 3, a new and interesting delay-dependent stability criterion
is derived in terms of the LMIs.

In this paper, we define two more convenient LKFs, the first one is given by (6)
such that

V(t, xt) := ‖x(t)‖+ λ

t∫
t−h(t)

‖x(s)‖ds.

In view of the first LKF and its time derivative, applying the famous result of Burton,
(ref. [1], Theorem 4.2.9), we improve the result of Tian and Ren ([15], Theorem 1) under
weaker conditions. In spite of Tian and Ren ([15], Theorem 1) investigating the asymptotic
stability of the linear system of DDEs (1), we discuss the uniformly asymptotically stability
of (1), such that the uniformly asymptotic stability implies asymptotic stability, but its
converse is not true.

Next, it is worth mentioning that the main result of Tian and Ren ([15], Theorem 1)
is very interesting and has a good scientific novelty. However, the weaker conditions of
Theorem 3 can be clearly observed and checked if we compare the conditions of Tian and
Ren ([15], Theorem 1) with those of Theorem 3, such that taking into account Lemmas 1–4
of Tian and Ren [15], the LKF (18) and its time derivative (19) and our LKF and its time
derivative, i.e., (5) and (6), respectively. Here, indeed, when we compare the conditions
of Theorem 3 with those of Tian and Ren ([15], Theorem 1), we see that the conditions of
Theorem 3 are very convenient and much optimal, easier to verify and apply as seen in
Example 1.

As the next step, we define the following LKF:

V(t, xt) := ‖x(t)‖+ µ

t∫
t−h(t)

‖F(x(s))‖ds.

Then, we extend and improve the main result of Tian and Ren ([15], Theorem 1) for
the uniformly asymptotically stability of the zero solution, the integrability of the norm
of the solutions of the system of DDE (4) as well as for the boundedness of solutions of
the system of DDEs (3) using this LKF. For the sake of the brevity, we will not give more
details about proper discussions of Theorems 4–6. These are the novelty, originality and
contributions of this paper. Next, the mentioned observations are desirable facts for proper
works to be done in the literature on the topic.



Mathematics 2021, 9, 1196 19 of 20

(3) In this paper, we give two examples. These examples satisfy the conditions of
Theorems 3–6 and verify the applications of the results of this paper.

(4) An advantage of the new LKFs used here is that they eliminate using Gronwall’s in-
equality for the boundedness of solutions at infinity. Compared to related results in the
literature, the conditions here are more general, simple, and convenient for application.

7. Conclusions

In this paper, a class of systems of DDEs with time-varying delay is considered. Four
new results, which are given by Theorems 3–6, are proved on the uniformly asymptotically
stability of zero solution and the integrability of solutions of two non-perturbed systems of
DDEs as well as the boundedness of solutions of a perturbed system. The technique used
in the proofs of Theorems 3–6 depends upon definitions of two new Lyapunov–Krasovskiı̆
functionals. An advantage of the new LKFs used here is that they can lead to more optimal,
general and less restrictive results for the given results, and also eliminate the need to use
Gronwall’s inequality for the boundedness of solutions. Since Gronwall’s inequality is
not used, the conditions for the boundedness of solutions are also more general, simple,
and convenient to apply. Our results improve and extend the result of Tian and Ren ([15],
Theorem 1), add three more new results on the qualitative properties of solutions. We give
two examples to provide and to illustrate the applications of the new results of this paper.
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