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Abstract: We establish a method of Gröbner–Shirshov bases for trialgebras and show that there is a
unique reduced Gröbner–Shirshov basis for every ideal of a free trialgebra. As applications, we give
a method for the construction of normal forms of elements of an arbitrary trisemigroup, in particular,
A.V. Zhuchok’s (2019) normal forms of the free commutative trisemigroups are rediscovered and
some normal forms of the free abelian trisemigroups are first constructed. Moreover, the Gelfand–
Kirillov dimension of finitely generated free commutative trialgebra and free abelian trialgebra are
calculated, respectively.
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1. Introduction

The notion of a trialgebra (trioid also known as trisemigroup) was introduced by
Loday [1] and investigated in many papers (see, for example, [1–5]). There are several
motivations for the study of trialgebras. First, trialgebras and trioids are closely related to
Leibniz 3-Algebras [6], and Rota–Baxter operators [7]. Secondly, many results obtained for
trialgebras can be applied to trioids. In addition, lastly, if the operation ⊥ coincides with a
or `, then we obtain a dialgebra (dimonoid) [8]. If all operations of a trialgebra (trioid) coin-
cide, we obtain an associative algebra (semigroup). Thus, trialgebras are generalizations of
dialgebras and associative algebras. The classes of dialgebras and dimonoids were studied
by various authors (see, for instance, [9–13]). Loday [1] constructed a free one generator
trialgebra and a free trioid of rank 1. A.V. Zhuchok [2,3] constructed the free trioids of an
arbitrary rank and the free commutative trioids.

Gröbner or Gröbner–Shirshov bases theory was first introduced by Buchberger [14] for
commutative algebras and independently by Shirshov [15] for non-associative
algebras [16,17] and Lie algebras [16]. Then, it was developed for various kind of al-
gebras and widely used in different branches of mathematics. Gröbner bases and Gröbner–
Shirshov bases theories have become an effective computational tool for solving the fol-
lowing classical problems about: rewriting system; normal form; word problem; growth
function; conjugacy problem; embedding theorem; PBW-type theorem; extension, etc. See,
for example, the books [18–22] and the survey [23–27].

The key in establishing Gröbner–Shirshov bases theory for certain algebras is to
establish the “Composition-Diamond lemma (CD lemma)” for such algebras. The name
“CD lemma” combines the Neuman Diamond Lemma [28], the Shirshov Composition
Lemma [17], and the Bergman Diamond Lemma [29].

Trialgebras are generalizations of dialgebras and associative algebras, so it is natural
to ask what kind of properties of associative algebras and dialgebras remain valid for
trialgebras. For instance, CD lemma for dialgebras has been established by Bokut, Chen,
and Liu in 2010 [12] and by Zhang and Chen in 2017 [13]. Thus, we shall establish the
CD lemma for trialgebras and thus offer a way of constructing normal forms of elements of
an arbitrary trisemigroup. Moreover, we prove that every ideal of a free trialgebra has a
unique reduced Gröbner–Shirshov basis. The method we used is similar to what was done
for dialgebras in [12,13]. However, the extension is not obvious because more operations
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are involved and the difficulty increases. First, we must ensure that a well ordering on
monomials is more or less compatible with trialgebraic operations. Second, a trialgebra
has one more operation than dialgebra, so difficulty in the proof of some critical lemmas
increases naturally. These reasons make us encounter more difficulties in the process of
proving CD lemma for the trialgebra case.

The paper is organized as follows: in Section 2, we first recall the linear basis con-
structed by Loday and Ronco [1] of the free trialgebra. In Section 3, we elaborate the method
of Gröbner–Shirshov bases for trialgebras. We show that, for an arbitrary monomial-centers
ordering on the linear basis, there is a unique reduced Gröbner–Shirshov basis for every
ideal of free trialgebra. In Section 4, we give a detailed method to construct a set of normal
form for an arbitrary trisemigroup; in particular, we give another approach to normal
forms of elements of a free commutative trisemigroup that is constructed by [2]. Moreover,
we apply the method of Gröbner–Shirshov bases for certain trialgebras and trisemigroups
to obtain normal forms and their Gelfand–Kirillov dimensions.

2. Preliminaries

Throughout the paper, we fix a field k. For a nonempty set X, we denote by X+ the
free semigroup generated by X, which consists of all associative words on X. Then, we
denote by X∗ = X+ ∪ {ε} the free monoid generated by X, where ε is the empty word. For
every u = x1x2...xn ∈ X+, where x1, ..., xn ∈ X, we define the length `(u) of u to be n. For
convenience, we define `(ε) = 0.

Definition 1 ([1]). An associative trialgebra (resp. trisemigroup), trialgebra for short, is a
k-module T (resp. a set T) equipped with three binary associative operations: a called left, ` called
right, and ⊥ called middle, satisfying the following eight identities:

a a (b ` c) = a a (b a c),
(a a b) ` c = (a ` b) ` c,
a ` (b a c) = (a ` b) a c,
a a (b ⊥ c) = a a (b a c),
(a ⊥ b) ` c = (a ` b) ` c,
a ` (b ⊥ c) = (a ` b) ⊥ c,
a ⊥ (b a c) = (a ⊥ b) a c,
a ⊥ (b ` c) = (a a b) ⊥ c

(1)

for all a, b, c ∈ T.

Note that, in [1–3], the authors call trisemigroups trioids, and, in [30], they are called
trisemigroups. Here, we follow the terminology of [30].

Definition 2. For an arbitrary set X, the triwords over X are defined inductively as follows:

(i) For every x ∈ X, the expression (x) is a triword over X of length 1;
(ii) For all triwords (v) and (w) of lengths n and m, respectively, all monomials ((v) a (w)),

((v) ` (w)) and ((v) ⊥ (w)) are triwords over X of length n + m.

Recall that, for every trialgebra T, for all b1, ..., bm ∈ T, every parenthesizing of

(b1 ` · · · ` bm1−1) ` (bm1 a · · · a bm2−1) ⊥ (bm2 a · · · a bm3−1) ⊥ · · · ⊥ (bmr a · · · a bm)

gives the same element in T [1], and we denote such an element by [b1...bm]U , where U is
defined to be the set {mi | 1 ≤ i ≤ r}. In particular, assume that T is the free trialgebra
generated by X. Then, the triword (with an arbitrary bracketing way)

(xi1 ` · · · ` xim1−1) ` (xim1
a · · · a xim2−1) ⊥ · · · ⊥ (ximr

a · · · a ximr+tr
)
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over X can be determined by the sequence u := xi1 . . . ximr+tr
and the set of index

U := {mi | 1 ≤ i ≤ r}.

Therefore, we call such a triword a normal triword over X and denote it by [u]U , and
call xm1 , xm2 , ..., xmr the middle entries of [u]U . In case we would like to emphasize the
middle entries, we also denote

[u]U := xi1 ...xim1−1 ẋim1
...xim2−1 ...ẋimr

...ximr+tr
.

We call u the associative word of the triword [u]U . Let P(N) be the power set of the
positive integers N. We define

[X+]P(N) := {[u]U | u ∈ X+, ∅ 6= U ⊆ {1, ..., `(u)}}

to be the set of all normal triwords on X.
In [1], Loday and Ronco constructed a linear basis for a one-generated free trialgebra,

which can be easily generalized for the construction of a linear basis for an arbitrary free
trialgebra, see also [3].

Proposition 1 ([1]). The set [X+]P(N) of all normal triwords over X forms a linear basis of the free
trialgebra generated by X.

For every integer k ∈ Z and ∅ 6= U ∈ P(N), we define

U + k = {m + k | m ∈ U}

and define [ε]∅ = ε. For convenience, when we write a set U = {m1, m2, ..., mr} ∈ P(N),
we always assume m1 < m2 < ... < mr. Moreover, the cardinality of the set U is denoted
by |U|, and we simply denote [u]{m} by [u]m.

Let Tri〈X〉 be the free trialgebra generated by X. Then, by [1], Tri〈X〉 is the free
k-module with a k-basis [X+]P(N) and for all [u]U , [v]V ∈ [X+]P(N) , we have

[u]U ` [v]V = [uv]
`(u)+V , [u]U a [v]V = [uv]U , [u]U ⊥ [v]V = [uv]U∪(`(u)+V)

.

Moreover, with the above products, ([X+]P(N) ,a,`,⊥) forms the free trisemigroup
generated by X [3]. Though [ε]∅ is not an element in [X+]P(N) , we still extend the opera-
tions ` and a involving [ε]∅ to make formulas in the sequel simplified. More precisely, we
extend them with the following convention:

[ε]∅ ` [u]U = [u]U a [ε]∅ = [u]U ⊥ [ε]∅ = [ε]∅ ⊥ [u]U = [u]U

for every [u]U ∈ [X+]P(N) .
The following lemma shows that every triword can be written as a leftnormed product

of triwords.

Lemma 1. Let [u]U = [u1u2...un]U ∈ [X+]P(N) with u1, ..., un ∈ X+. Then, there exist some
operations δ1, ..., δn−1 ∈ {a,`,⊥} such that

[u]U = (. . . (([u1]U1
δ1[u2]U2

)δ2[u3]U3
)...)δn−1[un]Un

(leftnormed bracketing).

Proof. We use induction on n to prove the claim. For n = 1, there is nothing to prove.
Assume n > 1 and U = {m1, ..., mr}. There are several subcases to consider:
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Case 1. If `(u1...un−1) ≥ mr, then we have [u]U = [u1...un−1]U a [un]1. By induction
hypothesis, we obtain

[u]U = (...(([u1]U1
δ1[u2]U2

)δ2[u3]U3
)...) a [un]1.

Case 2. If `(u1...un−1) < m1, then we have [u]U = [u1...un−1]1 ` [un]−`(u1...un−1)+U . By
induction hypothesis, we obtain

[u]U = (...(([u1]U1
δ1[u2]U2

)δ2[u3]U3
)...) ` [un]−`(u1...un−1)+U .

Case 3. If mi ≤ `(u1...un−1) < mi+1 for some i ∈ {1, ..., r− 1}, then we have

[u]U = [u1...un−1]{m1,...,mi} ⊥ [un]−`(u1...un−1)+{mi+1,...,mr}
.

By induction hypothesis, we obtain

[u]U = (...(([u1]U1
δ1[u2]U2

)δ2[u3]U3
)...) ⊥ [un]−`(u1...un−1)+{mi+1,...,mr}

.

The proof is completed.

3. Composition-Diamond Lemma for Trialgebras

In this section, we establish a method of Gröbner–Shirshov bases for trialgebras. By
Proposition 1, [X+]P(N) forms a linear basis of the free trialgebra Tri〈X〉 generated by X.

We first introduce a good ordering on X+. Let X be a well-ordered set. We define the
deg-lex ordering on X+ as the following: for u = xj1 xj2 ...xjn , v = xi1 xi2 ...xim ∈ X+, where
xil , xjt ∈ X, we define

u > v if (`(u), xj1 , xj2 , ..., xjn) > (`(v), xi1 , xi2 , ..., xim) lexicographically.

A well ordering > on X+ is called monomial if, for all u, v, w ∈ X+, we have

u > v⇒ uw > vw and u > v⇒ wu > wv.

Clearly, the above deg-lex ordering on X+ is monomial.
We proceed to define a well ordering on P(N)\{∅}. For all U = {m1, ..., mr} and V =

{n1, ..., nt} ∈ P(N)\{∅}, we define

U > V if (r, m1, ..., mr) > (t, n1, ..., nt) lexicographically.

Fix a monomial ordering > on X+. Then, we define an order on [X+]P(N) as follows.

Definition 3. For all [u]U , [v]V ∈ [X+]P(N) ,

[u]U > [v]V if (u, U) > (v, V) lexicographically, (2)

where we compare u and v by the fixed ordering on X+. This order is called the monomial-centers
ordering.

Though we use the same notation > for orderings on X+, P(N)\{∅} and [X+]P(N) ,
no confusion will arise because the monomials under consideration are always clear. It is
clear that a monomial-centers ordering is a well ordering on [X+]P(N) . Finally, if > is the
deg-lex ordering on X+, then we call the ordering defined by (2) the deg-lex-centers ordering
on [X+]P(N) .

For all [u]U , [v]V , [u′]
U′ , [v

′]
V′ ∈ [X+]P(N) and δ, δ′ ∈ {a,`,⊥}, assume [u]U δ[v]V =

[w]W and [u′]
U′ δ
′[v′]

V′ = [w′]
W′ . Then, by [u]U δ[v]V > [u′]

U′ δ
′[v′]

V′ , we mean [w]W >
[w′]

W′ .
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From now on, we always assume that > is a monomial-centers ordering > on [X+]P(N) .
We observe that the monomial-centers ordering > on [X+]P(N) is monomial in the

following sense:

Lemma 2. Let [u]U , [v]V and [w]W ∈ [X+]P(N) with [u]U > [v]V . Then, we have

[w]W ` [u]U > [w]W ` [v]V , [u]U a [w]W > [v]V a [w]W ,

[u]U ⊥ [w]W > [v]V ⊥ [w]W , [w]W ⊥ [u]U > [w]W ⊥ [v]V ,

[u]U ` [w]W ≥ [v]V ` [w]W , [w]W a [u]U ≥ [w]W a [v]V .

Moreover, if u > v, then [u]U ` [w]W > [v]V ` [w]W and [w]W a [u]U > [w]W a [v]V .

For every polynomial f = ∑n
i=1 αi[ui]Ui

∈ Tri〈X〉, where 0 6= αi ∈ k, [ui]Ui
∈ [X+]P(N)

and [u1]U1
> [u2]U2

> ... > [un]Un
, we call [u1]U1

the leading monomial of f , denoted by f ,

and we denote by f̃ the associative word of f ; finally, α1 the leading coefficient of f , denoted
by lc( f ); A polynomial f is called monic if lc( f ) = 1, and a nonempty subset S of Tri〈X〉
is called monic if every element in S is monic. We call a nonzero polynomial f ∈ Tri〈X〉
strong if f̃ > r̃f , where rf := f − lc( f ) f̄ .

For convenience, we define 0̄ = 0̃ = 0, 0̃ < u and 0̄ < [u]U for any [u]U ∈ [X+]P(N) .
From Lemma 2, it follows that

Lemma 3. Let 0 6= h ∈ Tri〈X〉 and [w]W ∈ [X+]P(N) . Then, we have

([w]W ` h) = [w]W ` h, (h a [w]W ) = h a [w]W ,

([w]W ⊥ h) = [w]W ⊥ h, (h ⊥ [w]W ) = h ⊥ [w]W ,

([w]W a h) ≤ [w]W a h, (h ` [w]W ) ≤ h ` [w]W .

Moreover, if h is strong, then we obtain ([w]W a h) = [w]W a h and (h ` [w]W ) = h ` [w]W .

Now, we begin to study elements of an ideal generated by a subset of Tri〈X〉. We
begin with the following notation. For every [u]U = [xi1 ...xit ...xin ]U ∈ [X+]P(N) such
that xi1 , . . . , xin lie in X, by Lemma 1, we may assume that [u]U = ([v]V δ1xit)δ2[w]W . Then,
for every polynomial f ∈ Tri〈X〉, we define

[u]U |xit
7→ f = ([v]V δ1 f )δ2[w]W , (3)

where, by convention, if exactly one of [u]U and [v]V is [ε]∅, then we define [u]U δ[v]V =
[uv]U∪V , in particular, the formula (3) makes sense. Clearly, the resulting polynomial
([v]V δ1 f )δ2[w]W is independent of the choice of [v]V , [w]W and δ1, δ2. For simplicity, we
usually denote by (v f w) a polynomial of the form (3).

Definition 4. Let S be a monic subset of Tri〈X〉. Then, for every [u]U = [xi1 ...xit ...xin ]U in
[X+]P(N) such that xi1 , . . . , xin lie in X and for every s ∈ S, [u]U |xit

7→s is called an s-polynomial
or S-polynomial, and it is called normal if either t ∈ U or s is strong.

Remark 1. By Lemma 1 and Definition 4, it follows that

(i) Every S-polynomial (asb) has an expression:

(asb) = ([a]A δ1s)δ2[b]B (4)

for some δ1, δ2 ∈ {a,`,⊥} and a, b ∈ X∗. In (4), by convention, we always assume δ1 ∈ {`
,⊥} (resp. δ2 ∈ {a,⊥}) in case [a]A = [ε]∅ (resp. [b]B = [ε]∅). Then, ([a]A δ1s)δ2[b]B is a
normal S-polynomial if and only if one of the following conditions holds:
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(a) δ1 ∈ {`,⊥} and δ2 ∈ {a,⊥} hold;
(b) s is strong.

Moreover, if ([a]A δ1s)δ2[b]B is normal and ([a]A δ1s)δ2[b]B = [w]W , then we denote

[asb]W := ([a]A δ1s)δ2[b]B .

(ii) If (asb) = ([a]A δ1s)δ2[b]B is a normal S-polynomial, then ([u]U δ1s)δ2[v]V is still a normal
S-polynomial for all [u]U , [v]V ∈ [X+]P(N) .

(iii) Let ([a]A δ1s)δ2[b]B be a normal S-polynomial and assume that s is not strong. Then, both

[a′]A′δ3(([a]A δ1s)δ2[b]B) and ([a]A δ1s)δ2[b]B)δ4[b′]B′

are normal S-polynomials if and only if δ3 ∈ {`,⊥} and δ4 ∈ {a,⊥}.

The following lemma follows from the definition of normal S-polynomials.

Lemma 4. Let (asb) = ([a]A δ1s)δ2[b]B be a normal S-polynomial. Assume s = [u]U and (asb) =
[w]W . Then, we have

(`(a) + U) ⊆W ⊆ ({1, ..., `(a), `(as̃) + 1, ..., `(as̃) + `(b)} ∪ (`(a) + U)),

or
∅ 6= W ⊆ {1, ..., `(a), `(as̃) + 1, ..., `(as̃) + `(b)}.

Moreover, if W is a nonempty subset of {1, ..., `(a), `(as̃) + 1, ..., `(as̃) + `(b)}, then s is strong.
Finally, for every such a set W satisfying the above conditions, there exists a normal S-polynomial
(asb) such that (asb) = [w]W .

In view of Lemma 4, for every normal S-polynomial (asb) = ([a]A δ1s)δ2[b]B with
s = [u]U and (asb) = [w]W , we define P([asb]) to be the set of all the possible W for a
normal S-polynomial of the form (asb) as in Lemma 4; in other words, we have

P([asb]) =



{(`(a) + U) ∪W, W |W ⊆ {1, ..., `(a), `(as̃) + 1, ..., `(as̃) + `(b)}} \ {∅},
if s is strong;

{(`(a) + U) ∪W |W ⊆ {1, ..., `(a), `(as̃) + 1, ..., `(as̃) + `(b)}},
if s is not strong.

In particular, we have P(s) = U.
By Lemma 2, we immediately obtain the following lemma.

Lemma 5. Let (asb) be a normal s-polynomial and [u]U , [v]V ∈ [X+]P(N) . Then,

[u]U ` [asb]C a [v]V = [uasbv]`(u)+C, [u]U ` [asb]C ⊥ [v]V = [uasbv]
(`(u)+C)∪`(uas̃b)+V)

[u]U ⊥ [asb]C a [v]V = [uasbv]U∪(`(u)+C) , [u]U ⊥ [asb]C ⊥ [v]V = [uasbv]U∪(`(u)+C)∪(`(uas̃b)+V)
.

The following lemma shows that the set

Irr(S) := {[v]V ∈ [X+]P(N) | [v]V 6= [csd]L for any normal S-polynomial [csd]L }

is a linear generating set of the quotient trialgebra Tri〈X|S〉 := Tri〈X〉/Id(S), where Id(S)
is the ideal of Tri〈X〉 generated by S.



Mathematics 2021, 9, 1207 7 of 23

Lemma 6. Let S be a monic subset of Tri〈X〉. Then, for every nonzero polynomial h ∈ Tri〈X〉,
we have

h = ∑ αi[vi]Vi
+ ∑ β j[ajsjbj]Cj

,

for some [vi]Vi
∈ Irr(S), αi, β j ∈ k, aj, bj ∈ X∗, sj ∈ S, [vi]Vi

≤ h and [ajsjbj]Cj
≤ h.

Proof. Let h = lc(h)h + rh . If h ∈ Irr(S), then we define h1 = h− lc(h)h. If h /∈ Irr(S),
then we obtain h = [asb]C for some normal S-polynomial [asb]C . In addition, we define
h1 = h− lc(h)[asb]C . In both cases, we have h1 < h and the result follows by induction on
h.

Now, we shall introduce some conditions such that the set Irr(S) is a linear basis of a
Tri〈X|S〉. Our first step is to introduce the notation of composition.

Definition 5. Let S be a monic subset of Tri〈X〉. For all g, h ∈ S, g 6= h, we define compositions
as follows:

(i) If g is not strong, then, for all x ∈ X and [u]`(u) ∈ [X+]P(N) , we call x a g a left mul-
tiplication composition of g and call g ` [u]`(u) a right multiplication composition
of g.

(ii) Let (chd) be a normal S-polynomial and suppose that w = g̃ = ch̃d for some words c, d ∈ X∗.

(a) If P(g) ∈ P([chd]), then we call

(g, h)g = g− [chd]P(g)

an inclusion composition of S.
(b) If P(g) /∈ P([chd]) and both g and h are strong, then, for every x ∈ X, we call

(g, h)
[xw]1

= [xg]1 − [xchd]1

a left multiplicative inclusion composition of S, and call

(g, h)[wx]
`(wx)

= [gx]
`(wx) − [chdx]

`(wx)

a right multiplicative inclusion composition of S.

(iii) Let (ga) be a normal g-polynomial and let (ch) be a normal h-polynomial. Suppose that there
exists a word w = g̃a = ch̃ for some words a, c ∈ X∗ such that |g̃|+ |h̃| > `(w).

(a) If P([ga]) ∩ P([ch]) 6= ∅, then, for every W ∈ P([ga]) ∩ P([ch]), we call

(g, h)[w]W
= [ga]W − [ch]W

an intersection composition of S.
(b) If P([ga]) ∩ P([ch]) = ∅ and both g and h are strong, then, for every x ∈ X, we call

(g, h)
[xw]1

= [xga]1 − [xch]1

a left multiplicative intersection composition of S, and call

(g, h)
[wx]

`(wx)
= [gax]

`(wx) − [chx]
`(wx)

a right multiplicative intersection composition of S.

For all f , f ′ ∈ Tri〈X〉, [w]W ∈ [X+]P(N) , we denote by

f ≡ f ′ mod (S) (resp. mod (S, [w]W )),
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if f − f ′ = ∑ αi[aisibi]Ci
, where each αi ∈ k, si ∈ S, ai, bi ∈ X∗ and [aisibi]Ci

≤ f − f ′ (resp.

[aisibi]Ci
< [w]W ). Furthermore, f is called trivial modulo S ( resp. (S, [w]W )), if

f ≡ 0 mod (S) (resp. mod (S, [w]W )).

A monic set S is said to be closed under left (resp. right) multiplication compositions if
every left (resp. right) multiplication composition x a g (resp. g ` [u]`(u)) of S is trivial modulo
S. A monic set S is called a Gröbner–Shirshov basis in Tri〈X〉 if S is closed under left and right
multiplication compositions and every composition (g, h)[u]U of S is trivial modulo S.

We shall prove that, to some extent, the ordering < is compatible with the normal S-
polynomials and normal triwords.

Lemma 7. Let S be a monic subset of Tri〈X〉 that is closed under left multiplication compositions
and assume g ∈ S. If g is not strong, then, for every [v]1 ∈ [X+]P(N) , we have [v]1 a g ≡
0 mod (S).

Proof. We shall use induction on (vg̃, `(v)) to prove the claim. If `(v) = 1, then it is clear.
Assume `(v) ≥ 2 and [v]1 = [ux]1, u ∈ X+, x ∈ X. Then, [v]1 a g = [u]1 a (x a g) can be
written as a linear combination of S-polynomials of the form [u]1 a [csd]L , where s ∈ S and
[cs̃d]L ≤ (x a g). Thus, we obtain

([u]1 a [csd]L) ≤ [u]1 a [cs̃d]L ≤ [u]1 a (x a g) = ([v]1 a g) and cs̃d ≤ xg̃.

If s is strong, then [u]1 a [csd]L is already a normal S-polynomial, and we are done.
Now, we assume that s is not strong. If c is the empty word, then we have

[u]1 a [csd]L = ([u]1 a s) a [d]1

and (us̃, `(u)) < (vg̃, `(v)). If c is not the empty word, then we have [csd]L = [c]1δ[sd]−`(c)+L,
where δ lies in {`,⊥}. Thus, we obtain

[u]1 a [csd]L = ([uc]1 a s) a [d]1

and L > {1}. Since [cs̃d]L ≤ [xg̃]1, we obtain cs̃d < xg̃ and (ucs̃, `(uc)) < (vg̃, `(v)). By
induction, [u]1 a [csd]L is a linear combination of S-polynomials of the form [as′b]

L′ a
[d]1, where s′ ∈ S and [as̃′b]

L′ ≤ ([uc]1 a s). By Lemma 5, [as′b]
L′ a [d]1 is a normal

S-polynomial. Thus, we deduce

[as̃′b]
L′ a [d]1 ≤ ([uc]1 a s) a [d]1 = ([u]1 a [csd]L) ≤ ([v]1 a g).

The proof is completed.

Let g ∈ S be a polynomial that is not strong, and assume that g ` x is trivial modulo
S for every x ∈ X. Then, the following example shows that g ` [u]`(u) may not be trivial
modulo S for some u ∈ X+.

Example 1 ([13] Example 3.12). Let X = {x1, x2}, x1 > x2. Assume that the characteristic of
the underlying field k is not 2. Let S = { f , g, h}, where f = [x1x2]2 + [x1x2]1, g = [x1x2x1]3 −
1
2 [x1x2x1]2 − 1

2 [x1x2x1]1, h = [x1x2x2]3 − 1
2 [x1x2x2]2 − 1

2 [x1x2x2]1. These three polynomials
are not strong. By a direct calculation, we have g ` xi = 0, h ` xi = 0, i = 1, 2, and f `
x1 = 2g + f a x1 ≡ 0 mod (S), f ` x2 = 2h + f a x2 ≡ 0 mod (S). However, f `
[x1x1]2 = 2[x1x2x1x1]4 is not trivial modulo S because f ` [x1x1]2 is not normal, and, for every
polynomial f ′ ∈ {g, h}, we have f ′ ` x1 = 0.
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Lemma 8. Let S be a monic subset of Tri〈X〉 that is closed under left and right multiplication
compositions. Then, for all normal S-polynomial [asb]C and normal triword [u]U ∈ [X+]P(N) ,
we have

[u]U δ[asb]C ≡ 0 mod (S) and [asb]C δ[u]U ≡ 0 mod (S),

where δ ∈ {a,`,⊥}. Moreover, for every normal triword [w]W ∈ [X+]P(N) , if as̃b < w, then
we have

[u]U δ[asb]C ≡ 0 mod (S, [u]U δ[w]W ) and [asb]C δ[u]U ≡ 0 mod (S, [w]W δ[u]U ),

where δ ∈ {a,`,⊥}.

Proof. By Lemma 5, it suffices to show that [u]U a [asb]C and [asb]C ` [u]U are trivial
modulo S, where s is not strong. Thus, we assume that s is not strong.

We first prove that [u]U a [asb]C is trivial modulo S. By Lemma 1, obviously we have

[u]U a [asb]C = (([u]U a [a]A) a s) a [b]B = (([u1]U1
δ1[u2]1) a s)) a [b]B

= ([u1]U1
δ1([u2]1 a s)) a [b]B ,

where δ1 ∈ {`,⊥} and ua = u1u2 with u1 ∈ X∗ and u2 ∈ X+. If [u1]U1
= [ε]∅, then we

have δ1 =` by convention. By Lemmas 7, 5 and 2, the result follows. Moreover, if as̃b < w,
then we obtain

uas̃b < uw and ([u]U δ[asb]C ) < [u]U δ[w]W ,

where δ ∈ {a,`,⊥}. Therefore, we deduce [u]U δ[asb]C ≡ 0 mod (S, [u]U δ[w]W ).
The proof for the case of [asb]C ` [u]U is similar to the above case. More precisely, by

Lemma 1, we have

[asb]C ` [u]U = [a]A ` (s ` ([b]B ` [u]U )) = [a]A ` ((s ` [u1]`(u1)
)δ2[u2]U2

),

where δ2 ∈ {a,⊥} and bu = u1u2 with u1 ∈ X+, u2 ∈ X∗. Since S is closed under right
multiplication compositions, the results follow by Lemmas 5 and 2. Moreover, if as̃b < w,
then we have

as̃bu < wu and ([asb]C δ[u]U ) < [w]W δ[u]U ,

where δ ∈ {a,`,⊥}. Therefore, we deduce [asb]C δ[u]U ≡ 0 mod (S, [w]W δ[u]U ).

The following corollary is useful in the sequel, which shows that, if we replace certain
“subtriword” in a triword with a “small” normal S-polynomial, then we shall obtain a linear
combination of “small” normal S-polynomials.

Corollary 1. Let S be a monic subset of Tri〈X〉 that is closed under left and right multiplication
compositions. Let [w]W be a normal triword such that ([a]A δ1[u]U )δ2[b]B = [w]W , and let f be a
normal S-polynomial with f < [u]U . If f̃ < u, or if δ1 ∈ {`,⊥} and δ2 ∈ {a,⊥}, then we have

([a]A δ1 f )δ2[b]B ≡ 0 mod (S, [w]W ).

Proof. If δ1 ∈ {`,⊥} and δ2 ∈ {a,⊥}, then by Lemmas 5 and 2, ([a]A δ1 f )δ2[b]B is a normal
S-polynomial with

([a]A δ1 f )δ2[b]B < ([a]A δ1[u]U )δ2[b]B = [w]W ,

the result follows.
Now, we assume f̃ < u. By Lemma 8, ([a]A δ1 f )δ2[b]B can be written as a linear

combination of S-polynomials of the form [cs′d]L δ2[b]B , where s′ ∈ S and cs̃′d < au. In
addition, for every S-polynomial [cs′d]L δ2[b]B , by Lemma 8 and by the fact that cs̃′db <
aub = w, we have [cs′d]L δ2[b]B ≡ 0 mod (S, [w]W ).
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Now, we show that, if a monic set S is closed under left and right multiplication
compositions, then the elements of the ideal Id(S) of Tri〈X〉 can be written as linear
combinations of normal S-polynomials.

Corollary 2. Let S be a monic subset of Tri〈X〉 that is closed under left and right multiplication
compositions. Then, every S-polynomial (asb) has an expression of the form:

(asb) = ∑ αi[aisibi]Ci
,

where each αi ∈ k, si ∈ S, ai, bi ∈ X∗.

Proof. Let [u]U be a triword such that s < [u]U . In addition, assume (asb) = ([a]A δ1s)δ2[b]B

and [w]W = ([a]A δ1[u]U )δ2[b]B . Then, by Corollary 1, we obtain

(asb) = ([a]A δ1s)δ2[b]B ≡ 0 mod (S, [w]W ).

The proof is completed.

Lemma 9. Let S be a Gröbner–Shirshov basis in Tri〈X〉. Suppose that [a1s1b1]C1
, [a2s2b2]C2

are

two normal S-polynomials with [a1s1b1]C1
= [a2s2b2]C2

= [w]W . Then, we have

[a1s1b1]C1
− [a2s2b2]C2

≡ 0 mod (S, [w]W ).

Proof. Since [w]W = [a1s1b1]C1
= [a2s2b2]C2

, we obtain w = a1 s̃1b1 = a2 s̃2b2 and W = C1 =
C2. We have to consider the following three cases:

Case 1. Without loss of generality, we can assume b1 = as̃2b2 and a2 = a1 s̃1a; here, a
may be the empty word. Assume s1 = s1 + ∑ βi[ui]Ui

and s2 = s2 + ∑ β′j[vj]Vj
. Then, by

Lemma 1, we have

[a1s1b1]C1
− [a2s2b2]C2

= [a1s1as̃2b2]W − [a1 s̃1as2b2]W
= ((([a1]A1

δ1s1)δ2[a]A)δ3s2)δ4[b2]B2
− ((([a1]A1

δ1s1)δ2[a]A)δ3s2)δ4[b2]B2

= ((([a1]A1
δ1s1)δ2[a]A)δ3(s2 − s2))δ4[b2]B2

− ((([a1]A1
δ1(s1 − s1))δ2[a]A)δ3s2)δ4[b2]B2

= −∑ β′j((([a1]A1
δ1s1)δ2[a]A)δ3[vj]Vj

)δ4[b2]B2

+∑ βi((([a1]A1
δ1[ui]Ui

)δ2[a]A)δ3s2)δ4[b2]B2

for some δ1, δ2, δ3, δ4 ∈ {a,`,⊥}.
If s1 and s2 are both strong, then all the resulting polynomials

((([a1]A1
δ1s1)δ2[a]A)δ3[vj]Vj

)δ4[b2]B2
and ((([a1]A1

δ1[ui]Ui
)δ2[a]A)δ3s2)δ4[b2]B2

are normal S-polynomials; if neither s1 nor s2 are strong, then, by Remark 1, we de-
duce δ3 =⊥, δ1 ∈ {`,⊥} and δ2, δ4 ∈ {a,⊥}, which implies that the above resulting
S-polynomials are normal; If only one of s1 and s2 is not strong, say, s1 is not strong, then,
by Remark 1, we deduce δ1 ∈ {`,⊥} and δ2, δ3, δ4 ∈ {a,⊥}. It follows that the resulting
S-polynomials are normal. In all subcases, by Lemmas 2 and 3, the leading monomials of
the resulting normal S-polynomials are less than [w]W .

Case 2. Without loss of generality, we may assume that s̃1 = as̃2b, a2 = a1a and
b2 = bb1. If P(s1) ∈ P([as2b]), then, since S is a Gröbner–Shirshov basis, we may assume

s1 − [as2b]P(s1)
= ∑ α′i[c

′
is
′
id
′
i]L′i
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satisfying [c′is
′
id
′
i]L′i
≤ s1 − [as2b]P(s1)

< s1 for every i. Thus, we have

[a1s1b1]C1
− [a2s2b2]C2

= ([a1]A1
δ1(s1 − [as2b]P(s1)

))δ2[b1]B1

= ∑ α′i([a1]A1
δ1[c′is

′
id
′
i]L′i

)δ2[b1]B1
.

If one of s1 and s2 is not strong, then we deduce δ1 ∈ {`,⊥} and δ2 ∈ {a,⊥}; and,
if s1 and s2 are strong, then we obtain c′i s̃

′
id
′
i < s̃1 for all i. In either of these subcases, by

Corollary 1, we obtain

[a1s1b1]C1
− [a2s2b2]C2

= ∑ α′i([a1]A1
δ1[c′is

′
id
′
i]L′i

)δ2[b1]B1
≡ 0 mod (S, [w]W ).

If P(s1) /∈ P([as2b]), then we deduce that s1, s2 are strong and `(a1) + `(b1) ≥ 1. Thus,
we have either

[a1s1b1]C1
− [a2s2b2]C2

= ([a′1]A′1
δ′1([xs1]1 − [xas2b]1))δ2[b1]B1

or
[a1s1b1]C1

− [a2s2b2]C2
= ([a1]`(a1)

δ1([s1y]`(s̃1y) − [as2by]`(s̃1y)))δ
′
2[b
′
1]B′1

,

where we have a1 = a′1x and b1 = yb′1 for some words a′1, b′1 ∈ X∗ and x, y ∈ X. Then, by
the fact that S is a Gröbner–Shirshov basis and by Lemmas 5 and 8, we deduce

[a1s1b1]C1
− [a2s2b2]C2

≡ 0 mod (S, [w]W ).

Case 3. Without loss of generality, we assume a2 = a1a, b1 = bb2 and w′ = s̃1b = as̃2.
If P([s1b]) ∩ P([as2]) 6= ∅, then, since S is a Gröbner–Shirshov basis, we may assume

[s1b]C − [as2]C = ∑ α′i[c
′
is
′
id
′
i]L′i

satisfying [c′is
′
id
′
i]L′i
≤ [s1b]C − [as2]C < [w′]C for every i. Thus, we have

[a1s1b1]C1
− [a2s2b2]C2

= ([a1]A1
δ1([s1b]C − [as2]C ))δ2[b2]B2

= ∑ α′i([a1]A1
δ1[c′is

′
id
′
i]L′i

)δ2[b2]B2
.

If one of s1 and s2 is not strong, then we deduce δ1 ∈ {`,⊥} and δ2 ∈ {a,⊥}; and,
if s1 and s2 are strong, then we obtain c′i s̃

′
id
′
i < w̃′ for all i. In either of these subcases, by

Corollary 1, we obtain

[a1s1b1]C1
− [a2s2b2]C2

= ∑ α′i([a1]A1
δ1[c′is

′
id
′
i]L′i

)δ2[b2]B2
≡ 0 mod (S, [w]W ).

If P([s1b]) ∩ P([as2) = ∅, then we deduce that s1, s2 are strong and `(a1) + `(b1) ≥ 1.
Thus, we have either

[a1s1b1]C1
− [a2s2b2]C2

= ([a′1]A′1
δ′1([xs1b]1 − [xas2]1))δ2[b2]B2

or
([a1]`(a1)

δ1([s1by]
`(w′y) − [as2y]

`(w′y)))δ
′
2[b
′
2]B′2

,

where we have a1 = a′1x, b2 = yb′2 for some a′1, b′2 ∈ X∗ and x, y ∈ X. Then, by the fact that
S is a Gröbner–Shirshov basis and by Lemmas 5 and 8, we deduce

[a1s1b1]C1
− [a2s2b2]C2

≡ 0 mod (S, [w]W ).

The proof is completed.
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Theorem 1. (Composition-Diamond lemma for trialgebras) Let > be a monomial-center ordering
on [X+]P(N) , and let S be a monic subset of Tri〈X〉 and Id(S) the ideal of Tri〈X〉 generated by S.
Then, the following statements are equivalent.

(i) S is a Gröbner–Shirshov basis in Tri〈X〉.
(ii) 0 6= h ∈ Id(S)⇒ h = [csd]L for some normal S-polynomial [csd]L .
(iii) Irr(S) = {[v]V ∈ [X+]P(N) | [v]V 6= [csd]L for any normal S-polynomial [csd]L} is a

k-basis of the quotient trialgebra Tri〈X|S〉 = Tri〈X〉/Id(S).

Proof. (i)⇒ (ii) Let 0 6= h ∈ Id(S). Then, by Corollary 2, we may assume h = ∑n
i=1 αi[cisidi]Li

,

where each αi ∈ k, ci, di ∈ X∗, si ∈ S. Define [ui]Li
= [cisidi]Li

= [ci s̃idi]Li
, 1 ≤ i ≤ n. Then,

we may assume without loss of generality that

[u1]L1
= [u2]L2

= ... = [ul ]Ll
> [ul+1]Ll+1

≥ [ul+2]Ll+2
≥ ....

Now, we use induction on [u1]L1
to show h = [csd]L for some normal S-polynomial

[csd]L . For [u1]L1
= h, there is nothing to prove. For [u1]L1

> h, we have ∑l
i=1 αi = 0 and

h =
l

∑
i=1

αi[cisidi]Li
+

n

∑
i=l+1

αi[cisidi]Li

= (
l

∑
i=1

αi)[c1s1d1]L1
−

l

∑
i=2

αi([c1s1d1]L1
− [cisidi]Li

) +
n

∑
i=l+1

αi[cisidi]Li

= 0 + ∑ β j[ajs′jbj]Cj
+

n

∑
i=l+1

αi[cisidi]Li
,

where each [ajs′jbj]Cj
is a normal S-polynomial and [ajs′jbj]Cj

< [u1]L1
by Lemma 9. Thus,

the result follows by induction hypothesis.
(ii) ⇒ (iii) By Lemma 6, the set Irr(S) is a linear generator of the space Tri〈X|S〉.

Assume that g = ∑ αi[vi]Vi
= 0 in Tri〈X|S〉, where αi ∈ k, [vi]Vi

∈ Irr(S) for every i and
[v1]V1

> [v2]V2
> · · · . This implies that g ∈ Id(S). Then, αi = 0 for every i. Otherwise,

g = [vj]Vj
for some j, which is a contradiction.

(iii) ⇒ (i) Assume that g is a composition of elements of S. We have g ∈ Id(S).
By Lemma 6, g = ∑i αi[vi]Vi

+ ∑j β j[cjsjdj]Lj
, where each αi, β j ∈ k, cj, dj ∈ X∗, [vi]Vi

∈
Irr(S), sj ∈ S, and [vi]Vi

≤ g, [cjsjdj]Lj
≤ g. Clearly, ∑i αi[vi]Vi

∈ Id(S). By (iii), we obtain

αi = 0 for every i, and thus we have g ≡ 0 mod (S).

Shirshov algorithm If a monic subset S ⊆ Tri〈X〉 is not a Gröbner–Shirshov basis, then
one can add to S all nontrivial compositions. Continuing this process repeatedly, we finally
obtain a Gröbner–Shirshov basis Scomp that contains S and generates the same ideal, that is,
Id(Scomp) = Id(S).

Similarly, we may introduce the Gröbner–Shirshov bases for trirings, which may be
useful when one would like to construct an R-basis for some trisemigroup-trirings over an
associative and commutative ring R with a unit.

Definition 6. A triring is a quinary (E,+,a,`,⊥) such that all of (E,+,`), (E,+,a) and
(E,+,⊥) are associative rings such that the identities in (1) hold in E.

Let (E,a,`,⊥) be a trisemigroup, and T the free left R-module with R-basis E. Then,
(T,+,a,`,⊥) is a triring equipped with the following operations:

g ` h := ∑
i,j

rir′j(ui ` vj), f a g := ∑
i,j

rir′j(ui a vj), g ⊥ h := ∑
i,j

rir′j(ui ⊥ vj),
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for all g = ∑i riui, h = ∑j r′jvj ∈ T, ri, r′j ∈ R, ui, vj ∈ E. Such a triring, denoted by TriR(E),
is called a trisemigroup-triring of E over R.

Let Trisgp〈X〉 be the free trisemigroup generated by X; then, we obtain a trisemigroup-
triring of Trisgp〈X〉 over R, denoted by TriR〈X〉, which is also called the free triring over R
generated by X. In particular, Trik〈X〉 = Tri〈X〉 is the free trialgebra generated by X when
k is a field.

An ideal I of TriR〈X〉 is an R-submodule of TriR〈X〉 such that g ` h, h ` g, g a h, h a
g, g ⊥ h, h ⊥ g ∈ I for every g ∈ TriR〈X〉 and h ∈ I.

The proof of the following Theorem 2 is similar to Theorem 1.

Theorem 2. (Composition-Diamond lemma for trirings) Let R be an associative and commutative
ring with a unit. Let > be a monomial-centers ordering on [X+]P(N) , and let S be a monic subset
of TriR〈X〉 and Id(S) the ideal of TriR〈X〉 generated by S. Then, the following statements are
equivalent.

(i) S is a Gröbner–Shirshov basis in TriR〈X〉.
(ii) 0 6= f ∈ Id(S)⇒ f = [csd]L for some normal S-polynomial [csd]L .
(iii) Irr(S) = {[v]V ∈ [X+]P(N) | [v]V 6= [csd]L for any normal S-polynomial [csd]L } is an R-

basis of the quotient triring TriR〈X|S〉 := TriR〈X〉/Id(S), i.e., TriR〈X|S〉 is a free R-module
with R-basis Irr(S).

Remark 2. The Shirshov algorithm does not work generally in TriR〈X〉.

We now turn to the question on how to recognize whether two ideals of Tri〈X〉 are
the same or not. We begin with the notion of a minimal (resp. reduced) Gröbner–Shirshov
basis.

Definition 7. A Gröbner–Shirshov basis S in Tri〈X〉 is minimal (resp. reduced) if, for every
s ∈ S, we have s ∈ Irr(S\{s}) (resp. supp(s) ⊆ Irr(S\{s})), where

supp(s) := {[u1]U1
, . . . , [un]Un

}

for s = α1[u1]U1
+ · · ·+ αn[un]Un

, 0 6= αi ∈ k, [ui]Ui
∈ [X+]P(N) .

Suppose that I is an ideal of Tri〈X〉 and I = Id(S). If S is a reduced (resp. minimal) Gröbner–
Shirshov basis in Tri〈X〉, then we call S a reduced (resp. minimal) Gröbner–Shirshov basis for the
ideal I or for the quotient dialgebra Tri〈X〉/I.

It is known that every ideal of associative algebras (dialgebras) has a unique reduced
Gröbner–Shirshov basis. Now, we show that an analogous result holds for trialgebras.

Lemma 10. Let I be an ideal of Tri〈X〉 and S a Gröbner–Shirshov basis for I. For every E ⊆ S, if
Irr(E) = Irr(S), then E is also a Gröbner–Shirshov basis for I.

Proof. For every g ∈ I, since Irr(E) = Irr(S) and S a Gröbner–Shirshov basis for I, by
Theorem 1, we obtain g = [csd]L = [a f b]L for some s ∈ S, f ∈ E, a, b, c, d ∈ X∗. Thus, we
obtain g1 = g− lc(g)[a f b]L ∈ I and g1 < g. By induction on g, we deduce that g is a linear
combination of normal E-polynomials, i.e., g ∈ Id(E). This shows that I = Id(E). Now,
the result follows from Theorem 1.

Let S be a subset of Tri〈X〉 and [u]U ∈ [X+]P(N) . We set

S := {s ∈ [X+]P(N) | s ∈ S}, S
[u]U := {s ∈ S | s = [u]U}, S

<[u]U := {s ∈ S | s < [u]U}.

Theorem 3. There is a unique reduced Gröbner–Shirshov basis for every ideal of the free trialgebra
Tri〈X〉.
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Proof. Let I be a ideal of Tri〈X〉. We first prove the existence. It is clear that S = {lc(g)−1g |
0 6= g ∈ I} is a Gröbner–Shirshov basis for I. For each [u]U ∈ S, we fix a polynomial g

[u]U

in S such that g
[u]U = [u]U . Define

S0 = {g
[u]U ∈ S | [u]U ∈ S}.

Then, the leading monomials of elements in S0 are pairwise different. Since I ⊇ S ⊇ S0
and I = S = S0, we have Irr(S0) = Irr(S) = [X+]P(N)\S. By Lemma 10, S0 is a Gröbner–
Shirshov basis for I.

Moreover, we may assume that, for every s ∈ S0, we have

supp(s− s) ⊆ Irr(S0), (5)

i.e., supp(s− s) ⊆ [X+]P(N)\S0. If supp(s− s) ∩ S0 6= ∅ for some s ∈ S0, then set [w]W =

max{supp(s− s) ∩ S0}. Then, there exists an element g ∈ S0 such that g = [w]W . Note that
s > [w]W = g and s− αg = s, where α is the coefficient of [w]W in s. Replace s by s− αg
in S0. Then, supp(s− αg− s− αg) ∩ S0 = ∅ or max{supp(s− αg− s− αg) ∩ S0} < [u]U .
Since > is a well ordering on [X+]P(N) , this process will terminate.

Noting that, for every [u]U ∈ S0, there exists a unique g ∈ S0 such that [u]U = g. Set
min{S0} = s0 with s0 ∈ S0. Define Ss0

:= {s0}. Suppose that g ∈ S0, s0 < g and S
h

has

been defined for every h ∈ S0 with h < g. Define

Sg :=

{
S<g if g 6∈ Irr(S<g),
S<g ∪ {g} if g ∈ Irr(S<ḡ),

where S<g :=
⋃

h<g, h∈S0

S
h
.

Let
S1 :=

⋃
g∈S0

Sg .

Then, for every g ∈ S0, we have g ∈ S1 ⇔ g ∈ Irr(S<ḡ)⇔ g ∈ Sg .
We first claim that Irr(S1) = Irr(S0). Since S1 ⊆ S0, it suffices to show Irr(S1) ⊆

Irr(S0). Assume that there exists a normal triword [u]U ∈ [X+]P(N) such that [u]U ∈ Irr(S1)

and [u]U /∈ Irr(S0). Since S0 = I, it follows that [u]U = g for some g ∈ S0\S1. If
g ∈ Irr(S<g), then g ∈ Sg ⊆ S1, a contradiction. If g 6∈ Irr(S<g), then g = [asb]C for
some s ∈ S<g ⊆ S1, a, b ∈ X∗. This implies that g 6∈ Irr(S1), a contradiction. Therefore,
Irr(S1) = Irr(S0). By Lemma 10, S1 is a Gröbner–Shirshov basis for I.

If g, h ∈ S1, g 6= h, g = [ahb]C , then we have h < g, h ∈ Sh ⊆ S<g. Thus, we
deduce g 6∈ Irr(S<g) and g 6∈ S1, a contradiction. Thus, S1 is a minimal Gröbner–Shirshov
basis for I. By (5), for every s ∈ S1, we have supp(s) ⊆ Irr(S1\{s}), so S1 is a reduced
Gröbner–Shirshov basis for I.

Now, we prove the uniqueness. Suppose that T is an arbitrary reduced Gröbner–
Shirshov basis for I. Let s0 = min S1 and t0 = min T, where s0 ∈ S1, t0 ∈ T. By Theorem 1,
we have s0 = [a′t′b′]C′ ≥ t′ ≥ t0 for some t′ ∈ T, a′, b′ ∈ X∗. Similarly, t0 ≥ s0. Thus, we
deduce t0 = s0. We claim that t0 = s0. Otherwise, we have 0 6= t0 − s0 ∈ I. By the above
argument again, we obtain that t0 > t0 − s0 ≥ t′′ ≥ t0 for some t′′ ∈ T, a contradiction.
Thus, we have

Ss0
1 = {s0} = {t0} = Tt0 .

For every [u]U ∈ S1 ∪ T with [u]U > t0, assume that S
<[u]U
1 = T<[u]U . To prove

T = S1, it suffices to show that S
[u]U
1 ⊆ T

[u]U . For every s ∈ S
[u]U
1 , we have s = [c′td′]

L′ ≥ t
for some t ∈ T, c′, d′ ∈ X∗. Now, we claim that [u]U = s = t. Otherwise, we have

[u]U = s > t. Then, t ∈ T
<[u]U = S

<[u]U
1 and t ∈ S1\{s}. However, s = [c′td′]

L′ , which
contradicts with the fact that S1 is a reduced Gröbner–Shirshov basis. Now, we show
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s = t ∈ T
[u]U . If s 6= t, then 0 6= s − t ∈ I. By Theorem 1, s− t = [at1b]L1

= [cs1d]L1

for some t1 ∈ T, s1 ∈ S1, a, b, c, d ∈ X∗ with t1, s1 ≤ s− t < s = t. Thus, we deduce
s1 ∈ S1\{s} and t1 ∈ T\{t}. Noting that s− t ∈ supp(s) ∪ supp(t), we may assume that
s− t ∈ supp(s). As S1 is a reduced Gröbner–Shirshov basis, we have s− t ∈ Irr(S1\{s}),
which contradicts with the fact that s− t = [cs1d]L1

, where s1 ∈ S1\{s}. Thus, s = t.

Therefore, we obtain S
[u]U
1 ⊆ T

[u]U . It follows that we have S ⊆ T. Similarly, we have T ⊆ S,
which proves the uniqueness.

Remark 3. It is known that every Gröbner–Shirshov basis for an ideal of associative (polynomial)
algebras can be reduced to a reduced Gröbner–Shirshov basis. However, this is neither the case for
dialgebras ([13] Example 3.24), nor the case for trialgebras. It suffices to consider the trialgebra
defined by the same generators and relations as those in ([13] Example 3.24) because the relations
form a Gröbner–Shirshov basis for the considered trialgebra.

By using Theorem 3, we have the following theorem.

Theorem 4. Let I1, I2 be two ideals of Tri〈X〉. Then, I1 = I2 if and only if I1 and I2 have the same
reduced Gröbner–Shirshov basis.

4. Applications

In this section, we apply Theorem 1 to give a method to find normal forms of elements
of an arbitrary trisemigroup. As applications, we reconstruct normal forms of elements
of a free commutative trisemigroup which is obtained in [2] and construct normal forms
of elements of a free abelian trisemigroup. We also give some characterizations of the
Gelfand–Kirillov dimensions of some trialgebras.

Denote by
Trisgp〈X〉 := ([X+]P(N) ,a,`,⊥)

the free trisemigroup generated by X [1,3]. Clearly, every trisemigroup T is a quotient of
some free trisemigroup, say

T = Trisgp〈X|S〉 := [X+]P(N)/ρ(S)

for some set X and S ⊆ [X+]P(N) × [X+]P(N) , where ρ(S) is the congruence on ([X+]P(N) ,a
,`,⊥) generated by S. Thus, it is natural to ask the question: how can normal forms of
elements of an arbitrary quotient trisemigroup of the form Trisgp〈X|S〉 be found?

Let > be a monomial-centers ordering on [X+]P(N) and

S = {([vi]Vi
, [wi]Wi

) | [vi]Vi
> [wi]Wi

, i ∈ I}.

Consider the trialgebra Tri〈X|S〉, where we identify the set S with the set {[vi]Vi
−

[wi]Wi
|i ∈ I}. By the Shirshov algorithm, we have a Gröbner–Shirshov basis Scomp in

Tri〈X〉 and Id(Scomp) = Id(S). It is clear that each element in Scomp is of the form [u]U −
[v]V , [u]U , [v]V ∈ [X+]P(N) . Let

σ : Tri〈X|S〉 → Trik([X+]P(N)/ρ(S)),

∑ αi[ui]Ui
+ Id(S) 7→∑ αi[ui]Ui

ρ(S), αi ∈ k, [ui]Ui
∈ [X+]P(N) .

Then, σ is obviously a trialgebra isomorphism. Noting that, by Theorem 1, Irr(Scomp)
is a linear basis of Tri〈X|S〉, we have that σ(Irr(Scomp)) is a linear basis of Trik([X+]P(N)/ρ(S)).
It follows that Irr(Scomp) is exactly a set of normal forms of elements of the trisemigroup
Trisgp〈X|S〉.

Therefore, we obtain the following theorem.
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Theorem 5. Let > be a monomial-centers ordering on [X+]P(N) and T = Trisgp〈X|S〉, where S =

{([vi]Vi
, [wi]Wi

) | [vi]Vi
> [wi]Wi

, i ∈ I} is a subset of [X+]P(N) × [X+]P(N) . Then, Irr(Scomp) is
a set of normal forms of elements of the trisemigroup Trisgp〈X|S〉.

If we can construct a set of normal forms of certain trialgebra, then we can know how
fast the trialgebra grows by the tool of Gelfand–Kirillov dimension. The Gelfand–Kirillov
dimension measures the asymptotic growth rate of algebras. Since it provides important
structural information, this invariant has become one of the important tools in the study of
algebras. In this section, we shall calculate some interesting examples and show how we
can apply Gröbner–Shirshov bases in the calculation of Gelfand–Kirillov dimensions of
certain trialgebras.

Let T be a trialgebra, and letW ,W1 andW2 be vector subspaces of T. We first define

W1 a W2 = Spank{a a b | a ∈ W1, b ∈ W2}, W1 ` W2 = Spank{a ` b | a ∈ W1, b ∈ W2},

andW1 ⊥ W2 = Spank{a ⊥ b | a ∈ W1, b ∈ W2}.

Then, we defineW1 = W andWn = ∑1≤i≤n−1(W i a Wn−i +W i ` Wn−i + W i ⊥
Wn−i) for every integer number n ≥ 2. Finally, we define

W≤n :=W1 +W2 + ... +Wn.

Obviously, we have

Wn = Spank{[a1...an]U | ∅ 6= U ⊆ {1, ..., n}, a1, ..., an ∈ W}

and

W≤n = Spank{[a1...am]U | ∅ 6= U ⊆ {1, ..., m}, m ∈ N, m ≤ n, a1, ..., am ∈ W}.

Now, we are ready to introduce the Gelfand–Kirillov dimension of a trialgebra.

Definition 8. Let T be a trialgebra over k. Then, the Gelfand–Kirillov dimension of a trialgebra T
is defined to be

GKdim(T) = sup
W

lim
n→∞

logn dim(W≤n),

where the supremum is taken over all finite dimensional subspacesW of T.

We have the following obvious observation, which is well-known in the context [31],
for example.

Lemma 11. Let T be a trialgebra generated by a finite set X and kX the subspace of T spanned by
X. Then, we have

GKdim(T) = lim
n→∞

logn dim((kX)≤n).

Let X = {x}. It is well known that GKdim(k〈X〉) = 1 and GKdim(Di〈X〉) = 2, where
k〈X〉 (resp. Di〈X〉) is the free associative algebra (resp. dialgebra) generated by X. Note
that a normal triword of length n in Tri〈X〉 is of the form [x...x]U , where U is a nonempty
subset of {1, ..., n}. Thus, by a direct calculation, we have GKdim(Tri〈X〉) = +∞.

We shall show in Sections 4.1 and 4.2 that the Gelfand–Kirillov dimensions of finitely
generated free commutative trialgebras and those of finitely generated free abelian trialge-
bras are positive integers.

From now on, let X be a well-ordered set and > the deg-lex-centers ordering on
[X+]P(N) .
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4.1. Normal Forms of Free Commutative Trisemigroups

The commutative trisemigroups are introduced and the free commutative trisemi-
group generated by a set is constructed by [2]. In this subsection, we give another approach
to normal forms of elements of a free commutative trisemigroup.

Definition 9 ([2]). A trisemigroup (trialgebra) (T,a,`,⊥) is commutative if a, ` and ⊥ are
commutative.

Let Tc be the subset of Tri〈X〉 consisting of the following polynomials:

[u]U ` [v]V − [v]V ` [u]U , [u]U a [v]V − [v]V a [u]U , [u]U ⊥ [v]V − [v]V ⊥ [u]U , (6)

where [u]U , [v]V ∈ [X+]P(N) . Then,

Tri[X] := Tri〈X|Tc〉

is clearly the free commutative trialgebra generated by X. In particular, a linear basis of
Tri[X] consisting of normal triwords over X is exactly a set of normal forms of elements of
the free commutative trisemigroup generated by X.

Let X = {xi | i ∈ I} be a well-ordered set. For every u = xi1 xi2 ...xin ∈ X+, xik ∈ X,
we define

buc = bxi1 xi2 ...xinc := xj1 xj2 ...xjn ,

where xj1 xj2 ...xjn is a reordering of xi1 xi2 ...xin satisfying xj1 ≤ xj2 ≤ · · · ≤ xjn .
We define

bX+c := {buc | u ∈ X+}; bucU := [buc]U , ∅ 6= U ⊆ {1, ..., `(u)};

bX+cP(N) := {bucU | u ∈ X+, ∅ 6= U ⊆ {1, ..., `(u)}}.

For u ∈ X+, [u]U is a normal triword, while bucU is called a commutative normal triword.
For instance, assume u = x2x1x2x1x2x1 ∈ X+ and assume x1 < x2, where x1, x2 ∈ X.
Then, we have buc = x1x1x1x2x2x2, buc{3,5} = [x1x1x1x2x2x2]{3,5}.

Proposition 2. Let X = {xi | i ∈ I} be a well-ordered set. Then, we have the following:

(i) Tri[X] = Tri〈X|Sc〉, where Sc consists of the following polynomials:

[u]U − bucU ([u]U ∈ [X+]P(N) , `(u) = 2 or |U| = `(u) ≥ 3),

[v]V − bvc1 ([v]V ∈ [X+]P(N) , `(v) ≥ 3 and |V| < `(v)).

(ii) Sc is a Gröbner–Shirshov basis in Tri〈X〉.
(iii) The set

bX+cc := {bvc1 | bvc ∈ bX+c} ∪ {buc2 | buc ∈ bX+c, `(u) = 2}
∪ {buc{1,2,...,`(u)} | buc ∈ bX+c}.

forms a k-basis of the free commutative trialgebra Tri[X].

Proof. (i) It suffices to show Sc ⊆ Id(Tc) and Tc ⊆ Id(Sc), where Tc consists of the elements
described in (6). We first show Sc ⊆ Id(Tc). Since a, ` and ⊥ are commutative, we have

[xixj]2 − bxixjc2 ∈ Id(Tc), [u]{1,...,`(u)} − buc{1,...,`(u)} ∈ Id(Tc) and [v]1 − bvc1 ∈ Id(Tc),
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where xi, xj ∈ X, u, v ∈ X+, |u|, |v| ≥ 2. It remains to prove that

[v]V − bvc1 ∈ Id(Tc), where [v]V ∈ [X+]P(N) , `(v) ≥ 3, |V| < `(v) and V 6= {1}.

There are two cases to consider:
Case 1. If 1 /∈ V, we assume [v]V = [v0]`(v0)

` [v1]V1 for some v0, v1 ∈ X+. Then, in
Tri〈X|Tc〉, we have

[v]V − bvc`(v) = [v1]V1 ` [v0]`(v0)
− bvc`(v)

= [v1v0]`(v) − bvc`(v)
= 0.

Assume bvc`(v) = (bv′c1 ` x) ` y with x, y ∈ X and bv′c ∈ bX+c. Then, in Tri〈X|Tc〉,
we obtain

bvc`(v) − bvc1 = ([v′](|v′ |) ` x) ` y− bvc1
= (bv′c1 a x) ` y− bvc1
= y ` (bv′c1 a x)− bvc1
= x a (y ` bv′c1)− bvc1
= 0.

It follows that [v]V − bvc1 ∈ Id(Tc).
Case 2. If 1 ∈ V, then, by Lemma 1, we may assume [v]V = ([v′0]V′0 ⊥ [za]1)δ[v′1]V′1

with z ∈ X, a ∈ X+, v′0, v′1 ∈ X∗ and δ ∈ {a,⊥}. Then, in Tri〈X|Tc〉, we have

[v]V − bvc1 = [v′0]V′0
⊥ ([za]1δ[v′1]V′1

)− bvc1

= [v′0]V′0
⊥ ([v′1]V′1

δ[za]1)− bvc1

= ([v′0]V′0
⊥ [v′1]V′1

)δ(z a [a]1)− bvc1

= (([v′0]V′0
⊥ [v′1]V′1

)δz) a [a]1 − bvc1

= [av′0v′1z]1 − bvc1
= 0.

It follows that [v]V − bvc1 ∈ Id(Tc).
Now, we show Tc ⊆ Id(Sc). Clearly, we have

x ` y− y ` x ∈ Id(Sc), x a y− y a x ∈ Id(Sc), x ⊥ y− y ⊥ x ∈ Id(Sc),

where x, y ∈ X. Suppose that [u]U , [v]V ∈ [X+]P(N) with `(uv) > 2. Then, in Tri〈X|Sc〉,
we have

[u]U ` [v]V − [v]V ` [u]U = [uv]
`(u)+V − [vu]

`(v)+U = buvc1 − bvuc1 = 0,

[u]U a [v]V − [v]V a [u]U = [uv]U − [vu]V = buvc1 − bvuc1 = 0,

and [u]U ⊥ [v]V − [v]V ⊥ [u]U = [uv]U∪(`(u)+V)
− [vu]V∪(`(v)+U)

=

{
buvc{1,2,...,`(uv)} − bvuc{1,2,...,`(uv)} = 0, if |U| = `(u) and |V| = `(v),
buvc1 − bvuc1 = 0, otherwise.

This shows that Id(Tc) = Id(Sc) and (i) holds.
(ii) It is easy to check that all possible left (right) multiplication compositions in Sc are

equal to zero. For an arbitrary composition ( f , g)[w]W
in Sc, we have −rf ,−rg ∈ [X+]P(N) ,
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`(w) ≥ 3, [w]W = [a f b]W = [cgd]W and bwc = bar̃f bc = bcr̃g dc, where f = f + rf , g = g+ rg ,

a, b, c, d ∈ X∗. Assume that [a f b]W = [a f̃ b]W − [ar̃f b]W1
and [cgd]W = [cg̃d]W − [cr̃g d]W2

.
Then, we deduce |W| = `(w) if and only if |W1| = `(w) = |W2|. It follows that

( f , g)[w]W
= [a f b]W − [cgd]W = −[ar̃f b]W1

+ [cr̃g d]W2

≡
{
−bar̃f bc1 + bcr̃g dc1 ≡ 0 mod(Sc) if |W| < `(w),

−bar̃f bc{1,...,`(w)} + bcr̃g dc{1,...,`(w)} ≡ 0 mod(Sc) if |W| = `(w).

Then, all the compositions in Sc are trivial. Thus, Sc is a Gröbner–Shirshov basis in
Tri〈X〉.

(iii) The claim follows immediately from Theorem 1.

From Theorem 1, Lemma 10 and Proposition 2, it follows that

Corollary 3. Let X = {xi | i ∈ I} be a well-ordered set and S′c ⊂ Tri〈X〉 be a set consisting of
the following polynomials:

[xjxk]2 − [xkxj]2, [xjxk]1 − [xkxj]1, [xjxk]{1,2} − [xkxj]{1,2} (j, k ∈ I, j > k);

[xjxkxl ]2 − [xjxkxl ]1, [xjxkxl ]3 − [xjxkxl ]1, [xjxkxl ]{1,2} − [xjxkxl ]1,

[xjxkxl ]{1,3} − [xjxkxl ]1, [xjxkxl ]{2,3} − [xjxkxl ]1 (j, k, l ∈ I, j ≤ k ≤ l).

Then, S′c is the reduced Gröbner–Shirshov basis for the free commutative trialgebra Tri[X].

Now, by using Theorem 5 and Proposition 2, we have the following corollary.

Corollary 4. [2] Let Trisgp[X] := (bX+cc, a,`,⊥), where bX+cc is defined as in Proposition 2.
Then, Trisgp[X] is the free commutative trisemigroup generated by X, where the operations `, a
and ⊥ are as follows: for any x, x′ ∈ X, bucU , bvcV ∈ bX+cc with `(u)`(v) > 1,

bvcV ` bucU = bucU ` bvcV = bucU a bvcV = bvcV a bucU = buvc1;

bvcV ⊥ bucU = bucU ⊥ bvcV = buvc{1,2,...,`(uv)} if |U| = `(u) and |V| = `(v);

bvcV ⊥ bucU = bucU ⊥ bvcV = buvc1 if |U| < `(u) or |V| < `(v);

x a x′ = x′ a x = bxx′c1, x ` x′ = x′ ` x = bxx′c2, x ⊥ x′ = x′ ⊥ x = bxx′c{1,2}.

By Lemma 11 and Proposition 2, we can easily obtain the Gelfand–Kirillov dimension
of Tri[X] for every finite set X.

Corollary 5. Let X = {x1, ..., xr} and Tri[X] be the free commutative trialgebra generated by X.
Then, we have GKdim(Tri[X]) = r.

4.2. Normal Forms of Free Abelian Trisemigroups

In this subsection, we first introduce a notion of abelian trisemigroups which is an
analogy of abelian disemigroups introduced in [11]. Then, we construct a set of normal
forms of elements of the free abelian trisemigroups.

Definition 10. A trisemigroup (trialgebra) (T,a,`,⊥) is abelian if c ` d = d a c and c ⊥ d =
d ⊥ c for all c, d ∈ T.

Let X be an arbitrary set and T′ab the subset of [X+]P(N) × [X+]P(N) consisting of the fol-
lowing:

([v]V ` [w]W , [w]W a [v]V ), ([v]V ⊥ [w]W , [w]W ⊥ [v]V ),



Mathematics 2021, 9, 1207 20 of 23

where [v]V , [w]W ∈ [X+]P(N) . Let Tab be the set consisting of elements of the form

[v]V ` [w]W − [w]W a [v]V , [v]V ⊥ [w]W − [w]W ⊥ [v]V , (7)

where [v]V , [w]W ∈ [X+]P(N) . Then, Trisgp〈X|T′ab〉 is clearly the free abelian trisemigroup
generated by X, and Tri〈X|Tab〉 is the free abelian trialgebra generated by X. By Theorem 5,
a linear basis of Tri〈X|Tab〉 consisting of normal triwords is a set of normal forms of
elements of Trisgp〈X|T′ab〉.

Now, we shall try to construct a linear basis of Tri〈X|Tab〉 by the method of Gröbner–
Shirshov bases. We introduce a method of writing down a new normal triword from a
given one. Let X = {xi | i ∈ I} be a well-ordered set, and let Ẋ = {ẋ | x ∈ X} be a copy of
X, where by ẋ we mean a new symbol. We extend the ordering on X to a well-ordering
on X ∪ Ẋ in the following way: (i) ẋi < xi, (ii) xi < xj implies ẋi < ẋj, ẋi < xj, xi < ẋj.

We note that [X+]P(N) has a one-to-one correspondence with (X ∪ Ẋ)+, and we denote
this correspondence by ϕ. More precisely, ϕ maps an arbitrary normal triword [xi1 ...xim ]U to
a word in y1...ym in (X ∪ Ẋ)+, such that, if it ∈ U, then yt = ẋit , and if it /∈ U, then, yt = xit
for every t ≤ m. For instance, ϕ([x1x2x2x1x3]{2,4}) = x1 ẋ2x2 ẋ1x3. Thus, we can identity
elements in [X+]P(N) with those in (X ∪ Ẋ)+.

Recall that, for every y1y2...yt ∈ (X ∪ Ẋ)+, where each yi lies in X ∪ Ẋ, we have

by1y2...ytc = yi1 yi2 ...yit ,

where yi1 , yi2 , ..., yit is a reordering of y1, y2, ..., yt satisfying yi1 ≤ yi2 ≤ ... ≤ yit . Define

π : (X ∪ Ẋ)+ → (X ∪ Ẋ)+, yj1 yj2 ...yjt 7→ byj1 yj2 ...yjtc.

Finally, define
τ := ϕ−1πϕ : [X+]P(N) → [X+]P(N) .

For instance,

τ([x1x2x2x1x3]{2,4}) = ϕ−1πϕ([x1x2x2x1x3]{2,4}) = ϕ−1π(x1 ẋ2x2 ẋ1x3)

= ϕ−1(ẋ1x1 ẋ2x2x3) = [x1x1x2x2x3]{1,3}.

Roughly speaking, τ reorders the letters in [u]U such that the middle entries are
preserved. Therefore, we immediately deduce that such a map τ satisfies some useful
properties, the proof of which is quite easy and thus is omitted.

Lemma 12. For all [u]U , [v]V ∈ [X+]P(N) , we have τ([uv]U∪(`(u)+V)
) = τ([vu]V∪(`(v)+U)

),
τ([uv]

`(u)+V ) = τ([vu]V) and τ(τ([u]U )) = τ([u]U ).

Proposition 3. Let X = {xi | i ∈ I} be a well-ordered set, Tab the subset of Tri〈X〉 consisting of
the elements described in (7). Then, we have

(i) Tri〈X|Tab〉 = Tri〈X|Sab〉, where Sab = {[u]U − τ([u]U ) | [u]U ∈ [X+]P(N) , `(u) ≥ 2};
(ii) Sab is a Gröbner–Shirshov basis in Tri〈X〉;
(iii) The set {τ([u]U ) | [u]U ∈ [X+]P(N)} is a k-basis of the free abelian trialgebra Tri〈X|Tab〉.

Proof. (i) It suffices to show Tab ⊆ Id(Sab) and Sab ⊆ Id(Tab). We first show Tab ⊆ Id(Sab).
In Tri〈X|Sab〉, for all [u]U , [v]V ∈ [X+]P(N) , clearly we have
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[u]U ` [v]V − [v]V a [u]U = [uv]
`(u)+V − [vu]V

= τ([uv]
`(u)+V )− τ([vu]V ),

= 0,

[u]U ⊥ [v]V − [v]V ⊥ [u]U = [uv]U∪(`(u)+V)
− [vu]V∪(`(v)+U)

= τ([uv]U∪(`(u)+V)
)− τ([vu]V∪(`(v)+U)

)

= 0.

Now, we show Sab ⊆ Id(Tab). Note that, for an arbitrary normal triword, say [u]U =
[xi1 ...xin ]U for some letters xi1 , ..., xin ∈ X such that n ≥ 2, the normal triword τ([u]U )
contains the same letters (with repetitions) as those of [u]m; moreover, the middle entries
are preserved. Thus, it suffices to show that we can reorder xit and xit+1 with middle entries
preserved. By Lemma 1, we may assume

[u]U = ([v]V δ1(xit δ2xit+1))δ3[w]W ,

where, if [v]V = [ε]∅, then δ1 ∈ {`,⊥}, and, if [w]W = [ε]∅, then δ3 ∈ {a,⊥}. Then, by
the relations in Tab, we clearly can reorder xit and xit+1 with middle entries preserved. It
follows that Sab ⊆ Id(Tab).

(ii) Clearly all possible left and right multiplication compositions in Sab are equal
to zero. Assume for every composition ( f , g)[w]W

in Sab, where f = [u]U − τ([u]U ) and
g = [v]V − τ([v]V ). We may assume [a f b]W = ([a]A δ1 f )δ2[b]B , [cgd]W = ([c]C δ3g)δ4[d]D .
Then, we have

[a f b]W = [cgd]W = ([a]A δ1[u]U )δ2[b]B = ([c]C δ3[v]V )δ4[d]D .

It follows that

τ(([a]A δ1τ([u]U ))δ2[b]B) = τ(([c]C δ3τ([v]V ))δ4[d]D ).

Thus, we obtain

( f , g)[w]W
= [a f b]W − [cgd]W = ([a]A δ1τ([u]U ))δ2[b]B − ([c]C δ3τ([v]V ))δ4[d]D

≡ τ(([a]A δ1τ([u]U ))δ2[b]B)− τ(([c]C δ3τ([v]V ))δ4[d]D )

≡ 0 mod(Sab).

Thus, all the compositions in Sab are trivial, and thus Sab is a Gröbner–Shirshov basis
in Tri〈X〉.

(iii) By Theorem 1, we get the result.

From Theorem 1, Lemma 10, and Proposition 3, it follows that

Corollary 6. Let X = {xi | i ∈ I} be a well-ordered set and Wab ⊂ Tri〈X〉 be a set consisting of
the following polynomials:

[xixj]2 − [xjxi]1, [xixj]1 − [xjxi]2, [xixi]2 − [xixi]1, [xixj]{1,2} − [xjxi]{1,2}, (i, j ∈ I, i > j).

Then, Wab is the reduced Gröbner–Shirshov basis for the free abelian trialgebra Tri〈X|Tab〉.

From Lemma 11 and Proposition 3, it follows that
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Corollary 7. Let X = {x1, ..., xr} and let Tri〈X|Tab〉 be the free abelian trialgebra generated by
X. Then, we have

GKdim(Tri〈X|Tab〉) = 2r.

Proof. Let Ẋ = {ẋ | x ∈ X} be a copy of X, and let k[X ∪ Ẋ] be the commutative
ploynomial algebra generated by X ∪ Ẋ. It is obvious that k[X ∪ Ẋ] is isomorphism to
Tri〈X|Tab〉 as a vector space. Thus, we obtain

GKdim(Tri〈X|Tab〉) = GKdim(k[X ∪ Ẋ]) = 2r.

The proof is completed.
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